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§ 0. Introduction.

Several authors have investigated minimal totally real submanifolds in a com-
plex space form and obtained many interesting results. Recently F. Urbano [6]
and Y. Ohnita have studied pinching problems on their curvatures and stated
some theorems.

On the other hand, in a (27+1)-dimensional Sasakian space form of constant
¢-sectional curvature ¢(> —3), if a submanifold M is perpendicular to the structure
vector field, then M is said to be C-totally real. For such a submanifold M, it is
well-known that if the mean curvature vector field of M is parallel, then M is
minimal. S. Yamaguchi, M. Kon and T. Ikawa obtained that if the squared
length of the second fundamental form of M is less than n(n+1) (c+3) /4(2n—1),
then M is totally geodesic. Furthermore, D. E. Blair and K. Ogiue proved
that if the sectional curvature of M is a greater than (n—2) (c+3)/4(2n—1), then
M is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold M
in a Sasakian manifold with 7-parallel mean curvature vector field. Then M is not
necessary minimal. Making use of methods of and [4], we prove that if the
sectional curvature of M is positive, then M is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a
Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on
a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theo-
rems and Corollaries. Throughout this paper all manifolds are always C, oriented,

connected and complete. The author wishes to thank Professor S. Yamaguchi for
his help.

§1. A differential operator defined by A. Gray.

Let M be an n-dimensional Riemannian manifold and I"(M) the Lie algebra
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of vector fields on M. Denote by {, >, p and Rxy:=[px, prl—rix,v; (X, Y €
I'(M)) the metric tensor of M, the Riemannian connection on M and the curva-
ture tensor of M, respectively. The Ricci tensor p of M is given by

@D pxy :=3"(Re.xY, ey for X, Y € I'(M),

where {e;, :--, ez} is an arbitrary local orthonormal frame field. For m € M we
denote by Mpn, the tangent space to M at m. Then we write Ruwzy: in place of
{Ruwzy, 2> for w, z, y, = € Mn and shall sometimes use such expressions as Rzays
instead of Rzeacmyyescmy-

Now we define the unit sphere bundle S(Af) of M by

SM)={(m, x) :m € M, x € Mp, {x, x)=1}.

For any unit vector x in a fibre S, we take an orthonormal basis {e;, --:, en} of
My, such that x=e;. Denote by (33, -+, y») the corresponding system of normal
coordinates defined on a neighborhood of x in Sn.

LEMMA A [3]. Let F:Spn—R be a function. Then we have

agbota, "z+"'+“n .
_a_;__é?_(m, x) = —a;—'——aF((COS r)x+ (51171. 7‘)27___2 urer) (O),
3 yy2 By dust-du

where we have set r®=3)7_,u,%

Next we lift the frame {e;, ---, es} to an orthonormal basis {fi, :-*, fn; &2 -
gn} of the tangent space S(M) m,z), where we require that fi, ---, f» are horizontal
and g, ---, gn are vertical. Denote by (xi, -+, Zn;¥2 -, ¥a) the corresponding

normal coordinate system on a neighborhood of (m, ) in S(M). We define a
second-order linear differential operator L(Z, #) by

L n az n 0% n b
L4, 1) myzy :=[2 %=1 Fre A 233 p=2 Pas a‘hyaayp‘f' P 2=z Qa‘a}: Jemyz)s

where pas(m, x) :=Razpz, qa(m, x) :=p.z and A, p are constants to be chosen
later. This definition is independent of the choice of normal coordinates at (m, x).
Hence L(2, ) (m,z, is well-defined. Here we note that the sign of the second term
in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold M, we define an inner product ( , ) on
the space of functions by (f, g) :=SM fgxl. Then the differential operator L (4, g)
is self-adjoint with respect to (, ) provided that 2=—pg (c¢f. [3].

If f is a real-valued function on S(M), we denote by grad?f and grad?f the
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vertical and horizontal components of grad f respectively.

LEMMA B [3]. In a compact Riemannian manifold M, we have
Ssun) LA L@, =2 (f) (m, x)+|grad"f|*(m, x) + 2 Kzgraavsyca ] x1=0,

where the letter K indicates the sectional curvature of M.

§ 2. Fundamental formulas.

