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CLASSICAL QUOTIENT RINGS OF TRIVIAL EXTENSIONS

By

Kazunori SAKANO

Let $R$ be a ring with identity. The right quotient ring of $R$ , if it exists, is
a ring $Q$ which satisfies the following conditions:

(i) $R$ is a subring of $Q$ .
(ii) Every regular element of $R$ is a unit of $Q$ .
(iii) Every element $q$ of $Q$ is of the form $ac^{-1}$ for some elements $a$ and $c$ of

$R$ with $c$ regular.
An $(R, R)$-bimodule $M$ is called to satisfy the right Ore condition with respect

to a multiplicatively closed subset $D$ of $R$ if, given $m\in M$ and $d\in D$ , there exist
$m^{\prime}\in M$ and $d’\in D$ such that $md^{\prime}=dm^{\prime}$ . It is well-known that $R$ has the classical
right quotient ring if and only if $R$ satisfies the right Ore condition with respect
to $D$ when $D$ is the set of all regular elements of $R$ .

Let $M$ be an $(R, R)$-bimodule. The trivial extension $\Lambda=R\ltimes M$ of $R$ by an
$(R, R)$ -bimodule $M$ is the Cartesian product $R\ltimes M$ with addition componentwise
and multiplication given by $(r, m)(r^{\prime}, m^{\prime})=(rr^{\prime}, mr^{\prime}+rm^{\prime})$ . In general, it is difficult
to determine the form of regular elements of $\Lambda$ . If $c$ is a regular element of $R$ ,

$(c, m)7is$ not always a regular element of $\Lambda$ and vice versa. Let $\Gamma=\left(\begin{array}{ll}R & 0\\R & R\end{array}\right)$ be a
generalized triangular matrix ring. In [3], Chatters remarked that H. Attarchi
determined the form of a regular element of $\Gamma$ under the assumption that $cR(Rc)$

is an essential right (left) ideal of $R$ for each right (left) regular element $c$ of $R$ .
In this case, $\left(\begin{array}{ll}c_{1} & 0\\x & c_{2}\end{array}\right)$ is regular in $\Gamma$ if and only if both $c_{1}$ and $c_{2}$ are regular in
$R$ . For example, if both $R_{R}$ and $RR$ have finite Goldie dimension, the above as-
sumption is satisfied. So, if we can find a suitable description of regular elements
of $\Lambda$ by those of $R$ , we can investigate whether $\Lambda$ has the classical right quotient
ring. The main purpose of this paper is to give a necessary and sufficient condi-
tion for $\Lambda$ to have the classical right quotient ring under the condition that $RM_{R}$

is faithful or both $RM$ and $M_{R}$ have finite Goldie dimension.
In Section 1, we show that every regular element of $\Lambda$ has the form of $(c, m)$

with $c$ regular in $R$ . Let $C(R)$ denote the set of all regular elements of $R$ and
$D=$ { $c\in C(R)|cm\neq 0$ and $mc\neq 0$ for every $0\neq m\in M$ }. In Section 2, we show that $\Lambda$
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has the classical right quotient ring if and only if both $R$ and $M$ satisfy the right
Ore condition with respect to $D$ . When the above equivalent condition holds, $D$

becomes a right denominator set and the classical right quotient ring of $\Lambda$ has the
form of $R[D^{-1}]\ltimes M[D^{-1}]$ . So, we see that the classical right quotient ring of a
trivial extension is also given by a trivial extension. As by-products of results in
Sections 1 and 2, we exhibit some corollaries concerning generalized triangular
matrix rings in the final Section 3.

Throughout this paper, unless otherwise specified, $\Lambda$ denotes the trivial exten-
sion of $R$ by an $(R, R)$-bimodule $M$ . For a subset $I$ of $R,$ $l_{R}(I)(r_{R}(I))$ denotes the
left (right) annihilator of $I$ in $R$ . Furthermore, let $C(R)$ denote the set of all
regular elements of $R$ and $D=$ {$c\in C(R)|cm\neq 0$ and $mc\neq 0$ for every $0\neq m\in M$ }.
“ The right quotient ring of $R$ ’ means the classical right quotient ring of $R$ .

The author wishes to express his hearty thanks to Professor T. Kato for his
useful suggestions and remarks during the preparation of this paper.

1. Regular elements in $A$ .
LEMMA 1.1. Assume that $RM_{R}$ is faithful. Then $(c_{0}, m_{0})\in C(\Lambda),$ $m_{0}\in M$ if and

only if $c_{0}\in D$ .

