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Symmetric submanifolds of compact symmetric spaces

By

Hiroo NAITOH *

1. Introduction

This paper is the final report for the author’s anouncement of the same title, appeared
in Lect. Notes in Math., 1090, Springer-Verlag ([15]). It contains the results of the
anouncement and their detailed proofs, and some further results.

Now symmetric submanifold is defined analogously to riemannian symmetric space.
Namely, for riemannian symmetric space it is assumed, the existence of the (intrinsic) sym-
metry at each point. And for symmetric submanifold it is assumed, the existence of the ex-
trinsic symmetry at each point in the submanifold. If the ambient spaces are riemannian
symmetric spaces, symmetric submanifolds are locally characterized as submanifolds with
parallel second fundamental form which satisfy some condition on the normal spaces. (See

Theorem 1.3.) This characterization corresponds to the characterization that riemannian
symmetric spaces are riemannian manifolds with parallel curvature tensor locally. If the
ambient spaces are rank-one symmetric spaces, submanifolds with parallel second fun-
damental form have already been classified by several mathematicians. (See [1], [4], [5],

[9], [10], [13], [14], [17], [18], [21], [22].) Hence we can take up symmetric submanifolds
of their spaces. But if the ambient spaces are other riemannian symmetric spaces, the sym-
metric submanifolds are almost unknown except Tsukada [23]. In this paper we consider
the classification for the case when the ambient spaces are compact simply connected
riemannian symmetric spaces.

Firstly we will show that symmetric submanifolds of compact riemannian manifolds
are equivariant for certain Lie groups acting transitively on the submanifolds, that is, the
inclusions are induced from Lie group homomorphisms of the Lie groups into the isometry
groups of the ambient spaces. (See Theorem 2.5.) This result implies that our classffica-
tion may be reduced into that of certain algebraic objects associated with Lie group or Lie
algebra.

Next for symmetric submanifolds we will define the totally geodesic symmetric sub-
manifolds tangent to the original symmetric submanifolds, and divide our classification
problem into the following two steps. The first step is to classify the associated totally

geodesic symmetric submanifolds. This is reduced to the local classification of non-
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compact affine symmetric spaces by Berger [2]. (See Theorem 3.3 and Proposition 3.6.)

And the second step is to fix a totally geodesic symmetric submanifold and to find all sym-
metric submanifolds tangent to it. The classification is also reduced to that of certain
algebraic objects associated with the corresponding non-compact affine symmetric space.
(See Theorem 4.4 and Cororally 4.6.)

Lastly, by using this reduction, we will give a sufficient condition for totally geodesic
symmetric submanifolds to satisfy that all symmetric submanifolds tangent to them are
the original totally geodesic symmetric submanifolds. (See Theorem 5.2.) There are many
examples satisfying this conditions. Moreover we will consider two series of totally
geodesic symmetric submanifolds which don’t satisfy this condition. The one is close to
totally complex totally geodesic submanifolds of compact quatemionic symmetric spaces,
and the other is close to totally real totally geodesic submanifolds of compact hermitian
symmetric spaces. (See Theorem 5.4 and Theorem 5.7.) In these cases the symmetric sub-
manifolds tangent to them are not always totally geodesic.

1. Symmetric immersions

Let $S,$ $M$ be connected riemannian manifolds and let $f$ be an isometric immersion of $S$

into $M$. Denote by $T_{p}S,$ $N_{p}S$ the tangent space, the normal space at $p\in S$ respectively. The
immersion $f$ is called symmetric if for each $p\in S$ there exist an isometry $s_{p}$ of $S$ and an
isometry $t_{p}$ of $M$ such that

(1.1) $t_{p}\circ f=f\circ s_{p}$ ,
(1.2) $s_{p}(p)=p$ and thus $t_{p}(f(p))=f(p)$ ,
(1.3) $(t_{p})_{*}f_{*}(X)=-f*(X),$ $(t_{p})_{*}\xi=\xi$

for $X\in T_{p}S,$ $\xi\in N_{p}S$. Note that $(s_{p})_{*}X=-X$ for $X\in T_{p}S$ by (1.1), (1.3) and thus $S$ is a
riemannian symmetric space. Here we call the isometries $s_{p},$ $t_{p}$ the intrinsic, the extrinsic
symmetries at $p$ respectively. If $f$ is an imbedding, the image $f(S)$ is called a symmetri sub-
manifold and is identified with the manifold $S$ . Then the isometry $s_{p}$ is identified with the
restriction of $t_{p}$ to $S$ . Moreover if $S$ is regular, the restriction is automatically smooth
without the existence of $s_{p}$ . Hence the definition of regular symmetri $submanif_{0}u$ may be
rewritten in the following form. For each $p\in S$ there exists an isometry $t_{p}$ of $M$ such that

$t_{p}(p)=p,$ $t_{p}(S)=S$,
(1.4)

$(t_{p})_{*}X=-X,$ $(t_{p})_{*}\xi=\xi$

for $X\in T_{p}S,$ $\xi\in N_{p}S$ .
For the local versions of symmetric immersion, symmetric submanifold we assume

only the existence of an isometry $s_{p}$ around $p$ and an isometry $t_{p}$ around $f(p)$ satisfying the
conditions $(1.1)\sim(1.3)$ and call these a locally symmetric immersion, a locally symmetric sub-
manifou respectively. Then the manifold $S$ is a locally riemannian symmetric space.
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Retum to an isometric immersion $f$ of $S$ into $M$ and denote by $\alpha$ the second fundamen-
tal form of $f$ and by $ V^{*}\alpha$ the covariant derivative of $\alpha$ defined in the following.

$(V_{X}^{*}\alpha)(Y, Z)=D_{X}(\alpha(Y, Z))-\alpha(V_{X}Y, Z)-\alpha(Y, V_{X}Z)$

for vector fields $X,$ $Y,$ $Z$ tangent to $S$ . Here $D,$ $V$ denote the normal connection for $f$, the
riemannian connection on $S$ respectively. The immersion $f$ is called parallel if $V^{*}\alpha=0$ and
moreover if $f$ is an imbedding, the image $f(S)$ or $S$ is called a parallel submanifold.

Denote by $\overline{R}$ the curvature tensor on $M$. A linear subspace $V$ in a tangent space of $M$ is
called curvature-invariant if $\overline{R}(V, V)V\subset V$. If $f$ is a parallel immersion, the subspaces
$f_{*}(T_{p}S),$ $p\in S$, are curvature-invariant by the Coddazi equation for $f$.

Next assume that $f$ is a parallel immersion. Fix a point $p\in S$ and let $\lambda$ be a linear en-
domorphism of $T_{f(p)}M$ such that

(1.5) $\lambda(f*(X))=-f_{*}(X),$ $\lambda(\xi)=\xi$

for $X\in T_{p}S,$ $\xi\in N_{p}S$ . Let $\gamma(t),$ $|t|<l$ , be a geodesic in $S$ such that $\gamma(0)=p$ . Then it follows
the following

LEMMA 1.1. (Str\"ubing [16]). Assume that $\Lambda$ is an isometry of $M$ defined on a domain
containing the image $f(\gamma(t)),$ $|t|<l$, and satisfying

$\Lambda(f(p))=f(p),$ $\Lambda_{f\langle p)}l=\lambda$ .

Then it holds $\Lambda(f(\gamma(t)))=f(\gamma(-t))$ for all $t$ such that $|t|<l$ .

Now if $f$ is a parallel immersion of $S$ into a locally riemannian symmetric space $M$, the
manifold $S$ is also a locally riemannian symmetric space. Hence we may consider the rela-
tion between symmetric immersions and parallel immersions into locally riemannian sym-
metric spaces. Firstly we prepare the following

LEMMA 1.2. (cf. Helgason [6]). Let $L,$ $L^{\prime}$ be locally riemannian symmetric spaces of the
same dimension, fumished with the curvature tensors $R,$ $R^{\prime}$ respectively. Fix $p\in L,$ $p^{\prime}\in L^{\prime}$ and
let $\lambda$ be a linear isometry of $T_{p}L$ onto $T_{p^{\prime}}L^{\prime}$ such that

(1.6) $\lambda(R(X, Y)Z)=R^{\prime}(\lambda(X), \lambda(Y))\lambda(Z)$

for $X,$ $Y,$ $Z\in T_{p}L$ . Then,
(1) there exists a local isometry $\Lambda$ ofa domain around $p$ onto a domain around $p^{\prime}$ such that

$\Lambda(p)=p^{\prime},$ $\Lambda_{*p}=\lambda$ . If $L$ is simply connected and complete and if $L^{\prime}$ is complete, the isometry $\Lambda$

exists globally on $L$ .
For the geodesic $\gamma(t)$ in $L$ such that $\gamma(0)=p,$ $\gamma(0)=X$, denote by $\gamma^{\lambda}(t)$ the geodesic in $L^{\prime}$

such that $\gamma^{\lambda}(0)=p^{\prime},$ $\gamma^{\lambda}(0)=\lambda(X)$ .
(2) Let $\Lambda$ be a (not necessarily smooth) mapping of a domain around $p$ into $L^{\prime}$ such that

$\Lambda(\gamma(t))=\gamma^{\lambda}(t)$ for all local geodesics $\gamma(t)$ startingfrom $p$ . Then $\Lambda$ is a unique smooth isometry
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on some domain around $p$ such that $\Lambda_{*p}=\lambda$ . Moreover assume that $L,$ $L^{\prime}$ are complete. If $\Lambda$ is
defined globally on $L$, it is a smooth $isomet\prime y$ on $L$ .

THEOREM 1.3. Let $f$ be an isometric immersion of $S$ into a locally riemannian symmetric
space M Then $f$ is a locally symmetric immersion $lf$ and only if it is a pamllel immersion such
that the normal spaces $N_{p}S,$ $p\in S$ , are curvature-invariant subspaces of $T_{f(p)}M$ respectively.

PROOF. Assume that $f$ is locally symmetric. Since $t_{p},$
$s_{p}$ are isometries such that

$t_{p}\circ f=f\circ s_{p}$ , we have

$(V_{(s_{p})_{\infty}X}\alpha)((s_{p})_{*}Y, (s_{p})_{*}Z)=(t_{p})_{*}((V_{X}\alpha)(Y, Z))$ ,
$\overline{R}((t_{p})_{*}\xi, (t_{p})_{*}\zeta)(t_{p})_{*}\eta=(t_{p})_{*}(\overline{R}(\xi, \zeta)\eta)$

for $X,$ $Y,$ $Z\in T_{p}S,$ $\xi,$ $\zeta,$ $\eta\in N_{p}S$ . Then, by (1.3), it follows

$-(V_{X}\alpha)(Y, Z)=(V_{X}\alpha)(Y, Z)$ ,
$\overline{R}(\xi, z)\eta=1t_{p})_{*}(\overline{R}(\xi, \zeta)\eta)$ .

These imply that $V\alpha=0$ and $\overline{R}(N_{p}S, N_{p}S)N_{p}S\subset N_{p}S$ respectively.
Conversely assume that $f$ is a parallel immersion such that the normal spaces are cur-

vature-invariant. Fix $p\in S$ . Then the subspace $f_{*}T_{p}S$ is also curvature-invariant. Hence, by
the property of the curvature tensor $\overline{R}$ , it follows

(1.7) $\{\overline{R}\overline{R}\overline{R}\left\{\begin{array}{l}f*T_{p}S,f_{*}T_{p}S)f_{*}T_{p}S\subset f*T_{p}S, R(f*T_{p}S,f_{*}T_{p}S)N_{p}S\subset N_{p}S,\\f*T_{p}S,N_{p}S)f_{*}T_{p}S\subset N_{p}S, \overline{R}(f*T_{p}S,N_{p}S)N_{p}S\subset f*T_{p}S,\\N_{p}S,N_{p}S)f_{*}T_{p}S\subset f_{*}T_{p}S, \overline{R}(N_{p}S,N_{p}S)N_{p}S\subset N_{p}S.\end{array}\right.$

Define a linear isometry $\lambda$ of $T_{f(p)}M$ as in (1.5). Then the relations (1.7) imply that $\lambda$

satisfies (1.6). Hence there exists a local isometry $t_{p}$ around $f(p)$ such that $t_{p}(f(p))=f(p)$ ,
$(t_{p})_{f(p)}=\lambda$ . Then, by Lemma 1.1, it holds $t_{p}(f(\gamma(t))=f(\gamma(-t))$ for all local geodesics $\gamma(t)$ in
$S$ starting from $p$ . Let $s_{p}$ be a mapping defined around $p$ such that $f\circ s_{p}=t_{p}\circ f$. Obviously it
follows $s_{p}(\gamma(t))=\gamma(-t)$ . By Lemma 1.2, (2), the mapping $s_{p}$ is a smooth isometry. It is ob-
vious that these isometries $t_{p},$ $s_{p}$ satisfy the conditions $(1.1)\sim(1.3)$ . Hence $f$ is locally sym-
metric. q.e. $d$ .

CORORALLY 1.4. Let $M$ be a simply connected riemannian symmetric space and let $S$ be a
submanifold of M. Then $S$ is a symmetric submanifold $lf$ and only if it is a complete parallel
submanifold such that the nomal spaces are curvature-invariant.

Particularly a complete locally symmetric submamfold is always a symmetric submanifold.

PROOF. If $S$ is symmetric, it is a riemannian symmetric space and thus it is complete.
By Theorem 1.3, it is a complete parallel submanifold such that the normal spaces are cur-
vature-invariant.