Let M be a submanifold of a Riemannian manifold N. We denote by the
same ¢ , > the Riemannian metrics of M and N, and by p (resp. ) the Riemannian
connection of N (resp. M) respectively. In the sequel the letters W, X, Y and
Z (resp. V) will always denote any vector fields tangent (resp. normal) to M. Then
the Gauss and Weingarten formulas are respectively given by

@1 rxY=pxY+B(X,Y),
2.2) rxV=—ArX+DxV,

where B (resp. A) and D are the second fundamental form (resp. shape operator)
and the normal connection of M respectively. Then first and second covariant
derivatives of B are respectively defined by

(2.3) (7xB) (Y, Z)=DxB(Y, Z)—B(rxY, Z)—B(Y, rx2),
@49 T3 xB) (Y, Z)=Dw(pxB) (Y, 2)~ 7, xB) (Y, Z)
— (7xB) pwY, Z) — (7xB) (Y, pwZ)

Denoting by R the Riemannian curvature tensor of N and putting as (RwxY)"
the normal part of RwxY, we have the equation of Codazzi:

2.5) (RwzY)"=(pwB) (X, Y) — (7xB) (W, Y.

If (RwxY)" vanishes identically, then we call such a submanifold M curvature-
invariant.

From [(2.4), the formula of Ricci with respect to the second covariant deriv-
ative of B is given by

(2-6) W% xB) (Y, Z)— 7iwB) (Y, Z)
=RpxB(X, Z) -~B(RwxY, Z) —B(Y, RwxZ),
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where Ry, y :=[Dw, Dx]+ Drw,x7 indicates the normal curvature tensor of M.

From now on let M be an n-dimensional C-totally real submanifold in a
(2n+1)-dimensional Sasakian manifold N with structure (¢, &, »). Then it is

shown that (7], [8], [9],

@.7 (B, Z), £=0,

(2.8) Dx¢pY=—<X, Y)§+9pxY,

2.9 (RE39Y, Z>={RwxY, Z)—<W, ZX}XX, YO>+<{W, Y)XX, Z),

(2.10) {(WxB) (Y, Z), & =—<(B(Y, Z), $X>.

For such a C-totally real submanifold M, we state the definitions as follows:

DEFINITION [11]. We say that the mean curvatare vector field of M is
n-parallel if

2.11) 7L FwB) (€as €2), $X)=0.

We say that the second fundamental form of M is y-parallel if

212 rwB) (Y, Z), $X)=0.
If M has 7-parallel mean curvature vector field, then the equations and

yield
N, (PLxB) (e €0, YD

= =S xB) (en, €2), DwdY ) +2({(PxB) (Fwea, €2), $Y]
= =S =W, Y)(B(ew ), $X)+2(7 xB) (Fwea, €o), $Y 1.
Taking the normal coordinate system, we can state the following.
LEMMA 2.1. If M has n-parallel mean curvature vector field, then we have
213) D AFhxB) (e ), $YD=—S2W, Y)(B(ew €, $X).

§ 3. C-totally real submanifolds.

Throughout this section let M be an n-dimensional curvature-invariant C-totally
real submanifold in a (22+1)-dimensional Sasakian manifold. We denote the

components of the second fundamental form B by



Non-negatively curved C-totally real submanifolds 269
(3.1 hasy 2 ={B(ea €5), $e,> for 1=a, B, r<n.
As M is C-totally real, we find that 2 is symmetric, i.e.,
3.2) Ragy=harp=hsy for 1=Za, B, r<n.

The components of first and second covariant derivatives of B with respect to

oI’ (M) are respectively expressed as
(3.3) Wah) 31 :={(FaB) (s, €), pes>  for 1=a, B, 7, 3=n,

3.4 W2h) 50 :={ (2B (ey, €s), ey  for 1<a, B, 1, 8, e<n.

Since M is curvature-invariant, then, from and [3.3), we find that ph
is symmetric with respect to ¢I' (M), i.e.,

(3-5> (Vah)ﬁr6= (Vﬁh) ard for léa’ AB’ 7> 5§1’l.

We consider a function f on S(M) defined by f(m, x) =hzzz for any point
(m, x) € S(M) and then prove the following to use later.

LeEMMA 3.1. Let M be an n-dimensional curvature-invariant C-totally real
submanifold in a (2n+1)-dimensional Sasakian manifold N. If M has n-parallel
mean curvature vector field, then we have L(1/3, —1/3) (f) =0.

PrROOF. We take any point (m, x) of S(M). For eacha, 1=a=<n, let 7.(s)
be a geodesic in M such that 7,(0) =m and 7,(0) =e.. Then we denote a vector

field by parallel translating of x along 7. as the same letter x. By virtue of
(2.7)—(2.10), we obtain

(ZL)0m, 2 =82, DB (2, D> +(Dudz, GaB)(x, 2> at m
={px, (F2.B) (x, 2))+x.lPeay B(x, )Y at m
= (V?mh> 222+ LaPlazz,

where we have put x.: =<{e., >, which implies

(3.6) ZZ=1< 66;]: ) (m, z) =021 (P2h) 2o2+ hazs.