PROOF. $(\Rightarrow)$ . Let $(c_{0}, m_{0})\in C(\Lambda),$ $r^{\prime}\in r_{R}(c_{0})$ and $m\in M$. Since $(c_{0}, m_{0})(0, r^{\prime}m)=$

$(0, c_{0}r^{\prime}m)=0$ and $(c_{0}, m_{0})\in C(\Lambda)$ , we have $r^{\prime}m=0$ for every $m\in M$. Since $RM$ is
faithful, we have $r^{\prime}=0$ . By the similar manner as above, we can prove that
$l_{R}(c_{0})=0$ . Thus we have $c_{0}\in C(R)$ . Moreover, since $(c_{0}, m_{0})\in C(\Lambda)$ , we have
$(c_{0}, m_{0})(0, m)=(O, c_{0}m)\neq 0$ and $(0, m)(c_{0}, m_{0})=(0, mc_{0})\neq 0$ for every $0\neq m\in M$.
Hence $c_{0}\in D$ .

$(\Leftarrow)$ . Let $c_{0}\in D$ and $ 0\neq(r, m)\in\Lambda$ . Since $c_{0}\in D$ , we have $(c_{0}, m_{0})(r, m)=(c_{0}r$ ,
$c_{0}m+m_{0}r)\neq 0$ and $(r, m)(c_{0}, m_{0})=(rc_{0}, mc_{0}+\gamma m_{0})\neq 0$ . Thus $(c_{0}, m_{0})\in C(\Lambda)$ .

Recall that a right R-module $X$ is called to have finite Goldie dimension if $X_{R}$

contains no infinite independent families of non-zero submodules.

LEMMA 1.2. Let $r$ be an element of $R$ such that $rm\neq 0$ for every $0\neq m\in M$. If
$M_{R}$ has finite Goldie dimension, then $rM_{R}$ is an essential submodule of $M_{R}$ .

PROOF. Let $M_{R}^{\prime}$ be a submodule of $M_{R}$ with $rM\cap M^{\prime}=0$ . Since $rM\cap M^{\prime}=0$ ,
$ M^{\prime}+rM^{\prime}+r^{2}M^{\prime}+\cdots+r^{n}M^{\prime}+\cdots$ is a direct sum. Since $M_{R}$ has finite Goldie di-
mension, $r^{n}M^{\prime}=0$ for some $n$ . Therefore, we obtain $M^{\prime}=0$ by assumption on $R$ .

LEMMA 1.3. Assume that both $M_{R}$ and $RM$ have finite Goldie dimension. Then
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$(c_{0}, m_{0})\in C(\Lambda),$ $m_{0}\in M$ if and only if $c_{0}\in D$ .

PROOF. This proof is a slight modification of [3, Remarks (2), p. 189].

$(\Rightarrow)$ . Let $(c_{0}, m_{0})\in C(\Lambda)$ . We put $K=\{r\in R|m_{0}r\in c_{0}M\}$ . Let $r_{1}\in r_{R}(c_{0})\cap K$.
Then there exists $m_{1}\in M$ such that $m_{0}r=-c_{0}m_{1}$ . Moreover, since $(c_{0}, m_{0})(r_{1}, m_{1})$

$=0$ and $(c_{0}, m_{0})\in C(\Lambda)$ , we have $(r_{1}, m_{1})=0$ . Therefore, we get $r_{R}(c_{0})\cap K=0$ .
Since $(c_{0}, m_{0})(0, m)=(O, c_{0}m)\neq 0$ for every $0\neq m\in M$, and $M_{R}$ has finite Goldie di-
mension, $c_{0}M$ is an essential submodule of $M_{R}$ by Lemma 1.2. Furthermore, it
is easily verified that $K$ is an essential right ideal of $R$ . Therefore, we have
$r_{R}(c_{0})=0$ . By the similar argument as above, we can show that $l_{R}(c_{0})=0$ . Thus
$c_{0}\in D$ .

$(\Leftarrow)$ . This can be proved by the similar manner as in the proof $(\Leftarrow)$ of
Lemma 1.1.

By a slight modification of the proof of [4, (1, 36)], we have the following.