Conversely assume that $S$ is such a submanifold. And recall the local isometries $t_{p},$ $s_{p}$
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defined in the proof of Theorem 1.3. Since $M$ is simply connected and $S$ is complete, they

are defined globally as smooth isometries by Lemma 1.2. Hence $S$ is symmetric. q.e. $d$ .

REMARK 1.5. Assume that $M$has constant curvature and let $f$be an isometric immer-

sion of $S$ into $M$. Then the normal spaces are always curvature-invariant.

2. The equivariance of symmetric immersions and their classification problem

Let $S,$ $M$ be riemannian manifolds. Denote by $I^{0}(S),$ $I^{0}(M)$ the connected components

of the isometry groups of $S,$ $M$ respectively, containing the identity transformations. Then

the Lie algebras $\mathfrak{g},\overline{\mathfrak{g}}$ of $I^{0}(S),$ $I^{0}(M)$ are canonically identified with the Lie algebras of all
Killing vector fields on $S,$ $M$ respectively.

Let $f$be an isometric immersion of $S$ into $M$. Define a Lie subalgebra $\mathfrak{g}_{f}$ of $\mathfrak{g}$ as follows.

A Killing vector field $X$ on $S$ is contained in $\mathfrak{g}_{f}$ if and only if it satisfies $f*X=\overline{X}\circ f$ for

some $\overline{X}\in\overline{\mathfrak{g}}$ . Let $\mathfrak{h}$ be a Lie subalgebra of $\mathfrak{g}_{f}$. Then $\mathfrak{h}$ is called an f*-related subalgebm if there

exists a Lie algebra homomorphism $\rho$ of $\mathfrak{h}$ into $\overline{\mathfrak{g}}$ such that $f*X=\rho(X)\circ f$ for $X\in \mathfrak{h}$ . Such a $\rho$

is called an f*-related Lie homomorphism.
Let $\mathfrak{h}$ be an $f*$ -related subalgebra and $\rho$ an $f*$ -related Lie homomorphism of $\mathfrak{h}$ into $\overline{\mathfrak{g}}$ .

Denote by $H$ the universal convering of the connected Lie subgroup of $I^{0}(S)$ with Lie

algebra $\mathfrak{h}$ , and by the same notation $\rho$ the Lie group homomorphism of $H$ into $I^{0}(M)$ whose

differential is $\rho$ . The Lie group $H$ acts on $S$ through $I^{0}(S)$ , while it acts on $M$ through $\rho(H)$

$\subset I^{0}(M)$ .
LEMMA 2.1. The isometric immersion $f$ is H-equivariant, $i.e.$ ,

$\rho(h)(f(q))=f(h(q))$

for $h\in H,$ $q\in S$ .

PROOF. Let $X\in \mathfrak{h}$ and fix $q\in S$ . We may show that

(2.1) $\rho(\exp tX)(f(q))=f((\exp tX)(q))$

for the one parameter subgroup $\exp tX$ of $H$. Note that $\rho(\exp tX)(f(q)),$ $(\exp tX)(q)$ are
integral curves of Killing vector fields $\rho(X),$ $X$ respectively. Since $f_{*}(X)=\rho(X)\circ f$, the

curve $f((\exp tX)(q))$ is also the integral curve of $\rho(X)$ through $q$ at $t=0$ . Hence the equali-

ty (2.1) holds by the uniqueness of integral curves. q.e. $d$ .

Now let $f$ be a symmetric immersion of $S$ into a riemannian manifold $M$. Recall that $S$

is a riemannian symmetric space. Let $\gamma(t),$ $-\infty<t<\infty$ , be a complete geodesic in $S$. Then

it follows

(2.2) $s_{\gamma(c)}(\gamma(t))=\gamma(2c-t)$

for $c,$ $t\in R$ . Denote by $\tau_{a,b},$
$a\leqq b$ , the parallel translation for the riemannian connection on $S$,

from $T_{\gamma(a)}S$ to $T_{\gamma\langle b)}S$ along $\gamma(t)$ . Then the following equalities hold:
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(2.3) $\tau_{a,b}=-(s_{\gamma\langle a+b/2)})_{\gamma(a)}$ ,
(2.4) $s_{\gamma(a)}\circ s_{\gamma(0)}\circ s_{\gamma(b)}=s_{\gamma(a+b)}$ .

Let $S(t)$ be a curve in $I^{0}(S)$ defined by

$S(t)=s_{\gamma\langle t/2)}\circ s_{\gamma(0)}$

for all $t\in R$ . Then the equality (2.4) implies that $S(t)$ is a one parameter subgroup. (See

Helgason [6] for (2.3), (2.4).)

Now consider the image curve $f(\gamma(t))$ of a complete geodesic $\gamma(t)$ in $S$. Denote by $\overline{\tau}_{a.b}$

the parallel translation for the normal connection, from $N_{\gamma\{a)}S$ to $N_{\gamma\langle b)}S$ along $f(\gamma(t))$ . Then
we have the following lemma analogous to (2.3), (2.4). The proof is also along Helgason’s
arguements.

LEMMA 2.2. It holds that

(2.5) $\overline{\tau}_{a.b}(\xi)=(t_{\gamma(a+b/2)})_{f(\gamma\langle a))}(\xi)$

for $\xi\in N_{\gamma(a)}S$ and moreover
(2.6) $t_{\gamma\langle a)}\circ t_{\gamma\langle 0)}\circ t_{\gamma\langle b)}=t_{\gamma(a+b)}$ .

PROOF. Firstly we show the equality (2.5). Obviously it follows

(2.7) $t_{\gamma\langle c)}(f(\gamma(t)))=f(\gamma(2c-t)),$ $(t_{\gamma(c)})_{*}N_{\gamma\langle t)}S=N_{\gamma\langle 2c-t)}S$

by (1.1), (2.2). Put $c=(a+b)/2$ and fix $\xi\in N_{\gamma\langle a)}S$ . Then normal vectors $\overline{\tau}_{a,c}(\xi),$ $\xi$ are parallel
and thus $(t_{\gamma\langle c)})_{*}(\overline{\tau}_{a.c}(\xi)),$ $(t_{\gamma(c)})_{*}\xi$ are also parallel by (2.7). Since $(t_{\gamma(c)})_{*}(\overline{\tau}_{a,c}(\xi))=\overline{\tau}_{a,c}(\xi)$ and

$\overline{\tau}_{a,c}(\xi)$ is parallel to $\overline{\tau}_{a,b}(\xi)$ , normal vectors $\overline{\tau}_{a,b}(\xi),$ $(t_{\gamma\langle c)})_{*}\xi$ are parallel. Hence it follows that
$\overline{\tau}_{a,b}(\xi)=(t_{\gamma\langle c)})_{*}\xi$ .

Next we show the equality (2.6). Put $\psi=t_{\gamma\langle a)}\circ t_{\gamma(0)}\circ t_{\gamma\langle b)}$ and $p=\gamma(a+b)$ . Then it follows
$\psi(f(p))=t_{p}$ ( $f(p)=f(p)$ by (2.7). Consider the differential $\psi*ftp$) of $\psi$ at $f(p)$ . The restric-
tion of $\psi*f(p)$ to $f_{*}(T_{p}S)$ is the minus identity by (1.1), (2.4), and moreover that of $\psi*ftp$) to
$N_{p}S$ is the identity by (2.5). Hence it follows that $\psi_{*}f\langle p$) $=(t_{p})_{*f\{p)}$ . Since $\psi,$ $t_{p}$ are isometries,
it holds $\psi=t_{p}$ on M. q.e. $d$ .

Let $T(t)$ be a curve in $I^{0}(M)$ defined by

$T(t)=t_{\gamma(t/2)}\circ t_{\gamma\langle 0)}$

for all $t\in R$ . Then the equality (2.6) implies that $T(t)$ is a one parameter subgroup.
Now fix $p\in S$ and define an involutive automorphism $\delta$ of $I^{0}(S)$ by $\delta(g)=s_{p}\circ g\circ s_{p}$ for

$g\in I^{0}(S)$ . Then the differential induces an involutive automorphism of $\mathfrak{g}$ . Denote it by the
same notation $\delta$ . Let $\mathfrak{p}$ be the (-l)-eigenspace of $\delta$ . Let $X\in \mathfrak{p}$ . Then the integral curve $\gamma(t)$

of $X$ such that $\gamma(0)=p$ is a complete geodesic in $S$. Moreover the one parameter subgroup
$S(t)$ defined from $\gamma(t)$ coincides with the one parameter subgroup $\exp tX$ generated by $X$.
Put $i_{\{}=[\mathfrak{p}, \mathfrak{p}]$ and $\mathfrak{g}_{0}=f_{0}\oplus \mathfrak{p}$ .
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PROPOSITION 2.3. Let $f$ be a symmetric immersion of $S$ into a riemannian mamfold $M$

Then it holds $\mathfrak{g}_{0}\subset \mathfrak{g}_{f}$.

PROOF. We may show that $\mathfrak{p}\subset \mathfrak{g}_{f}$. Take $X\in \mathfrak{p}$ and let $\gamma(t)$ be the integral complete

geodesic such that $\gamma(0)=p$ . Then the one parameter subgroups $S(t),$ $T(t)$ satisfy $T(t)\circ f$

$=f\circ S(t)$ by (1.1). Let $\overline{X}$ be the Killing vector field on $M$which generates $T(t)$ . Since $S(t)$ is
generated by $X$, it follows $f_{*}(X)=\overline{X}\circ f$ and thus $X\in \mathfrak{g}_{f}$. This implies that $\mathfrak{p}\subset \mathfrak{g}_{f}$. q.e.d.

Next we consider a sufficient condition for $\mathfrak{g}_{0}$ to be $f*$ -related. Denote by $\overline{K}$ the Lie
subgroup of $I^{0}(M)$ whose elements leave the point $f(p)$ fixed and by $\overline{f}$ its Lie algebra. Let
$\overline{\mathfrak{g}}_{0}\subset\overline{\mathfrak{g}}$ be the Lie subalgebra of Killing vector fields $\overline{X}$ on $M$ such that $f_{*}(X)=\overline{X}^{Q}f$ for some
$X\in \mathfrak{g}_{0}$ . Define the projection $\pi$ of $\overline{\mathfrak{g}}_{0}$ onto $\mathfrak{g}_{0}$ by $\pi(\overline{X})=X$ for $\overline{X}\in\overline{\mathfrak{g}}_{0}$ , where $f*1X$ ) $=\overline{X}of$.
Since $f$ is an immersion, the projection is a well-defined Lie homomorphism.

LEMMA 2.4. If $\overline{\mathfrak{g}}$ admits a nondegenerate symmetric bilinearform $\overline{B}$ satisfying thefollow-
ing conditions, then $\mathfrak{g}_{0}$ is an $f*$ -related subalgebra of $\mathfrak{g}_{f}$. The conditions are.$\cdot$

(i) endomorphisms $ad(X),$ $X\in\overline{\mathfrak{g}}_{0}$ , of $\overline{\mathfrak{g}}_{0}$ are skew adjoint with respect to $\overline{B},$ $i.e.$ ,

$\overline{B}(ad(\overline{X})\overline{Y},\overline{Z})+\overline{B}$ ( $\overline{Y}$, ad $(\overline{X})\overline{Z}$ ) $=0$

for $\overline{Y},\overline{Z}\in\overline{\mathfrak{g}}_{0}$ , and
(ii) the restriction of $\overline{B}$ to $\overline{f}$ is positive (or negative) definite.

PROOF. Note that the kemel $Ker\pi$ of $\pi$ is contained in $\overline{f}$. Then $Ker\pi$ is a
nondegenerate subspace in $\overline{\mathfrak{g}}$ with respect to $\overline{B}$ by (ii). Hence we have the direct sum
$\overline{\mathfrak{g}}=\overline{a}\oplus Ker\pi$ , where $\overline{\mathfrak{a}}=\{\overline{X}\in\overline{\mathfrak{g}};\overline{B}(\overline{X}, Ker\pi)=\{0\}\}$ . Put $(Ker\pi)^{\perp}=\overline{\mathfrak{a}}\cap\overline{\mathfrak{g}}_{0}$ . Then we also have
the orthogonal direct sum $\overline{\mathfrak{g}}_{0}=Ker\pi\oplus(Ker\pi)^{\perp}$ . Since $Ker\pi$ is an ideal of $\overline{\mathfrak{g}}_{0}$ , the subspace
$(Ker\pi)^{\perp}$ is a Lie subalgebra of $\overline{\mathfrak{g}}_{0}$ by (i). Then the projection $\pi$ induces a Lie algebra

isomorphism of $(Ker\pi)^{\perp}$ onto $\mathfrak{g}_{0}$ and the inverse gives an $f*$ -related Lie homomorphism of
$\mathfrak{g}_{0}$ . Hence $\mathfrak{g}_{0}$ is $f*$ -related. q.e. $d$ .

Let $G_{0}$ be the universal covering of the connected Lie subgroup of $I^{0}(S)$ with Lie
algebra $\mathfrak{g}_{0}$ . Since $S$ is a riemannian symmetric space, the Lie group $G_{0}$ acts transitively on
$S$ .

THEOREM 2.5. Let $M$ be a riemannian manifold satisfying either of the followings:
(1) $I^{0}(M)$ is compact.
(2) $I^{0}(M)$ is semi-simple.
Then every symmetric immersion of $S$ into $M$ is $G_{0}$-equivariant.