From [2.6), [2.9), [(3.2) and [(3.5), we can verify
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(Vﬁah) L = (Vﬁxh) aZX

={¢z, (7%.B) (x, €)) +<{pz, REB(x, €u))
—<{px, B(Rozx, €.))—<{px, B(x, Raze.)) at m
={px, (P2:B) (ea €))—~<(B(, €o), RE,px)
—{(B(x, €), ¢Ruzxd —(B(x, ), pR.ze.> at m
= (P22h) aaz + D21l —2hpazRazzs— hpzzRazas
+ 0 uphpaz — RpazZas],

from which follows that

3.7 Sine1 Prah) zze= 201 [(W22H) aaz —2 25=1 hpazRozzp+ RazzPaz+ haoz ] —hzza.
Thus it is shown from and (3.7) that

2
@8  20a(ZL)m 2) = Sy [P2h) ees — 2501 Russshegs + poshoss +hess .

From the definition of f, we have

3.9 S ((cos r)x+(Sin r)2,>1 u.e,)

r

= (cos T)ahzxa:+3(005 r>2<%—r‘>27>1 urhr&”z

H 2 3 3
sin 7 sin r
+3(cos r)( - ) > r8>1 u,u,;h,;,x+< - ) D rsdre>1 Usttsthres,

= (cos 7)3%hzzz+3(cos 7) 2(511;‘—11) D>t urhyzx

3 2
+ (cos 7) (sn; r) 2r>1 Bhrzz—hozz) u,?

. 2 . 3
sin r sin r
+6(COS 7‘) <—1_—) 2,>a>1 uruahrdz"l" (“r—‘_> 27,6,t>1 urudulhlbr

because of 72=37_, 2. Applying A to [3.9), we find

(3.10) gj{-(m, ) =83Nhezz for 2=5a<n,
2
(3.11) @%;(m, x) = —3hzz50ap+6hapz for 25, B

We see from (3.8), (3.10) and (3.11) that
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(3.12) L(1/3, *1/3) (f) (771, .:C) =22=1 [ (V%xh’) aaz T haa.l‘]'
On the other hand, the equation (2.13) is rewritten as

(3.13) a=t P5sM) aer = — %=1 0phsea  for 16, 1, 0=

Combining with (3.13), we have
L@A/3, =1/3)(f) (m, x) =0.

THEOREM 3.1. Let M be an n-dimensional compact curvature-invariant
C-totally real submanifold in a (2n+1)-dimensional Sasakian manifold with

n-parallel mean curvature vector field. If the sectional curvature of M is positive,
then M is totally geodesic.

PROOF. As M has positive sectional curvature, L(1/3, —1/3) is elliptic.
From the above hypothesis we have L(1/3, —1/3) (f)=0. By maximum principle

[10], f is constant on S(M). Since f is an odd function, it must be zero. Thus
M is totally geodesic.

COROLLARY 3.2. Let M be an n-dimensional compact C-totally real submani-
fold in a (2n+1)-dimensional Sasakian space form with n-parallel mean curva-
ture vector field. If the sectional curvature of M is positive, then M is totally
geodesic.

Proor. If the ¢-sectional curvature of Sasakian space form IV is denoted by
¢, then the Riemannian curvature tensor R of N restricted to M is given by

RwzY= C§“3[<Y, XOW—<Y, WYX,

which means clearly that M is curvature-invariant. By M is totally
geodesic.

REMARK 1. If the normal connection of M is flat, then, from [(2.9), M is of

constant curvature 1, so that we have the same result as those in [Theorem 3.1l or
REMARK 2. As a Corollary of we can state the Blair-Ogiue’s

Theorem in the introduction of this paper.

THEOREM 3.3. Let M be an n-dimensional compact curvature-invariant
C-totally real submanifold in a (2n+1)-dimensional Sasakian manifold with
y-parallel mean curvature vector field. If the sectional curvature of M is

non-negative, then M has n-parallel second fundamental form.
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PROOF. By use of we have L(1/3, —1/3)(f)=0. Applying
B, we find that grad®f must be identically zero. From and [3.5),
the fact that grad®f=0 is equivalent to saying that the second fundamental form

is 7-parallel.

COROLLARY 3.4. Let M be an n-dimensional compact C-totally real submani-
fold in a (2n+1)-dimensional Sasakian space form with n-parallel mean curva-
ture vector field. If the sectional curvature of M is non-negative, then M has

n-parallel second fundamental form.
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