LEMMA 1.4. Assume that $R$ has the right ring of fractions $R[D^{-1}]$ . If
$c_{1},$ $\cdots,$

$c_{k}\in D$ , then there exist $c,$
$d_{1},$ $\cdots,d_{k}\in D$ such that $c_{i}^{-1}=d_{i}c^{-1}(i=1, \cdots,k)$ .

2. Quotient rings of $A$ .
In this section, we assume that $RM_{R}$ is faithful or both $M_{R}$ and $RM$ have

finite Goldie dimension.

THEOREM 2.1. The following conditions are equivalent.
(1) $\Lambda$ has the right quotient ring.
(2) $R$ and $M$ satisfy the right Ore condition with respect to $D$ .

PROOF. In this case, we note that $(c, m)\in C(\Lambda),$ $m\in M$ if and only if $c\in D$ in
view of Lemmas 1.1 and 1.3.

(2) $\supset(1)$ . It suffices to show that $\Lambda$ satisfies the right Ore condition with
respect to $C(\Lambda)$ . Let $(r, m)\in\Lambda$ and $(c_{0}, m_{0})\in C(\Lambda)$ . Since $R$ satisfies the right Ore
condition with respect to $D$ , there exist $r_{1}\in R$ and $c_{1}\in D$ such that $rc_{1}=c_{0}r_{1}$ . More-
over, since $M$ satisfies the right Ore condition with respect to $D$ , there exist $c_{i}^{\prime}\in D$

and $m_{1}\in M$ such that $(mc_{1}-m_{0}r_{1})c_{1}^{\prime}=c_{0}m_{1}$ . Thus we have $(r, m)(c_{1}c_{1}^{\prime}, 0)=(c_{0}, m_{0})$ .
$(r_{1}c_{1}^{\prime}, m_{1})$ with $(c_{1}c_{1}^{\prime}, O)\in C(\Lambda)$ . Hence $\Lambda$ has the right quotient ring.

(1) $\Rightarrow(2)$ . Let $c\in D,$ $(0, m)\in\Lambda$ and $(r, 0)\in\Lambda$ . Then $(c, O)\in C(\Lambda)$ . Since $\Lambda$ satisfies
the right Ore condition with respect to $C(\Lambda)$ , there exist $(r_{i}, m_{i})\in\Lambda(i=1,2)$ and
$(c_{i}, m_{i}^{\prime})\in C(\Lambda)(i=1,2)$ such that $(r, 0)(c_{1}, m_{1}^{\prime})=(c, 0)(r_{1}, m_{1})$ and $(0, m)(c_{2}, m_{2}^{\prime})=$

$(c, 0)(r_{2}, m_{2})$ , from which it follows that $rc_{1}=cr_{1}$ and $mc_{2}=cm_{2}$ with $c_{1},$ $c_{2}\in D$.
Hence both $R$ and $M$ satisfy the right Ore condition with respect to $D$ .
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REMARK. The following example indicates that the equivalence of (1) and (2)

in Theorem 2.1 does not hold in general, if we do not suppose the standing as-
sumption.

EXAMPLE 2.2 [3, Example 2.1]. Let $T$ be a right Noetherian domain which
is not left Ore. Let $u$ be an indeterminate which commutes with the elements
of $T$ and $C$ denotes the set of all elements of the polynomial ring $T[u]$ which
have non-zero constant term. Let $V=T[u][C^{-1}]$ and $W$ the right quotient division
ring of $T$. We can make $W$ into a right V-module by identifying $W$ with $V/uV$,

i.e. by setting $Wu=0$ . We set

$S=\left(\begin{array}{l}T[u]0\\T T\end{array}\right)$ , $Q=\left(\begin{array}{ll}V & 0\\W & W\end{array}\right)$ .

Then $Q$ is the right quotient ring of $S$. Since $TT$ does not have finite Goldie
dimension, $SS$ does not have finite Goldie dimension. Let

$\Gamma=\left(\begin{array}{ll}S & 0\\S & S\end{array}\right)$

be a $2\times 2$ lower triangular matrix ring over $S$ . Then 1“ does not have the right
quotient ring, but $S$ has the right quotient ring $Q$ . We put $R=S\oplus S$ . Since $S$

is regarded as an $(R, R)$ -bimodule in the natural way, 1’ is isomorphic to $R\ltimes S$.
Note that, in this case, $RS_{R}$ is not faithful and $RS$ does not have finite Goldie di-
mension.

A right R-module $X$ is called D-torsion-free if $xd\neq 0$ for every $0\neq x\in X$ and
$d\in D$ .