PROOF. Assume that $M$ satisfies (1). Then $\overline{\mathfrak{g}}$ admits a positive definite inner product

such that ad (X), $\overline{X}\in\overline{\mathfrak{g}}$ , are skew symmetric. This inner product satisfies the conditions (i),

(ii) in Lemma 2.4.
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Next assume that $M$ satisfies (2). Take the Killing form of $\overline{\mathfrak{g}}$ . Then it satisfies the condi-
tions (i), (ii). (See Kobayashi-Nomizu [8], Vol. II, p. 247 for the proof.)

Hence, by Lemma 2.4, every symmetric immersion of $S$ into $M$ is $G_{0}$-equivariant.q.e.d.

REMARK 2.6. Compact riemannian manifolds satisfy the condition (1). And rieman-
nian symmetric spaces of noncompact type satisfy the condition (2).

REMARK 2.7. Naitoh [12] has shown this Theorem for the case when $S$ are n-dimen-
sional totally real symmetric submanifolds of the complex projective n-space, and Tsuka-
da [21] for the case when $S$ are n-dimensional totally complex symmetric submanifolds of
the quatemionic projective n-space. The crucial points of their arguements are the con-
crete constmctions of $f*$ -related Lie homomorphisms.

CORORALLY 2.8. $L\ell tM$ be a riemannian manifold satisfying either of the conditions (1),
(2) in Theorem 2.5, and let $f$ be a symmetric immersion of $S$ into M Then the image $f(S)$ has
the stmcture of symmetnc submanifold such that $f$ is a rimannian covering of $S$ onto $f(S)$ .

PROOF. Let $\rho$ be an $f*$ -related Lie homomorphism of $\mathfrak{g}_{0}$ and denote by the same nota-
tion the Lie group homomorphism of $G_{0}$ to $I^{0}(M)$ whose differential is $\rho$ . By Theorem 2.5
the image $f(S)$ is the $\rho(G_{0})$ -orbit at the fixed point $f(p)$ . Since $\rho(G_{0})$ has the stmcture of Lie
subgroup such that $\rho$ is a Lie group homomorphism of $G_{0}$ onto $\rho(G_{0})$ , the image $f(S)$ has
the differentiable stmcture as $\rho(G_{0})$ -orbit. Then $f(S)$ is a submanifold of $M$ and $f$ induces a
smooth mapping of $S$ onto $f(S)$ . Consider the metric on $f(S)$ induced from that on $M$. Since
$S$ is complete, $f$ is a covering of $S$ onto $f(S)$ .

Let $\overline{q}\in f(S)$ and take $q\in S$ such that $f(q)=\overline{q}$. Then, since $f(S)$ is a complete locally
riemannian symmetric space, the restriction of $t_{q}$ to $f(S)$ gives the smooth intrinsic sym-
metry at $\overline{q}$ by Lemma 1.2, (2). Hence $f(S)$ is a symmetric submanifold of M. q.e. $d$ .

Let $f,$ $f^{\prime}$ be isometric immersions of riemannian manifolds $S,$ $S^{\prime}$ into riemannian
manifolds $M,$ $M^{\prime}$ respectively. The immersions $f,$ $f^{\prime}$ are called equivalent to each other if
there exist an isometry $\psi$ of $S$ onto $S^{\prime}$ and an isometry ut of $M$ onto $M^{\prime}$ such that $f^{\prime}\circ\psi=$

ut $\circ f$ on $S$ .

REMARK 2.9. Let $M$ be a riemannian manifold satisfying either of the conditions (1),
(2) in Theorem 2.5, and let $f,f^{\prime}$ be symmetric immersions of simply connected riemannian
manifolds $S,$ $S^{\prime}$ into $M$. Then $f$ is equivalent to $f^{\prime}$ if and only if $f(S)\rightarrow M$ is equivalent to

$f^{\prime}(S^{\prime})\rightarrow M$.
In the rest of this section we consider the classification problem of symmetric sub-

manifolds in riemannian symmetric spaces without euclidean factor. Since such rieman-
nian symmetric spaces satisfy the condition (2) in Theorem 2.5, it is natural to consider the
problem. And the classification problem of symmetric immersions is also reduced to the
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problem by Remark 2.9.
Let $f$ be a symmetric immersion of $S$ into a riemannian symmetric space $M$. Let $p\in S$ .

Since $f*T_{p}S$ is curvature-invariant, there exists a unique complete totally geodesic sub-

manifold $N(p)$ such that $N(p)\ni f(p),$ $T_{f(p)}N(p)=f*T_{p}S$ (cf. Helgason [6]).

LEMMA 2.10. The submamfold $N(p)$ is symmetric. Moreover all symmetric sub-

mamfolds $N(p),$ $p\in S$, are equivalent to one another.

PROOF. Let $p^{\prime}\in N(p)$ and take a geodesic $\gamma(t)$ in $N(p)$ such that $\gamma(a)=p,$ $\gamma(-a)=p^{\prime}$ .
Put $m=\gamma(O)$ and consider the geodesic symmetry $\overline{s}_{m}$ of $M$ at $m$ . Then it holds $\overline{s}_{m}(p)=p^{\prime}$ ,

and moreover the restriction of $\overline{s}_{m}$ to $N(p)$ induces an isometry of $N(p)$ by Lemma 1.2, (2).

Hence it follows $(\overline{s}_{m})_{*}N_{p}(N(p))=N_{p^{\prime}}(N(p))$ . Since $N_{p}(N(p))=N_{p}S$ is curvature-invariant,

so is $N_{p^{\prime}}(N(p))$ . Hence $N(p)$ is a symmetric submanifold by Theorem 1.3.
Next let $N(q)$ be the totally geodesic symmetric submanifold defined at $q\in S$ . We show

that $N(q)$ is equivalent to $N(p)$ . Let $\gamma(t)$ be a geodesic in $S$ such that $\gamma(b)=p,$ $\gamma(-b)=q$ , and
put $n=\gamma(O)$ . Then the extrinsic symmetry $t_{n}$ satisfies that $(t_{n})_{*}T_{p}N(p)=T_{q}N(q)$ . Since
$N(p),$ $N(q)$ are totally geodesic, the restriction of $t_{n}$ to $N(p)$ induces an isometry of $N(p)$ on-
to $N(q)$ by Lemma 1.2, (2). Hence $N(q)$ is equivalent to $N(p)$ . $q$ . $e$ . $d$ .

Hereafter this $N(p)$ is denoted simply by $N$ and is called the totally geodesic symmetric

submamfold associated with $f$.

REMARK 2.11. Let $f,$ $f^{\prime}$ be symmetric immersions into riemannian symmetric spaces
$M,$ $M^{\prime}$ and $N,$ $N^{\prime}$ the totally geodesic symmetric submanifolds associated with $f,f^{\prime}$ respec-
tively. If $f$ is equivalent to $f^{\prime},$ $N$ is also equivalent to $N^{\prime}$ . (See the last arguement of the pro-
of for Lemma 2.10.)

Next let $M=M_{1}\times M_{2}$ be the riemannian product of riemannian manifolds $M_{1},$ $M_{2}$ . Let
$f,\hat{f}$ be isometric immersions of $S$ to $M,$ $M_{I}$ respectively and let $m_{2}$ be a point in $M_{2}$ .
Moreover assume that $f(q)=(\hat{f}(q), m_{2})$ for $q\in S$ . Then $f$ is symmetric if and only if $\hat{f}$ is
symmetric. An isometric immersion $f$ of $S$ to $M$ is called substantial if for no proper rieman-
nian product $M=M_{1}\times M_{2}$ there exist an isometric immersion $\hat{f}and$ a point $m_{2}$ satisfying

the above assumption.

LEMMA 2.12. Assume that $M$ is a simply connected riemmanian symmetric space
without euclidean factor. Let $f$ be a symmetric immersion of $S$ to $M$ and $N$ the totally geodesic

symmetric submanifold associated with $f$ Then $f$ is substantial $lf$and only $lf$ the inclusion of$N$
to $M$ is substantial.

PROOF. Obviously $f$ is substantial if the inclusion of $N$ to $M$ is substantial. We show
the converse. Fix $p\in S$ and set $N=N(p)$ . Assume that the inclusion of $N$ to $M$ is not
substantial, i.e., there exists a proper decomposition $M=M_{1}\times M_{2}$ such that $N\subset M_{1}\times\{m_{2}\}$
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for some $m_{2}\in M_{2}$ . Let $q\in S$ and take a geodesic $\gamma(t)$ in $S$ such that $\nu(0)=p,$ $\gamma(a)=q$ . Then it
holds that $(T(a))_{*}f_{*}T_{p}S=f*T_{q}S$. Let $TM=TM_{1}\oplus TM_{2}$ be the decomposition of the
tangent bundle $TM$ associated with the product decomposition $M=M_{1}\times M_{2}$ . Since $T(a)$

$\in I^{0}(M)=I^{0}(M_{1})\times I^{0}(M_{2})$ , it follows $(T(a))_{*}T_{f(p)}M_{1}=T_{f\langle q)}M_{I}$ . Moreover since $f*T_{p}S=$

$T_{f(F)}N\subset T_{f(p)}M_{1}$ by the assumption, it follows $f*T_{q}S\subset T_{f(q)}M_{1}$ . Hence we have $f(S)$

$\subset M_{1}\times\{m_{2}\}$ . This implies that $f$ is not substantial. Consequently the inclusion of $N$ to $M$ is
substantial if $f$ is substantial. q.e. $d$ .

Now we propose the following

PROBLEM. Classlfy the substantial symmetriC submanifolds of simply connected rieman-
nian symmetric spaces without euclidean factor, up to the equivalence.

By the virture of Remark 2.11, Lemma 2.12, this problem is devided into the following
two steps.

The First Step. Classify the substantial totally geodesic symmetric submanifolds.
The Second Step. Next fix a substantial totally geodesic symmetric submanifold.

And classify the symmetric submanifolds which have it as associated totally geodesic sym-
metric submanifold.

In the following sections we will study this problem when the ambient spaces are com-
pact simply connected riemannian symmetric spaces.

3. Totally geodesic symmetric submanifolds

A symmetric Lie algebm is, by definition, a pair $(\mathfrak{g}, \theta)$ of Lie algebra $\mathfrak{g}$ and an involutive
automorphism $\theta$ on $\mathfrak{g}$ . Let $\mathfrak{g}=f\oplus \mathfrak{p}$ be the eigenspace decomposition by $\theta$ into the $(+1)-$

eigenspace $f$ and the (-l)-eigenspace $\mathfrak{p}$ . Then the symmetric Lie algebra $(\mathfrak{g}, \theta)$ is called
effective if the adjoint representation ad, of $f$ into $\mathfrak{g}\mathfrak{l}(\mathfrak{p})$ is faithful, where gl(p) denotes the
Lie algebra of all endomorphisms of $\mathfrak{p}$ . Next a quadmple $(\mathfrak{g}, \sigma, \tau, \langle \rangle)$ satisfying the follow-
ing conditions is called a compact orthogonal quadruple, abbreviated as $COQ:(1)\mathfrak{g}$ is a Lie
algebra of compact type, namely compact semisimple Lie algebra, (2) $(\mathfrak{g}, \sigma),$ $(\mathfrak{g}, \tau)$ are sym-
metric Lie algebras, (3) $\sigma\circ\tau=\tau\circ\sigma$ , and (4) $\langle$ $\rangle$ is a positive definite inner product on $\mathfrak{g}$

which is left invariant by $\sigma,$ $\tau$ and for which $ad_{\mathfrak{g}}(X),$ $X\in \mathfrak{g}$ , are skew symmetric. A COQ
$(\mathfrak{g}, \sigma, \tau, \langle \rangle)$ is called effective if the symmetric Lie algebras $(\mathfrak{g}, \sigma),$ $(\mathfrak{g}, \tau)$ are effective.
And two COQ’s $(\mathfrak{g}, \sigma, \tau, \langle \rangle),$ $(\mathfrak{g}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ are called equivalent to each other if there
exists a Lie algebra isomorphism $\phi$ of $\mathfrak{g}$ onto $\mathfrak{g}^{\prime}$ such that $\phi\circ\sigma=\sigma^{\prime}\circ\phi,$ $\phi\circ\tau=\tau^{\prime}\circ\phi$ , and
$\langle\phi(X), \phi(Y)\rangle^{\prime}=\langle X, Y\rangle$ for $X,$ $Y\in \mathfrak{g}$ . Define the “direct sum” of finite COQ’s canonically.
Then the direct sum keeps the equivalence and moreover it is effective if and only if each is
effective.

Let $M$ be a compact simply connected riemannian symmetric space and $N$ a substan-
tial totally geodesic symmetric submanifold of $M$. Hereafter this pair is denoted by $(M, N)$ .
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Firstly we note that the Lie algebra ’ of $I^{0}(M)$ is of compact type. Fix $p\in N$ and denote by
$\overline{s}_{p}$ the geodesic symmetry of $M$ at $p$ . Then $\overline{s}_{p},$ $t_{p}$ induce involutive automorphisms $\sigma,$ $\tau$ of
$I^{0}(M)$ defined by

$\sigma(g)=\overline{s}_{p}\circ g\circ\overline{s}_{p},$ $\tau(g)=t_{p}\circ g\circ t_{p}$

for $g\in I^{0}(M)$ . The differentials are also denoted by the same notations. Since $[\overline{s}_{p}, t_{p}]=0$ , it
follows

(3.1) $[\sigma, \tau]=0$ .

Let $\overline{\mathfrak{g}}=\overline{f}\oplus\overline{\mathfrak{p}}$ be the eigenspace decomposition by $\sigma$ into the $(+1)- eigenspace\overline{f}$ and the
(-l)-eigenspace $\overline{\mathfrak{p}}$ . Identify $\overline{\mathfrak{p}}$ with $T_{p}M$ by the identification: $X\leftrightarrow X_{p}$ for $X\in\overline{\mathfrak{p}}$ . Then the
restriction of the riemannian metric to $T_{p}M$ induces an inner product $\langle$

$\rangle_{\overline{\mathfrak{p}}}$ on $\overline{\mathfrak{p}}$ such that
$ad_{\overline{\mathfrak{p}}}(T),$

$T\in\overline{f}$, are skew symmetric. Note that $(\overline{\mathfrak{g}}, \sigma)$ is effective and thus

(3.2) $[\overline{\mathfrak{p}},\overline{\mathfrak{p}}]=\overline{f}$.
Then the inner product $\langle$

$\rangle_{\overline{\mathfrak{p}}}$ is uniquely extended to a positive definite inner product $\langle$ $\rangle$

on ’ which is left by $\sigma$ and for which $ad_{\overline{\mathfrak{g}}}(X),$ $X\in\overline{\mathfrak{g}}$ , are skew symmetric.

LEMMA 3.1. The quadmple $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is an effective $COQ$ and is independent of the

fixed point $p$.

PROOF. Firstly we show that $(\overline{\mathfrak{g}}, \tau)$ is effective. Let $\overline{\mathfrak{g}}=\overline{f}^{*}\oplus\overline{\mathfrak{p}}^{*}$ be the eigenspace

decomposition by $\tau$ into the (+l)-eigenspace $\overline{f}^{*}$ and the (-l)-eigenspace $\overline{\mathfrak{p}}^{*}$ and $\overline{\mathfrak{g}}_{1}$ the
kemel of the adjoint representation $ad_{\overline{\mathfrak{p}}^{r}}$ of $\overline{f}^{*}$ into $\mathfrak{g}\mathfrak{l}(\overline{\mathfrak{p}}^{*})$ . Then $\overline{\mathfrak{g}}_{1}$ is an ideal of $\overline{\mathfrak{g}}$ . Since $\sigma$

leaves $\overline{f}^{*},\overline{\mathfrak{p}}^{*}$ invariant by (3.1), it also leaves $\overline{\mathfrak{g}}_{1}$ invariant. We suppose that $(\overline{\mathfrak{g}}, \tau)$ is not effec-
tive, i.e., $\overline{\mathfrak{g}}_{1}\neq\{0\}$ . Moreover we may suppose that $\overline{\mathfrak{g}}_{1}\neq\overline{\mathfrak{g}}$ . If $\overline{\mathfrak{g}}_{1}=\overline{\mathfrak{g}}$ , it follows $\tau=1_{\overline{\mathfrak{g}}}$ and thus
$t_{p}=1_{M}$ . This implies that $N=\{p\}$ . Now let $\overline{\mathfrak{g}}_{2}$ be the orthogonal compliment of $\overline{\mathfrak{g}}_{1}$ . Since $\overline{\mathfrak{g}}_{2}$ is
also left invariant by $\sigma$ , the decomposition $\overline{\mathfrak{g}}=\overline{\mathfrak{g}}_{1}\oplus\overline{\mathfrak{g}}_{2}$ induces the proper riemannian pro-
duct decomposition $M=M_{I}\times M_{2}$ . Set $M_{1}(p)=(M_{1}, m_{2}),$ $M_{2}(p)=(m_{1}, M_{2})$ , where $p=$

$(m_{1}, m_{2})$ . Since $t_{p}((\exp tX)(p))=(\exp tX)(p)$ for $X\in\overline{\mathfrak{g}}_{1}$ , it follows that $\tau_{p}(M_{1}(p))\subset N_{p}N$

and thus $T_{p}N\subset T_{p}(M_{2}(p))$ . Moreover since $N,$ $M_{2}(p)$ are totally geodesic, it holds
$N\subset M_{2}(p)$ . This contradicts that $N\rightarrow M$ is substantial. Hence $(\overline{\mathfrak{g}}, \tau)$ is effective.

Next we show that $\tau leaves$ $\langle$ $\rangle$ invariant. Note that $\langle$
$\rangle_{\overline{\mathfrak{p}}}$ is left invariant by $\tau$ . Since $\tau$

leaves $\overline{f},\overline{\mathfrak{p}}$ invariant by (3.1), we may show that $\langle\tau(T), \tau(S)\rangle=\langle T, S\rangle$ for $T$, Se $\overline{f}$. By (3.2)

we may put $T=[X, Y]$ for some $X,$ $Y\in\overline{\mathfrak{p}}$ . Then it follows

$\langle\tau([X, Y]), \tau(S)\rangle=-\langle\tau(Y), \tau([X, S])\rangle_{\overline{\mathfrak{p}}}$

$=-\langle Y, [X, S]\rangle_{\overline{\mathfrak{p}}}=\langle[X, Y], S\rangle$ .

Hence $\tau$ leaves $\langle$ $\rangle$ invariant.
Lastly we show the second claim. Let $q\in S$ and take a geodesic $\gamma(t)$ in $S$ such that $\gamma(0)$

$=p,$ $\gamma(a)=q$ . Then the isometry $T(a)$ induces a Lie group isomorphism $\phi$ of $I^{0}(M)$ defined
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by $\phi(g)=T(a)\circ g\circ T(a)^{-I}$ for $g\in I^{0}(M)$ . The differential is also denoted by the same nota-
tion. It is obvious that this isomorphism of $\overline{\mathfrak{g}}$ gives an isomorphism between the effective
COQ’s defined at $p,$ $q$ respectively. $q$ . $e$ . $d$ .

Define the ‘ ‘direct product” of finite submanifolds canonically. Then the direct product
is a (substantial) symmetric submanifold if and only if each is a (substantial) symmetric
submanifold. Our correspondence: $(M, N)\rightarrow(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ keeps each equivalence and
translates the direct product of substantial totally geodesic symmetric submanifolds into
the direct sum of effective COQ’s.

Conversely let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective COQ and $\overline{\mathfrak{g}}=\overline{f}\oplus\overline{\mathfrak{p}}$ the eigenspace decom-
position by $\sigma$ . Take a compact simply connected Lie group $\overline{G}$ with Lie algebra $\overline{\mathfrak{g}}$ and the
connected compact Lie subgroup $\overline{K}$ of $\overline{G}$ with Lie algebra $\overline{f}$. Then $M=\overline{G}/\overline{K}$ is a compact
simply connected riemannian symmetric space, together with the G-invariant metric induc-
ed from the restriction $\langle$

$\rangle_{\overline{\mathfrak{p}}}$ of $\langle$ $\rangle$ to $\overline{\mathfrak{p}}$ . Here the tangent space $T_{0}M$ at $0=\overline{K}$ is identified
with $\overline{\mathfrak{p}}$ by the identification: $\overline{\mathfrak{p}}\ni X\leftrightarrow(d/dt)|_{t=0}(\exp tX)(0)\in T_{0}M$. Then the curvature tensor
$\overline{R}_{0}$ at $0$ is identified as follows:

(3.3) $\overline{R}_{0}(X, Y)Z=-ad_{\overline{\mathfrak{p}}}([X, Y])(Z)$

for $X,$ $Y,$ $Z\in\overline{\mathfrak{p}}$ . Note that $\tau$ leaves $\overline{\mathfrak{p}}$ invariant and let $\overline{\mathfrak{p}}_{\pm}$ be the $(\pm 1)$ -eigenspaces of the
restriction of $\tau$ to $\overline{\mathfrak{p}}$ respectively. Obviously $\overline{\mathfrak{p}}_{\pm}$ are curvature-invariant subspaces in $T_{0}M$ by
(3.3). Let $N$ be the complete totally geodesic submanifold of $M$ such that $N\ni 0,$ $T_{0}N=\overline{\mathfrak{p}}_{-}$ ,
$N_{0}N=\overline{\mathfrak{p}}_{+}$ .

LEMMA 3.2. The totally geodesic $submamf_{0}uN$ is a substantial symmetric submanifold
of $M$.

PROOF. It is proved in the same way as in Lemma 2.10 that $N$ is symmetric. We show
that $N$ is substantial. Suppose that $N$ is not substantial, i.e., there exists a proper product
decomposition $M=M_{1}\times M_{2}$ such that $N\subset(M_{1},0_{2})$ , where $0=(0_{1},0_{2})$ . Let $\overline{\mathfrak{p}}_{1},\overline{\mathfrak{p}}_{2}$ be the
subspaces of $\overline{\mathfrak{p}}$ identified with the tangent spaces of $(M_{I}, 0_{2}),$ $(0_{1}, M_{2})$ at $0$ respectively. Put
$\overline{\mathfrak{g}}_{i}=[\overline{\mathfrak{p}}_{i},\overline{\mathfrak{p}}_{i}]\oplus\overline{\mathfrak{p}}_{j},$ $i=1,2$ . Since $\overline{f}=[\overline{\mathfrak{p}},\overline{\mathfrak{p}}]$ by the effectivity of $(\overline{\mathfrak{g}}, \sigma)$ , we have the ideal decom-
position $\overline{\mathfrak{g}}=\overline{\mathfrak{g}}_{1}\oplus\overline{\mathfrak{g}}_{2}$ . Then, since $\overline{\mathfrak{p}}_{-}\subset\overline{\mathfrak{g}}_{1}$ by the assumption, the (+l)-eigenspace of $\tau$ con-
tains $\overline{\mathfrak{p}}_{2}$ and thus $\overline{\mathfrak{g}}_{2}$ . This implies that the (-l)-eigenspace of $\tau$ is contained in $\overline{\mathfrak{g}}_{1}$ . This con-
tradicts to the effectivity of $(\overline{\mathfrak{g}}, \tau)$ . Hence $N$ is substantial. q.e. $d$ .

Our correspondence: $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)\rightarrow(M, N)$ also keeps each equivalence and
translates the direct sum of effective COQ’s into the direct product of substantial totally
geodesic symmetric submanifolds.

THEOREM 3.3. These correspondences: $(M, N)\rightarrow(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle),$ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)\rightarrow(M, N)$

are the inverses of each other.
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PROOF. Let $(M, N)$ be a pair of compact simply connected riemannian symmetric
space $M$ and substantial totally geodesic symmetric submanifold $N$, and $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ the
effective COQ associated with $(M, N)$ . Moreover let $(M^{\prime}, N^{\prime})$ be the pair associated with

the COQ. We show that $(M^{\prime}, N^{\prime})$ is equivalent to $(M, N)$ . We retain the same notation as
above for the correspondence: $(M, N)\rightarrow(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ and attach ’ to the previous nota-
tions for the correspondence: $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)\rightarrow(M^{\prime}, N^{\prime})$ . Since
$\overline{G}^{\prime},$ $I^{0}(M)$ have the same Lie algebra $\overline{\mathfrak{g}}$ , there exists a Lie group homomorphism $\Phi$ of $\overline{G}^{\prime}$ on-
to $I^{0}(M)$ whose differential is the identity of $\overline{\mathfrak{g}}$ . Obviously it holds $\Phi(\overline{K}^{\prime})\subset\overline{K}$ . Hence $\Phi$ in-
duces a $\overline{G}^{\prime}$ -equivariant isometric immersion $\psi$ of $M^{\prime}$ onto $M$ such that $\psi(0^{\prime})=p,$ $\psi_{*},’=1_{\overline{\mathfrak{p}}}$ .
Here $T_{0^{\prime}}M^{\prime},$ $T_{p}M$ are identified with the subspace $\overline{\mathfrak{p}}$ canonically. Since $\psi$ is a covering map

and $M$ is simply connected, $\psi$ is an isometry of $M^{\prime}$ onto $M$. Moreover since $T_{0^{\prime}}N,$ $T_{p}N$ are
both identified with the subspace $\overline{\mathfrak{p}}_{-}$ in $\overline{\mathfrak{p}}$ , it follows that $\psi(N^{\prime})=N$. Then $\psi$ induces an
isometry of $N^{\prime}$ onto $N$ by Lemma 1.2, (2). Hence $(M^{\prime}, N)$ is equivalent to $(M, N)$ .

Conversely let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective COQ and $(M, N)$ the pair associated with
the COQ. Moreover let $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ be the effective COQ associated with $(M, N)$ . We
show that $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is equivalent to $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ . We retain the same notations as
above for the constmction: $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)\rightarrow(M, N)$ and attach ’ to the previous notations
for the constmction: $(M, N)\rightarrow(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ . Now since $(\overline{\mathfrak{g}}, \sigma)$ is effective, the Lie

algebras $\overline{\mathfrak{g}},\overline{\mathfrak{g}}^{\prime}$ are isomorphic to each other. The isomorphism $\phi$ of $\overline{\mathfrak{g}}$ onto $\overline{\mathfrak{g}}^{\prime}$ is given as
follows. For $X\in\overline{\mathfrak{g}}$ , denote by $X^{\prime}$ the Killing vector field on $M^{\prime}$ given by the one parameter

subgroup $\exp tX$ of $\overline{G}$ . Then $\phi$ is defined by $\phi(X)=X$ . This $\phi$ satisfies that $\phi(\overline{f})=\overline{f}^{\prime},$
$\phi(\overline{\mathfrak{p}})$

$=\overline{\mathfrak{p}}^{\prime}$ and thus it follows $\phi\circ\sigma=\sigma^{\prime}\circ\phi$ . (See Helgason [6], p. 243 for these.) Moreover note
that $\langle\phi(X), \phi(Y)\rangle_{\overline{\mathfrak{p}}}^{\prime}\cdot=\langle X, Y\rangle_{\overline{\mathfrak{p}}}$ for $X,$ $Y\in\overline{\mathfrak{p}}$ from the definition of $\langle$

$\rangle\frac{\prime}{\mathfrak{p}}’$ . Since $\langle$ $\rangle^{\prime}$ , $\langle$ $\rangle$

are unique extensions of $\langle$
$\rangle_{\overline{\mathfrak{p}}^{\prime}}^{\prime}$ , $\langle$

$\rangle_{\overline{\mathfrak{p}}}$ to $\overline{\mathfrak{g}}^{\prime},\overline{\mathfrak{g}}$ , it follows $\langle\phi(X), \phi(Y)\rangle^{\prime}=\langle X, Y\rangle$ for $X$,
$Y\in\overline{\mathfrak{g}}$ . Lastly we show that $\phi\circ\tau=\tau^{\prime}\circ\phi$ . Since $\phi\circ\tau,$ $\tau^{\prime}\circ\phi$ are Lie algebra isomorphisms and

$\overline{f}=[\overline{\mathfrak{p}},\overline{\mathfrak{p}}]$ , we may show the equality on $\overline{\mathfrak{p}}$ . Let $Xe\overline{\mathfrak{p}}_{-}$ . Then $(\exp tX)(0)=$

$(\exp t\phi(X))(0)$ is a geodesic in $N$. Hence it follows

$(\exp t\tau^{\prime}(\phi(X)))(0)=\tau^{\prime}(\exp t\phi(X))(0)=t_{0}((\exp t\phi(X))(0))$

$=(\exp-t\phi(X))(0)$ .
Since $\phi(X),$ $\tau^{\prime}(\phi(X))\in\overline{\mathfrak{p}}^{\prime}$ , it holds $\exp t\tau^{\prime}(\phi(X))=\exp-t\phi(X)$ and thus $\tau^{\prime}(\phi(X))=-\phi(X)$ .
Similarly we have $\tau^{\prime}(\phi(X))=\phi(X)$ for $X\in\overline{\mathfrak{p}}_{+}$ . These imply that $\tau^{\prime}\circ\phi=\phi\circ\tau$ on $\overline{\mathfrak{p}}$ and thus
on $\overline{\mathfrak{g}}$ . By these arguments $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ is equivalent to $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ . $q$ . $e$ . $d$ .

REMARK 3.4. Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective COQ. Then $(\overline{\mathfrak{g}}, \tau, \sigma, \langle \rangle)$ is also an
effective COQ. Let $(M, N),$ $(M^{*}, N^{*})$ be the pairs associated with $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle),$ $(\overline{\mathfrak{g}},$

$\tau,$
$\sigma$ ,

$\langle$ $\rangle$ ) respectively. Then $N$ is locally isometric to $N^{*}$ as riemannian manifold. Also fix $p\in N$

and let $N^{\perp}\subset M$ be the totally geodesic symmetric submanifold such that $N^{\perp}\ni p$ ,
$T_{p}N^{\perp}=N_{p}N$. Then the COQ associated with $(M, N^{\perp})$ is isomorphic to $(\overline{\mathfrak{g}}, \sigma, \sigma\circ\tau, \langle \rangle)$ .
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This COQ is not necessarily effective since $(\overline{\mathfrak{g}}, \sigma\circ\tau)$ is not necessarily effective.

REMARK 3.5. Totally geodesic symmetric submanifolds of simply connected rieman-
nian symmetric spaces of noncompact type, can be got through the duality between sym-
metric spaces of compact type and those of noncompact type.

Now consider triples $(\overline{\mathfrak{g}}, \sigma, \tau)$ underlying COQ’s. That is, $\overline{\mathfrak{g}}$ is a Lie algebra of compact
type and $\sigma,$ $\tau$ are involutive automorphisms of $\overline{\mathfrak{g}}$ such that $[\sigma, \tau]=0$ . This triple $(\overline{\mathfrak{g}}, \sigma, \tau)$ is
called a compact triple. If the symmetric Lie algebras $(\overline{\mathfrak{g}}, \sigma),$ $(\overline{\mathfrak{g}}, \tau)$ are effective, it is also call-
ed effective. Among effective compact triples we can define the “equivalence” and the
‘ ‘direct sum” canonically. On the other hand a symmetric Lie algebra $(\hat{\mathfrak{g}},\hat{\tau})$ is called of non-
compact lype if the underlying Lie algebra $\hat{\mathfrak{g}}$ is a semisimple Lie algebra of noncompact
type. Among effective symmetric Lie algebras of noncompact type we can also define the
‘ ‘equivaknce” and the ‘ ‘direct sum” canonically. Here we see that there exists a one-to-one
correspondence between these two kinds of objects.

Let $(\overline{\mathfrak{g}}, \sigma, \tau)$ be an effective compact triple and let $\overline{\mathfrak{g}}=\overline{f}\oplus\overline{\mathfrak{p}}$ be the eigenspace decom-
position by $\sigma$ into the (+l)-eigenspace $\overline{f}$ and the (-l)-eigenspace $\overline{\mathfrak{p}}$ . Then $\overline{\mathfrak{g}}=\overline{f}+\sqrt{-1}\overline{\mathfrak{p}}$ has
the stmcture of Lie algebra of noncompact type canonically. Define an involutive automor-
phism $\hat{\tau}$ of a by $\hat{\tau}(T+\sqrt{-1}X)=\hat{\tau}(T)+\sqrt{-1}\hat{\tau}(X)$ for $T\in\overline{f},$

$X\in\overline{\mathfrak{p}}$ . Then, since $(\overline{\mathfrak{g}}, \tau)$ is effec-
tive, $(\hat{\mathfrak{g}},\hat{\tau})$ is also effective. Hence $(\hat{\mathfrak{g}},\hat{\tau})$ is an effective symmetric Lie algebra of noncom-
pact type.

Conversely let $(\hat{\mathfrak{g}},\hat{\tau})$ be an effective symmetric Lie algebra of noncompact type. Take a
Cartan involution $\hat{\sigma}$ of $\hat{\mathfrak{g}}$ such that $[\hat{\sigma},\hat{\tau}]=0$ . Such $\hat{\sigma}$ always exists and is unique in the
sense. If $\hat{\sigma},\hat{\sigma}^{\prime}$ are such Cartan involutions, there exists a Lie algebra isomorphism $\hat{\phi}$ of $\hat{\mathfrak{g}}$

such that $\hat{\phi}\circ\hat{\sigma}=\hat{\sigma}^{\prime}\circ\hat{\phi},$ $[\hat{\phi},\hat{\tau}]=0$ . (cf. See the arguement in Helgason [6], p. 184 for the uni-
queness.) Let $\hat{\mathfrak{g}}=\overline{f}\oplus\overline{\mathfrak{p}}$ be the eigenspace decomposition by $\hat{\sigma}$ into the (+l)-eigenspace $\overline{f}$

and the (-l)-eigenspace $\overline{\mathfrak{p}}$ . Then $\overline{\mathfrak{g}}=\overline{f}\oplus\sqrt{-1}\overline{\mathfrak{p}}$ has the stmcture of Lie algebra of compact
type. Define involutive automorphisms $\sigma$ , $\tau$ of $\overline{\mathfrak{g}}$ by $\sigma(T+\sqrt{-1}X)=T-\sqrt{-1}X$,
$\tau(T+\sqrt{-1}X)=\hat{\tau}(T)+\sqrt{-1}\hat{\tau}(X)$ for $T\in\overline{f},$ $Xe\overline{\mathfrak{p}}$ . Obviously the symmetric Lie algebras
$(\overline{\mathfrak{g}}, \sigma),$ $(\overline{\mathfrak{g}}, \tau)$ are effective. Hence the triple $(\overline{\mathfrak{g}}, \sigma, \tau)$ is an effective compact triple.

PROPOSITION 3.6. Our correspondences: $(\overline{\mathfrak{g}}, \sigma, \tau)\rightarrow(\hat{\mathfrak{g}},\hat{\tau}),$ $(\hat{\mathfrak{g}},\hat{\tau})\rightarrow(\overline{\mathfrak{g}}, \sigma, \tau)$ keep each
equivaknce and each direct sum. Moreover they are the inverse of each other.

REMARK 3.7. An object is called irreducible if it is not decomposed into any proper
direct sums. Irreducible and effective symmetric Lie algebras have been classified in
Berger [2]. Moreover an effective COQ is irreducible if and only if the underlying effective
compact triple is irreducible.
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4. Substantial symmetric submanifolds

Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective COQ and $\overline{\mathfrak{g}}=\overline{f}\oplus\overline{\mathfrak{p}}$ the eigenspace decomposition by $\sigma$ .
Moreover let $\overline{f}=\overline{f}_{+}\oplus\overline{f}_{-},\overline{\mathfrak{p}}=\overline{\mathfrak{p}}_{+}\oplus\overline{\mathfrak{p}}_{-}$ be eigenspace decompositions by the restrictions of $\tau$

to $\overline{f},\overline{\mathfrak{p}}$ into (+l)-eigenspaces $\overline{f}_{+},\overline{\mathfrak{p}}_{+}$ and (-l)-eigenspaces $\overline{f}_{-},\overline{\mathfrak{p}}_{-}$ respectively. Put
$\overline{f}^{*}=\overline{f}_{+}\oplus\overline{\mathfrak{p}}_{+}$ and $\overline{\mathfrak{p}}^{*}=\overline{f}_{-}\oplus\overline{\mathfrak{p}}_{-}$ . Then $\overline{\mathfrak{g}}=\overline{f}^{*}\oplus\overline{\mathfrak{p}}^{*}$ is the eigenspace decomposition by $\tau$ . A linear
subspace $\mathfrak{m}$ in $\overline{\mathfrak{p}}^{*}$ is called a Lie triple system if it holds $[[\mathfrak{m}, \mathfrak{m}],$ $\mathfrak{m}$] $\subset \mathfrak{m}$ . Consider a Lie triple
system $\mathfrak{m}\subset\overline{\mathfrak{p}}^{*}$ such that

(L.1) $[\mathfrak{m}, \mathfrak{m}]\subset\overline{f}_{+}$

and

(L.2) the orthogonal projection: $\mathfrak{m}\rightarrow\overline{\mathfrak{p}}-is$ a linear isomorphism. And denote by $(\overline{\mathfrak{g}},$ $\sigma$ ,
$\tau$, $\langle$ $\rangle:\mathfrak{m}$) the pair of effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ and such Lie triple system $\mathfrak{m}$ . We call
this pair a QL-pair. Two QL-pairs $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m}),$ $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime}:\mathfrak{m}^{\prime})$ is said to be
equivalent to each other if there exists an isomorphism $\phi$ of the COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ onto the
COQ $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ such that $\phi(\mathfrak{m})=\mathfrak{m}^{\prime}$ . Moreover the “direct sum” of finite QL-pairs is
defined canonically.

Let $(M, S)$ be a pair of compact simply connected riemannian symmetric space $M$ and
substantial symmetric submanifold $S$ of $M$. Moreover fix $p\in S$ and let $N$ be the associated
substantial totally geodesic symmetric submanifold through $p$ , with an effective COQ $(\overline{\mathfrak{g}}$ ,

$\sigma,$ $\tau$, $\langle$ $\rangle$). Let $\mathfrak{m}$ be the subspace in $\overline{\mathfrak{p}}^{*}$ , of Killing vector fields on $M$ whose restrictions to
$S$ are also Killing vector fields on $S$.

LEMMA 4.1. The pair $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ is a QL-pair.

PROOF. Obviously $\mathfrak{m}$ is a Lie triple system since $\overline{\mathfrak{p}}^{*}$ is so.
Recall that the projection $\pi$ is defined by the relation: $\pi(\overline{X})=X$ for Killing vector fields

$\overline{X}$ on $M$ projectable to Killing vector fields $X$ on $S$. Moreover recall that the vector space $\mathfrak{p}$

is defined as the (-l)-eigenspace of $\delta$ . Here $\delta$ is the involutive automorphism of $\mathfrak{g}$ defined
from $s_{p}$ . Then it holds $\pi(\mathfrak{m})\subset \mathfrak{p}$ since $\delta\circ\pi=\pi\circ\tau$ on $\mathfrak{m}$ .

Firstly we show that the projection $\pi$ is a linear isomorphism of $\mathfrak{m}$ onto $\mathfrak{p}$ . Let $X\in \mathfrak{p}$ and
take the integral complete geodesic $\gamma(t)$ such that $\gamma(0)=p$ . Consider the Killing vector
fields $\overline{X}$ on $M$ which generates the one parameter subgroup $T(t)$ . Since $(t_{p}\circ T(t)\circ t_{p})(p)$

$=T(-t)(p)=\gamma(-t)$ and $(t_{p}\circ T(t)\circ t_{p})_{*p}=(T(-t))_{*p}$ by (2.3), (2.5), (2.7), it follows
$t_{p}\circ T(t)\circ t_{p}=T(-t)$ and thus $\tau(\overline{X})=-\overline{X}$. Moreover since $\pi(\overline{X})=X$, it follows $\overline{X}\in \mathfrak{m}$ .
Hence $\pi$ is surjective. Next let $\overline{X}\in \mathfrak{m}$ such that $\pi(\overline{X})=0$ . Then it follows $(\exp t\overline{X})(p)=p$

and $(\exp t\overline{X})_{*}T_{p}S=T_{p}S,$ $(\exp t\overline{X})_{*}N_{p}S=N_{p}S$. Moreover since $\tau(\overline{X})=-\overline{X}$, it follows
$t_{p}\circ\exp t\overline{X}\circ t_{p}=\exp-t\overline{X}$. Hence it holds $(\exp t\overline{X})_{*p}=(\exp-t\overline{X})_{*p}$ . Since these are both
isometries, it follows $\exp t\overline{X}=\exp-t\overline{X}$ and thus $\overline{X}=0$ . This implies that $\pi$ is injective.
Hence $\pi$ is a linear isomorphism of $\mathfrak{m}$ onto $\mathfrak{p}$ .
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Now we show that $\mathfrak{m}$ satisfies the conditions (L.1), (L.2). Let $\overline{X},\overline{Y}\in \mathfrak{m}$ . Then it holds
$\pi([\overline{X},\overline{Y}])$ ef and thus [X, $\overline{Y}$] $\in\overline{f}$, where $f$ denotes the (+l)-eigenspace of $\delta$ . Moreover
since $\tau([\overline{X},\overline{Y}])=[\overline{X},\overline{Y}]$ , it follows [X, $\overline{Y}$ ] $e\overline{f}_{+}$ . Hence $\mathfrak{m}$ satisfies the condition (L.1). Next
let $\overline{X}\in \mathfrak{m}\cap\overline{f}_{-}$ . Then it follows $\pi(\overline{X})ef\cap \mathfrak{p}$ and thus $\pi(\overline{X})=0$ . Since $\pi$ is injective, it holds
$\overline{X}=0$ . This implies that the projection: $\mathfrak{m}\rightarrow\overline{\mathfrak{p}}_{-}$ is injective. Since $\dim \mathfrak{m}=\dim \mathfrak{p}=\dim\overline{\mathfrak{p}}_{-}$ , it
is also surjective. Hence $\mathfrak{m}$ satisfies the condition (L.2). $q$ . $e$ . $d$ .

REMARK 4.2. The Lie triple system $\mathfrak{m}$ consists of all Killing vector fields on $M$ which
generate the one parameter subgroups $T(t)$ .

Conversely let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ be a QL-pair and $(M, N)$ the pair associated with the
effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ . Put $\mathfrak{h}_{m}=[\mathfrak{m}, \mathfrak{m}]$ and $\mathfrak{g}_{m}=\mathfrak{h}_{m}\oplus \mathfrak{m}$ . Since $\mathfrak{m}$ is a Lie triple system,
$\mathfrak{g}_{m}$ is a Lie subalgebra of $\overline{\mathfrak{g}}$ . Let $G_{m}$ be the connected Lie subgroup of $I^{0}(M)$ with Lie algebra
$\mathfrak{g}_{m}$ and $S$ the orbit of the base point $0$ by $G_{m}$ .

LEMMA 4.3. The submamfold $S$ is a substantial symmetric submamfold with $N$ as
associated totally geodesic symmetnC $submamf_{0}u$ .

PROOF. 0bviously $S$ is tangent to $N$ at $0$ . We show that $S$ is symmetric. Since $S$ is $G_{m^{-}}$

equivariant, we may show the existence of the extrinsic, the intrinsic symmetries $t_{0},$ $s_{o}$ at $0$ .
Now consider the involutive automorphism $\tau$ of ’ and denote by the same notation the Lie
group automorphism of $\overline{G}$ whose differential is $\tau$ . Since $\tau(\mathfrak{g}_{\mathfrak{m}})=\mathfrak{g}_{m},$ $\tau$ induces a Lie group
automorphism $\delta$ of $G_{m}$ . Let $t_{0},$ $s_{0}$ be the smooth mappings of $M,$ $S$ induced from $\tau,$

$\delta$ respec-
tively. Then $s_{0}$ is the restriction of $t_{0}$ to $S$. Since $\tau$ leaves $\langle$

$\rangle_{\overline{\mathfrak{p}}}$ invariant and satisfies $\tau(X)$

$=-X,$ $\tau(\xi)=\xi$ for $X\in\overline{\mathfrak{p}}_{-},$ $\xi\in\overline{\mathfrak{p}}_{+}$ , the mapping $t_{0}$ is the extrinsic symmetry at $0$ and thus $s_{0}$ is
the intrinsic symmetry at $0$ . Hence $S$ is symmetric.

It is obvious by Lemma 2.12 that $S$ is substantial. q.e. $d$ .
Now our correspondences: $(M, S)\rightarrow(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle;\mathfrak{m}),$ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})\rightarrow(M, S)$ keep

each equivalence and moreover the followings hold.

THEOREM 4.4. These correspondences are the inverses of each other and tmnslate the
direct product of substantial symmetric submanifolds into the direct sum of QL-pairs.

PROOF. Let $(M, S)$ be a pair of compact simply connected riemannian symmetric
space $M$ and substantial symmetric submanifold $S$ of $M$, and $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ the QL-pair
associated with $(M, S)$ . Moreover let $(M^{\prime}, S^{\prime})$ be the pair associated with the QL-pair. We
show that $(M^{\prime}, S^{\prime})$ is equivalent to $(M, S)$ . We retain the same notations as in the proof of
Theorem 3.3. Now firstly we show that $\pi$ is a Lie algebra isomorphism of $\mathfrak{g}_{\mathfrak{m}}$ onto $\mathfrak{g}_{0}$ . Ob-
viously it holds $\pi(\mathfrak{g}_{m})=\mathfrak{g}_{0}$ . Let $X\in \mathfrak{g}_{m}$ such that $\pi(X)=0$ . Since $\pi$ is a linear isomorphism of
$\mathfrak{m}$ onto $\mathfrak{p}$ , it follows $X\in \mathfrak{h}_{m}$ and $ad_{\mathfrak{m}}(X)(Y)=0$ for $Y\in \mathfrak{m}$ . Note that the adjoint representa-
tion $ad_{m}$ of $\mathfrak{h}_{m}$ to $\mathfrak{m}$ is faithful since $\mathfrak{g}_{m}$ admits a positive definite inner product such that
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$ad_{\mathfrak{g}_{m}}(Y),$ $Y\in \mathfrak{g}_{\mathfrak{m}}$ , are skew symmetric. Hence it holds $X=0$ . This implies that $\pi$ is injective
and thus is a Lie algebra isomorphism of $\mathfrak{g}_{\mathfrak{m}}$ onto $\mathfrak{g}_{0}$ . Let $t$ be the inclusion of $S$ into $M$. Then
$\pi^{-1}$ is an $t*$ -related Lie homomorphism of $\mathfrak{g}_{0}$ into $\mathfrak{g}_{\mathfrak{m}}\subset\overline{\mathfrak{g}}$ . Denote by $G_{\mathfrak{m}}$ the connected Lie
subgroup of $I^{0}(M)$ with Lie algebra $\mathfrak{g}_{\mathfrak{m}}$ . By Cororally 2.8 the group $G_{\mathfrak{m}}$ is a Lie transforma-
tion group acting on $S$ transitively. Here recall the Lie group homomorphism $\Phi$ of $\overline{G}^{\prime}$ onto
$I^{0}(M)$ , which induces the isometry $\psi$ of $M^{\prime}$ onto $M$. Then $\Phi$ induces a Lie group homomor-
phism of $G_{\mathfrak{m}}^{\prime}$ to $G_{\mathfrak{m}}$ and thus a smooth mapping of $S^{\prime}$ to $S$ . Obviously it is the restriction of $\psi$

to $S^{\prime}$ and thus an isometry of $S^{\prime}$ onto $S$. This implies that $(M^{\prime}, S^{\prime})$ is equivalent to $(M, S)$ .
Next let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ be a QL-pair and $(M, S)$ the pair associated with the QL-pair.

Moreover let $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime}:\mathfrak{m}^{\prime})$ be the QL-pair associated with $(M, S)$ . We show that
$(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime}:\mathfrak{m}^{\prime})$ is equivalent to $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ . Again we retain the same notations
as in the proof of Theorem 3.3. Recall the isomorphism $\phi$ of the COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ onto
the COQ $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ . Obviously the restrictions of $\phi(X),$ $X\in \mathfrak{m}$ , to $S^{\prime}$ are Killing vec-
tor fields on $S^{\prime}$ . Moreover since $\phi\circ\tau=\tau^{\prime}\circ\phi$ , it follows $\tau^{\prime}(\phi(X))=-\phi(X)$ for $X\in \mathfrak{m}$ . Hence
it holds $\phi(\mathfrak{m})\subset \mathfrak{m}^{\prime}$ . Since $\dim \mathfrak{m}=\dim \mathfrak{m}^{\prime}$ , it follows $\phi(\mathfrak{m})=\mathfrak{m}^{\prime}$ . This implies that $(\overline{\mathfrak{g}},$

$\sigma,$ $\tau$, $\langle$ $\rangle:\mathfrak{m}$

$)$ is equivalent to $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime}:\mathfrak{m}^{\prime})$ .
The second claim is obvious. q.e. $d$ .

REMARK 4.5. Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\mathfrak{m})$ be a QL-pair and $(M, S)$ the pair associated with
the QL-pair. Moreover let $M^{*}$ be the compact simply connected riemannian symmetric
space defined by the orthogonal symmetric Lie algebra $(\overline{\mathfrak{g}}, \tau, \langle \rangle)$ . Then, since $\mathfrak{m}$ is a Lie
triple system in $\overline{\mathfrak{p}}^{*}$ , it is identified with a curvature-invariant subspace in the tangent space
$T_{0}\cdot M^{*}$ at the base point 0*. Hence it defines a unique complete totally geodesic sub-
manifold $S^{*}$ of $M^{*}$ such that $S^{*}\ni 0^{*},$ $T_{0}*S^{*}=\mathfrak{m}$ . The study of QL-pairs is to see $S^{*}$ satisfy-
ing the conditions (L.1), (L.2). Generally many examples of totally geodesic submanifolds
in riemannian symmetric spaces are known in Nagano-Chen [3]. Lastly note that $S,$ $S^{*}$ are
locally isomorphic as symmetric space but they are not always isometric even locally.

Now let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle;\mathfrak{m})$ be a QL-pair. By the condition (L.2) there exists a unique
linear map $\lambda$ of $\overline{\mathfrak{p}}_{-}$ to f-such that

$\mathfrak{m}=\{X+\lambda(X)\in\overline{\mathfrak{p}}_{-}\oplus\overline{f}_{-}; X\in\overline{\mathfrak{p}}_{-}\}$ .

Then the condition (L.1) and the condition that $\mathfrak{m}$ is a Lie triple system, can be rewritten as
follows respectively.

$(\Lambda.1)$ [X, $\lambda(Y)$ ] $=[Y, \lambda(X)]$ ,
$(\Lambda.2)$ $\lambda([X, Y], Z])+\lambda([[\lambda(X), \lambda(Y)], Z])=[[X, Y],$ $\lambda(Z)$ ] $+[[\lambda(X), \lambda(Y)], \lambda(Z)]$

for $X,$ $Y,$ $Z\in\overline{\mathfrak{p}}_{-}$ . We call this pair $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda)$ a $ Q\Lambda$ -pair. Two $ Q\Lambda$ -pairs ( $\overline{\mathfrak{g}},$

$\sigma,$ $\tau$, $\langle$ $\rangle$ :
$\lambda),$ $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime};\lambda^{\prime})$ are equivalent to each other if there exists an isomorphism $\phi$ of $(\overline{\mathfrak{g}}$ ,
$\sigma,$ $\tau$, $\langle$ $\rangle$ ) onto $(\overline{\mathfrak{g}}^{\prime}, \sigma^{\prime}, \tau^{\prime}, \langle \rangle^{\prime})$ such that $\phi\circ\lambda=\lambda^{\prime}\circ\phi$ on $\overline{\mathfrak{p}}_{-}$ . Moreover define the “direct
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sum” of finite $ Q\Lambda$ -pairs canonically. Obviously we have the following.

CORORALLY 4.6. There exists $a$ one-to-one correspondence between the equivalent classes

of substantial symmetric $submamf_{0}u$ and those of $ Q\Lambda$ -pair, and the $correspond\ell nce$ tmnslates
the direct product into the direct sum.

5. Substantial symmetric submanifolds with specific effective COQ

Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective COQ and $(M, N)$ be the pair associated with the
COQ. Note that $\overline{\mathfrak{p}}_{-}$ is a Lie triple system and consider the adjoint representation $ad_{\overline{\mathfrak{p}}-}$ of $\overline{\mathfrak{h}}_{-}$ to
$\overline{\mathfrak{p}}_{-}$ , where $\overline{\mathfrak{h}}_{-}=[\overline{\mathfrak{p}}_{-},\overline{\mathfrak{p}}_{-}]$ . Since the representation is faithful, the Lie algebra $\overline{\mathfrak{h}}_{-}$ is isomor-
phic to the holonomy algebra of $N$.

LEMMA 5.1. Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda)$ be a $ Q\Lambda$ -pair. Then the kemel of $\lambda$ is an $ad_{\overline{\mathfrak{p}}-}(\overline{\mathfrak{h}}_{-})-$

moduk in $\overline{\mathfrak{p}}_{-}$ .

PROOF. Let $X,$ $Y,$ $Z\in\overline{\mathfrak{p}}_{-}$ . We may show that $\lambda([[X, Y], Z])=0$ if $\lambda(Z)=0$ . Assume
that $\lambda(Z)=0$ . By the condition $(\Lambda.2)$ it follows

$\lambda([[X, Y], Z])+\lambda([[\lambda(X), \lambda(Y)], Z])=0$

and moreover, by the condition $(\Lambda.1)$ , it follows

$[[\lambda(X), \lambda(Y)], Z]=-[[\lambda(Y), Z], \lambda(X)]-[[Z, \lambda(X)], \lambda(Y)]$

$=-[[\lambda(Z), Y], \lambda(X)]-[[X, \lambda(Z)], \lambda(Y)]=0$ .

Hence we have $\lambda([[X, Y], Z])=0$ . q.e.d.

THEOREM 5.2. Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ be an effective $COQ$ such that
(1) $\overline{\mathfrak{p}}_{-}$ is irreducible as $ad_{i-}(\overline{\mathfrak{h}}_{-})$ -moduk and
(2) $\dim\overline{f}_{-}<\dim\overline{\mathfrak{p}}_{-}$ .

Let $(M, N)$ be the pair associated with the $COQ$ and $S$ a substantial symmetric $submamf_{0}u$

with $N$ as the associated totally geodesic symmetric submanifold. Then $(M, S)$ is equivaknt to
$(M, N)$ and particulary $S$ is totally geodesic.

PROOF. Let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda)$ be the $ Q\Lambda$ -pair associated with $(M, S)$ . Since the kemel
of $\lambda$ is an $ad-,-(\overline{\mathfrak{h}}_{-})$ -module, it is $\{0\}$ or $\overline{\mathfrak{p}}_{-}$ by the condition (1). Moreover since $\lambda$ is not injec-
tive by the condition (2), the kemal is $\overline{\mathfrak{p}}$ -and thus it follows $\lambda=0$ . This implies that $(M, S)$

is equivalent to $(M, N)$ .

REMARK 5.3. Let $(M^{*}, N^{*})$ be the pair associated with the COQ $(\overline{\mathfrak{g}}, \tau, \sigma, \langle \rangle)$ and
$N^{*\perp}$ the totally geodesic symmetric submanifold perpendicular to $N^{*}$ at the base point 0*.
Then it holds $\dim\overline{f}_{-}=\dim N^{*\perp},$ $\dim\overline{\mathfrak{p}}_{-}=\dim N=\dim N^{*}$ .
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Now among the irreducible effective COQ’s there exist many examples satisfying the

conditions (1), (2). We introduce one of them. Let $M$ be the $n(\geqq 2)$ -dimensional complex

quadric $CQ_{n}$ and $N$ the n-dimensional sphere $S^{n}$ imbedded in $CQ_{n}$ as totally real totally

geodesic symmetric submanifold. Then $(M^{*}, N^{*})$ is equivalent to $(S^{n+1}, S^{n})$ . Hence the
COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ associated with $(M, N)$ satisfies the conditions (1), (2). (This pair
$(CQ_{n}, S^{n})$ appears as $(M^{*}, N^{*})$ in Table II, No. 13, $i=1.$ )

REMARK 5.4. Assume that $M$ has rank one. Then $(M, N)$ is equivalent to one of the
followings: $(S^{n}, S^{r}),$ $(CP_{n}, CP_{r}),$ $(CP_{n}, RP_{n}),$ $(HP_{n}, HP_{r}),$ $(HP_{n}, CP_{n}),$ $(CayP_{2}, S^{8}),$ $(Cay$

$P_{2},$ $HP_{2}$). Here $RP_{n},$ $CP_{n},$ $HP_{n},$ $CayP_{2}$ denote the projective n-spaces over fields $R,$ $C,$ $H$ re-
spectively and the Cayley projective plane, and the inclusions: $N\rightarrow M$ are standard. Now
symmetric submanifolds $S$, with these $N$ as associated totally geodesic symmetric sub-
manifold, have been all classified and among them there exist many examples which are
not totally geodesic. (For the classifications see [17], [18], [14], [21], [22].) Assume that
$(M, N)$ has a symmetric submanifold which is not totally geodesic. Then, since $N$ is ir-
reducible, it holds $\dim\overline{f}_{-}\geqq\dim\overline{\mathfrak{p}}_{-}$ by Theorem 5.2.

Now we consider a series of effective COQ’s satisfying $\dim\overline{f}_{-}=\dim\overline{\mathfrak{p}}_{-}$ . They are defin-
ed as effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ satisfying the following conditions.

(C.1) There exists some $H_{0}\in\overline{\mathfrak{p}}_{+}$ such that $ad_{\overline{\mathfrak{p}}^{*}}(H_{0})^{2}=-1_{\overline{\mathfrak{p}}^{*}}$ , where $1_{\overline{\mathfrak{p}}^{*}}$ denotes the
identity of $\overline{\mathfrak{p}}^{*}$ . Denote $J=ad_{\overline{\mathfrak{p}}^{*}}(H_{0})$ .

(C.2) The linear space $\overline{\mathfrak{p}}_{+}$ is decomposed into the sum of subspaces $a,$
$b$ such that

$J\circ ad_{\overline{\mathfrak{p}}^{*}}(T)=\left\{\begin{array}{l}-ad_{\overline{\mathfrak{p}}^{r}}(T)\circ J lf T\in\overline{\alpha},\\-\\ad_{\overline{\mathfrak{p}}}\cdot(T)\circ J \iota f T\in b.\end{array}\right.$

Obviously it holds $\dim\overline{f}_{-}=\dim\overline{\mathfrak{p}}_{-}$ .
Generally let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda)$ be a $ Q\Lambda$ -pair. Then it follows

(5.1) ad $(T)\circ\lambda=-\lambda‘\circ ad(T)$

on p-for $T\in\overline{\mathfrak{p}}_{+}$ , where $(*)^{t}$ denotes the transposed map of $(*)$ . In fact, let $X,$ $Y\in\overline{\mathfrak{p}}_{-}$ . By the

condition $(\Lambda.1)$ it follows

\langle ad $(T)\circ\lambda(X),$ $ Y\rangle$ $=\langle[\lambda(X), Y], T\rangle=\langle[\lambda(Y), X], T\rangle$

$=$ \langle $-\lambda^{t}\circ$ ad $(T)X,$ $ Y\rangle$ .

Hence the equality (5.1) holds.
Next assume that the underlying COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ satisfies the conditions (C.1),

(C.2). Then it follows

(5.2) $\lambda\circ ad(T)=-ad(T)\circ\lambda$ ‘

on f-for $Te\overline{\mathfrak{p}}_{+}$ . In fact, consider the endomorphism $ J\circ\lambda$ of $\overline{\mathfrak{p}}_{-}$ . Then it is symmetric by
(5.1). Since $J\circ\lambda=-J\circ\lambda\circ J\circ J$ and $(J\circ\lambda)^{t}=-J^{Q}(\lambda\circ J)^{t}\circ J$, the endomorphism $\lambda\circ J$ of f-is
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also symmetric. Let $T\in\overline{\mathfrak{a}}$ . Then it follows

$ J\circ$ ad $(T)\circ\lambda^{t}=-ad(T)\circ J\circ\lambda^{t}=ad(T)\circ\lambda\circ J=-\lambda^{t}\circ$ ad $(T)\circ J$

$=\lambda^{t}\circ J\circ$ ad $(T)=-J\circ\lambda\circ ad(T)$

by (5.1). Hence the equality (5.2) holds for $T\in\overline{\mathfrak{a}}$ . In the same way it also holds for $T\in\overline{b}$ .
Define an endomorphism $\Lambda_{\lambda}$ of $\overline{\mathfrak{p}}^{*}$ by $\Lambda_{\lambda}(X+\xi)=\lambda(X)-\lambda^{t}(\xi)$ for $X\in\overline{\mathfrak{p}}_{-},$ $\xi\in\overline{f}_{-}$ .

LEMMA 5.3. The endomorphism $\Lambda_{\lambda}$ is skew symmetric and it holds $[ad_{\mathfrak{H}^{r}}(T), \Lambda_{\lambda}]=0$ for
$T\in\overline{\mathfrak{h}}_{+}\oplus\overline{\mathfrak{p}}_{+}$ , where $\overline{\mathfrak{h}}_{+}=[\overline{\mathfrak{p}}_{+},\overline{\mathfrak{p}}_{+}]$ .

PROOF. The first claim is obvious. For the second claim it holds $[ad_{\overline{\mathfrak{p}}}\cdot(T), \Lambda_{\lambda}]=0$ for
$T\in\overline{\mathfrak{p}}_{+}$ from (5.1), (5.2), and consequently for $T\in\overline{\mathfrak{h}}_{+}$ . Hence the equality holds for all
$T\in\overline{\mathfrak{h}}_{+}\oplus\overline{\mathfrak{p}}_{+}$ . q.e. $d$ .

Now we consider the following two kinds of effective COQ’s satisfying the conditions
(C.1), (C.2). We retain the above notations, i.e., $(M, N),$ $(M^{*}, N^{*})$ denote the pairs
associated with the effective COQ’s $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle),$ $(\overline{\mathfrak{g}}, \tau, \sigma, \langle \rangle)$ respectively.

I. Totally complex totally geodesic symmetric submanifolds $N^{*}$ of compact
quaternionic symmetric spaces $M^{*}$

Let $M^{*}$ be a compact quatemionic symmetric space. Then it is simply connected and ir-
reducible. Moreover let $N^{*}$ be a complete totally complex totally geodesic submanifold
such that 4 $\dim N^{*}=\dim M^{*}$ . Then $N^{*}$ is a substantial symmetric submanifold. Moreover
the effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ associated with $(M, N)$ satisfies the conditions (C.1), (C.2).
In fact, it holds $\dim\overline{\mathfrak{a}}=1$ and the subalgebra $R\cdot 1_{\overline{\mathfrak{p}}}\cdot\oplus[ad_{\overline{\mathfrak{p}}}\cdot(\overline{\mathfrak{a}}), J]\oplus R\cdot J\oplus ad_{\overline{\mathfrak{p}}}\cdot(\overline{\mathfrak{a}})$ of End
$(\overline{\mathfrak{p}}^{*})$ gives the quatemionic stmcture of $M^{*}$ at the base point 0*, where End $(\overline{\mathfrak{p}}^{*})$ denotes
the associative algebra of all endomorphisms of $\overline{\mathfrak{p}}^{*}$ . We refer to Takeuchi [20] for the
definitions, the classifications, and the above notes of quatemionic symmetric space and
totally complex totally geodesic submanifold. In this paper we just list up all COQ’s $(\overline{\mathfrak{g}},$ $\sigma$ ,
$\tau$, $\langle$ $\rangle$ ) of this type in Table I. Then, from the table, we can see that they, except No. 1,
satisfy

(C.3) $\overline{f}_{+}=[\overline{\mathfrak{p}}_{+},\overline{\mathfrak{p}}_{+}]$ and thus $\overline{f}^{*}=\overline{\mathfrak{h}}_{+}\oplus\overline{\mathfrak{p}}_{+}$ .

THEOREM 5.4. Assume that $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is an effective $COQ$ in Tabk $I$, except No. 1,
No. 2. Let $S$ be a substantial symmetric submamfold with the associated N Then $(M, S)$ is
equivalent to $(M, N)$ and panimlarly $S$ is totally geodesic.

PROOF. Note that $M^{*}$ is an irreducible riemannian symmetric space which is not her-
mitian, except No. 1, No. 2. For such an $M^{*}$ it is scalar, an endomorphism $\Sigma$ of $\overline{\mathfrak{p}}^{*}$ such that
$[\Sigma, ad_{\overline{\mathfrak{p}}}\cdot(T)]=0$ for $T\in\overline{f}^{*}$ . Now let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle;\lambda)$ be the $ Q\Lambda$ -pair associated with $(M, S)$ .
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Then $\Lambda_{\lambda}$ satisfies the above condition for $\Sigma$ by the condition (C.3) and Lemma 5.3. Hence it
is scalar and, since it is skew symmetric, it follows $\Lambda_{\lambda}=0$ . This implies our claim. q.e. $d$ .

REMARK 5.5. The effective COQ’s of No. 2 appear in Table II again. Hence $ Q\Lambda$ -pairs
associated with the COQ’s will be looked up in Part II. Next consider the effective COQ’s

in No. 1. Then $(M, N)$ is equivalent to $(G_{i,n-j}(C), CP_{i-1}\times CP_{n-i-I})$ , where $G_{i,n-i}(C)$

denotes the Grassmann manifold of i-subspaces in $C^{n}$ . Particularly if $i=1,$ $(M, N)$ is
equivalent to $(CP_{n-1}, CP_{n-2})$ . Then symmetric submanifolds $S$ have already been
classified. In fact, $S$ are equivalent to either of the linear subspace $CP_{n-2}$ or the complex
quadric $CQ_{n-2}$ . For the case when $i\geqq 2,$ $S$ is equivalent to the totally geodesic submanifold
$CP_{i-1}\times CP_{n-i-1}$ . In fact, note that $S$ is also a parallel Kahlerian submanifold. Such sub-
manifolds of hermitian symmetric spaces have been classified by Tsukada [23]. By the
classification it follows that $S$ is equivalent to $CP_{i-1}\times CP_{n-i-1}$ .

II. Totally real totally geodesic symmetric submanifolds $N^{*}$ of compact
hermitian symmetric spaces $M^{*}$

Let $M^{*}$ be a compact simply connected hermitian symmetric space and $N^{*}$ a complete
totally real totally geodesic submanifold of $M^{*}$ such that 2 $\dim N^{*}=\dim M^{*}$ . Then $N^{*}$ is a
substantial symmetric submanifold. Moreover the effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ satisfies
the conditions (C.1), (C.2). In fact, it holds $\overline{\mathfrak{a}}=\{0\}$ and $H_{0}\in C(\overline{f}^{*})\cap\overline{\mathfrak{p}}_{+}\neq\{0\}$ , where $C(\overline{f}^{*})$

denotes the center of $\overline{f}^{*}$ . If $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is irreducible, it holds $\dim(C(\overline{f}^{*})\cap\overline{\mathfrak{p}}_{+})=1$ and we
may suppose that $J$ gives the complex stmcture of $M^{*}$ at 0*. We refer to Takeuchi [19] for
the definitions, the classifications, and the above notes of hermitian symmetric space and
totally real totally geodesic submanifold. In this paper we just list up all irreducible COQ’s
$(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ of this type in Table II.

Assume that the effective COQ $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is irreducible. For $c\in R$ define a linear
map $\lambda_{c}$ of $\overline{\mathfrak{p}}_{-}$ to f-by $\lambda_{c}=cJ$. Then $\lambda_{c}$ satisfies the conditions $(\Lambda.1),$ $(\Lambda.2)$ . In fact, they
follow from the fact that $H_{0}\in C(\overline{f}^{*})$ . Hence $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda_{c})$ is a $ Q\Lambda$ -pair. Denote by
$(M, S_{c})$ the pair associated with the $ Q\Lambda$ -pair.

LEMMA 5.6. (1) The submamfold $S_{c}$ is pseudo-umbilical. Moreover, (2) symmetric sub-
manifolds $S_{c},$ $S_{-c}$ are equivalent to each other. And symmetric submanifolds $S_{c},$ $c\geqq 0$ , are not
equivalent to one another.

PROOF. (1) Since $S_{c}$ is equivariant, we may show that it is pseudo-umbilical at the
base point $0$ . Put $\mathfrak{m}_{c}=\{X+cJX;X\in\overline{\mathfrak{p}}_{-}\}$ and identify $T_{0}S_{c},$ $N_{0}S_{c}$ with $\mathfrak{m}_{c},\overline{\mathfrak{p}}_{+}$ respectively.
Then the curvature tensor $R_{0}$ and the second fundamental form $\alpha_{0}$ of $S_{c}$ at $0$ are identified
as follows:
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$R_{0}(X+cJX, Y+cJY)(Z+cJZ)=-[[X+cJX, Y+cJY],$ $Z+cJZ$ ]
$=(1+c^{2})(-[[X, Y], Z]-cJ([[X, Y], Z]))$

and

$\alpha_{0}(X+cJX, Y+cJY)=[X, cJY]$

for $X,$ $Y,$ $Z\in\overline{\mathfrak{p}}_{-}$ . (cf. See Naitoh [11] for $\alpha_{0}.$ ) Moreover identify $\mathfrak{m}_{c}$ with $\overline{\mathfrak{p}}_{-}$ by the cor-
respondence: $\mathfrak{m}_{<}\ni X+cJX\leftrightarrow X\in\overline{\mathfrak{p}}_{-}$ . Then $R_{0},$

$\alpha_{0}$ are also identified as follows:

(5.3) $R_{0}(X, Y)Z=-(1+c^{2})[[X, Y],$ $Z$ ], $\alpha_{0}(X, Y)=[X, cJY]$

for $X,$ $Y,$ $Z\in\overline{\mathfrak{p}}_{-}$ . Denote by $\eta_{0}$ the mean curvature vector of $S_{c}$ at $0$ and by $\overline{R}_{0}$ the curvature
tensor of $M$ at $0$ . Moreover denote by $R_{0}^{*}\cdot,$ $Ric_{0}^{*}$. the curvature tensor, the Ricci tensor of
$M^{*}$ at $0^{*}$ respectively. Take an orthonormal basis $\{e_{1}, \cdots, e_{s}\}$ of $\overline{\mathfrak{p}}_{-}$ . Then, by (5.3) and the
Gauss’ equation, it follows

$s\langle\alpha_{0}(X, Y), \eta_{0}\rangle=\sum_{i}(\langle\overline{R}_{0}(X, e_{i})Y, e_{i}\rangle-\langle R_{0}(X, e_{i})Y, e_{i}\rangle+\langle\alpha_{0}(X, e_{i}), \alpha_{0}(Y, e_{i})\rangle)$

$=c^{2}\sum_{i}(\langle[[X, e_{i}], Y], e_{j}\rangle+\langle[X, Je_{i}],[Y, Je_{i}]\rangle)$

$=-c^{2}\sum_{i}(\langle R_{0}^{*}\cdot(X, e_{j})Y, e_{i}\rangle+\langle R_{0}^{*}\cdot(X, Je_{i})Y, Je_{i}\rangle)$

$=c^{2}Ric_{0}^{*}\cdot(X, Y)$

for $X,$ $Y\in\overline{\mathfrak{p}}_{-}$ . Note that $M^{*}$ is Einstein. In fact, for No. $7\sim No$ . $18,$ $M^{*}$ is irreducible and
thus Einstein. For No. $1\sim No$ . $6,$ $M^{*}$ is not irreducible, but $\langle$ $\rangle$ is left invariant by $\sigma$ .
Hence $M^{*}$ is Einstein. Consequently it follows $\langle\alpha_{o}(X, Y;), \eta_{0}\rangle=a\langle X, Y\rangle$ for some $a\in R$ .
This implies that $S_{c}$ is pseudo-umbilical at $0$ .

(2) The isomorphism $\sigma$ of $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ satisfies $\sigma(\mathfrak{m}_{c})=\mathfrak{m}_{-c}$ . Hence $S_{c}$ is equivalent
to $S_{-c}$.

The second claim is obvious by (5.3). q.e. $d$ .

THEOREM 5.7. Assume that $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is an effective $COQ$ in Table IL except No. 13,
$i=1$ . Let $S$ be a substantial symmetric $submamf_{0}u$ with the associated N Then $(M, S)$ is
equivalent to some $(M, S_{c})$ .

PROOF. Assume that $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is one of No. $7\sim No$ . $18$ , except No. 13, $i=1$ . Then
$M^{*}$ is an irreducible hermitian symmetric space and satisfies the condition (C.3). Let $(\overline{\mathfrak{g}}$ ,
$\sigma,$ $\tau$ , $\langle$ $\rangle:\lambda$ ) be the $ Q\Lambda$ -pair associated with $(M, S)$ . Then it follows that $[\Lambda_{\lambda}, ad_{\overline{\mathfrak{p}}}\cdot(T)]=0$

for TE $\overline{f}^{*}$ by Lemma 5.3. Generally for an irreducible hermitian symmetric space, it is a
scalar multiple of the complex stmcture $J$, a skew symmetric endormorphism $\Sigma$ of $\overline{\mathfrak{p}}^{*}$ such
that $[\Sigma, ad_{\overline{\mathfrak{p}}^{*}}(T)]=0$ for $T\in\overline{f}^{*}$ . Hence it holds $\Lambda_{\lambda}=cJ$ for some $c\in R$ . This implies that
$\lambda=cJ$. Hence $(M, S)$ is equivalent to $(M, S_{c})$ .
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Next assume that $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is one of No. $1\sim No$ . $6$ . Then the COQ is constmcted as
follows. Let $(\hat{\mathfrak{g}},\hat{\tau}, \langle\wedge\rangle)$ be an irreducible orthogonal symmetric Lie algebra corresponding

to an irreducible hermitian symmetric space of compact type. Moreover let $\hat{\mathfrak{g}}=t\oplus\hat{\mathfrak{p}}$ be the

eigenspace decomposition by $\hat{\tau}$ into the (+l)-eigenspace $\hat{f}$ and the (-l)-eigenspace $\hat{\mathfrak{p}}$ .
Then $\hat{f}$ has the one-dimensional center $c$ and is also decomposed into the sum of $c$ and semi-
simple ideal $f^{\prime}$ . Put $\overline{\mathfrak{g}}=\hat{\mathfrak{g}}\oplus\hat{\mathfrak{g}}$ . The involutive automorphisms $\sigma,$ $\tau$ and the inner product $\langle$ $\rangle$

are defined as follows:

$\sigma(X, Y)=(Y, X),$ $\tau(X, Y)=(\hat{\tau}(X),\hat{\tau}(Y))$ ,
$\wedge$ $\sim$

$\langle(X, Y), (Z, W)\rangle=\langle X, Z\rangle+\langle Y, W\rangle$

for $X,$ $Y,$ $Z$, We $\hat{\mathfrak{g}}$ . Moreover $\overline{f},$ $\overline{f}_{\pm},\overline{\mathfrak{p}},\overline{\mathfrak{p}}_{\pm}$ are given in the followings.

$\overline{f}=\{(X, X);X\in\hat{\mathfrak{g}}\}$ , $\overline{\mathfrak{p}}=\{(X, -X);X\in\hat{\mathfrak{g}}\}$ ,
$\overline{f}_{+}=\{(X, X);X\in\hat{f}\}$ , $\overline{\mathfrak{p}}_{+}=\{(X, -X);X\in\hat{f}\}$ ,
$\overline{f}_{-}=\{(X, X);X\in\hat{\mathfrak{p}}\}$ , $\overline{\mathfrak{p}}_{-}=\{(X, -X);Xe\hat{\mathfrak{p}}\}$ .

Now let $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle:\lambda)$ be the $ Q\Lambda$ -pair associated with $(M, S)$ and define an endomor-

phism $\hat{\lambda}$ of $\hat{\mathfrak{p}}$ such that $\lambda(X, -X)=(\hat{\lambda}(X),\hat{\lambda}(X))$ for $X\in\hat{\mathfrak{p}}$ . Note that $\lambda^{t}(X, X)=(\hat{\lambda}^{t}(X)$ ,

$-\hat{\lambda}^{t}(X))$ for $X\in\hat{\mathfrak{p}}$ . Then by (5.1), (5.2) it follows

$ad_{\dot{\mathfrak{p}}}(T)\circ\hat{\lambda}=-\hat{\lambda}^{t}\circ ad_{\hat{\mathfrak{p}}}(T)$ , $\hat{\lambda}\circ ad_{\dot{\mathfrak{p}}}(T)=-ad_{\dot{\mathfrak{p}}}(T)\circ\hat{\lambda}^{t}$

for $T\in\hat{f}$ . Hence the endomorphisms $\hat{\Lambda}_{\pm}$ of $\hat{\mathfrak{p}}$ defined by $\hat{\Lambda}_{\pm}=(\hat{\lambda}\pm\hat{\lambda}^{t})/2$ satisfy

(5.4) $ad_{\dot{\mathfrak{p}}}(T)\circ\Lambda_{\pm}=\mp\Lambda_{\pm}\circ ad_{\dot{\mathfrak{p}}},(T)$

for $Te\hat{f}$ . Note that the complex stmcture $\hat{J}of$ $(\hat{\mathfrak{g}},\hat{\tau}, \langle\wedge\rangle)$ is given by $ad_{\dot{\mathfrak{p}}}(\hat{H}_{0})$ for some
$\hat{H}_{0}\in c$ . Since $\hat{\Lambda}_{-}$ is skew symmetric, it follows $\hat{\Lambda}_{-}=c\hat{J}for$ some $c\in R$ in the same way as
above. Also it holds $ad_{\dot{\mathfrak{p}}}(T)\circ\hat{\Lambda}_{+}^{2}=\hat{\Lambda}_{+}^{2}\circ ad_{\dot{\mathfrak{p}}}(T)$ for $T\in\hat{f}$ by (5.4). Hence $\hat{\Lambda}_{+}^{2}$ is scalar, since
it is symmetric and $(\hat{\mathfrak{p}},\hat{\tau}, \langle\wedge\rangle)$ is irreducible. On the other hand, since $f^{\prime}=[t, ?]$ , it follows
$ad_{\dot{\mathfrak{p}}}(T)\circ\hat{\Lambda}_{+}=\hat{\Lambda}_{+}\circ ad_{\dot{\mathfrak{p}}}(T)$ for $T\in f^{\prime}$ and thus $[f^{\prime},\hat{\Lambda}_{+}(\hat{\mathfrak{p}})]=\{0\}$ by (5.4). Here note that
$f^{\prime}\neq\{0\}$ . If $\hat{\Lambda}_{+}$ is non-degenerate, it follows $[f^{\prime},\hat{\mathfrak{p}}]=\{0\}$ . This contradicts that the adjoint

representation $ad_{\dot{\mathfrak{p}}}$ of $\hat{f}$ is faithful. Hence it holds $\hat{\Lambda}_{+}=0$ . This implies that $\hat{\lambda}=cJ^{\wedge}$ Since we
may suppose that the complex stmcture $J$ of $\overline{\mathfrak{p}}^{*}$ is given by $ad_{\overline{\mathfrak{p}}^{*}}(H_{0}, -H_{0})$ , it follows $\lambda=cJ$.
Hence $(M, S)$ is equivalent to $(M, S_{c})$ .

REMARK 5.8. If $(\overline{\mathfrak{g}}, \sigma, \tau, \langle \rangle)$ is one of No. 13, $i=1$ , the pairs $(M^{*}, N^{*}),$ $(M, N)$ are
equivalent to $(CQ_{n}, S^{n}),$ $(S^{n+1}, S^{n})$ for some $n$ respectively. Hence symmetric sub-

manifolds with the associated $N$ have already been classified. In fact, they are equivalent

to genemlized Clifford torus of $S^{n+1}$ .

REMARK 5.9. The symmetric submanifolds $(M, S_{c})$ associated with $(M, N)$ in No.
$1\sim No$ . $6$ , have been constmcted in Tsukada [23].
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