If $R$ satisfies the right Ore condition with respect to $D$ , then $R[D^{-1}]$ , the right
of fractions and $M[D^{-1}]$ , the right module of fractions exist.

THEOREM 2.3. If $\Lambda$ has the right quotient ring, then the following (1) and (2)

hold.
(1) $M[D^{-1}]$ has an $(R[D^{-1}], R[D^{-1}])$-bimodule structure.
(2) The canonical embedding $\Lambda\rightarrow R[D^{-1}]\ltimes M[D^{-1}]$ gives the right quotient

ring $Q(\Lambda)$ of $\Lambda$ .

PROOF. It is to be noted that $(c, m)\in C(\Lambda),$ $m\in M$ if and only if $c\in D$ in view
of Lemmas 1.1 and 1.3.

(1) Let $c\in D$ and $m\in M$. Since $M$ satisfies the right Ore condition with respect
to $D$ , there exist $m_{1}\in M$ and $c_{1}\in D$ such that $mc_{1}=cm_{1}$ . We define a left multipli-
cation on $M[D^{-1}]$ by an element of $R[D^{-1}]$ via $c^{-1}\cdot m=m_{1}c_{1}^{-1}$ . If there exist other
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element $c_{2}\in D$ and $m_{2}\in M$ satisfying $mc_{2}=cm_{2}$ , then we have $m=cm_{1}c_{1}^{-1}=cm_{2}c_{2}^{-1}$ ,

from which it follows that $m_{1}c_{1}^{-1}=m_{2}c_{2}^{-1}$ , for $RM$ is D-torsion-free. Therefore, this
multiplication is well-defined. Moreover, it is easily seen that $M[D^{-1}]$ has an
$(R[D^{-1}], R[D^{-1}])$-bimodule structure.

(2) Since $M_{R}$ is D-torsion-free, $M$ can be considered as a submodule of $M[D^{-1}]$ .
Therefore, we can suppose that $\Lambda\subset R[D^{-1}]\ltimes M[D^{-1}\rfloor$ . Let $(c_{0}, m_{0})\in C(\Lambda)$ . Since
$(c_{0}, m_{0})(c_{0}^{-1}, -c_{0}^{-1}m_{0}c_{0}^{-1})=(1,0)$ and $(c_{0}^{-1}, -c_{0}^{-1}m_{0}c_{0}^{-1})(c_{0}, m_{0})=(1,0)$ with $(c_{0}^{-1},$ $-c_{0}^{-1}$

$mc_{0}^{-1})\in R[D^{-1}]\ltimes M[D^{-1}],$ $(c_{0}, m_{0})$ is a unit of $R[D^{-1}]\ltimes M[D^{-1}]$ . Let $(rc_{1}^{-1}, mc_{2}^{-1})\in$

$R[D^{-1}]\ltimes M[D^{-1}]$ . Since there exist $c,$ $d_{1},d_{2}\in D$ such that $c_{i}^{-1}=d_{i}c^{-1}(i=1,2)$ by
Lemma 1.4, we have $(rc_{1}^{-1}, mc_{2}^{-1})(c, 0)=(rd_{1}c^{-1}, md_{2}c^{-1})(c, 0)=(rd_{1}, md_{2})\in\Lambda$ with
$(c, O)\in C(\Lambda)$ . Hence we conclude that the canonical embedding $\Lambda\rightarrow R[D^{-1}\rfloor\ltimes$

$M[D^{-1}]$ gives the right quotient ring $Q(\Lambda)$ of $\Lambda$ .

COROLLARY 2.4. Let $\Lambda=R\ltimes R$ . Then the following are equivalent.
(1) $\Lambda$ has the right quotient ring $Q(\Lambda)$ .
(2) $R$ has the right quotient ring $Q(R)$ .
In this case, the canonical embedding $\Lambda\rightarrow Q(R)\ltimes Q(R)$ gives the right quotient

ring $Q(\Lambda)$ of $\Lambda$ .

PROOF. This directly follows from Theorems 2.1 and 2.3.

We exhibit the following example for which $R$ does not satisfy the right Ore
condition with respect to $D$ , but $R$ satisfies the right Ore condition with respect
to $C(R)$ .

EXAMPLE 2.5 [5, Example 5.5]. Let

$R=\left(\begin{array}{ll}Z & 2Z\\Z & Z\end{array}\right)\supset RI_{R}=\left(\begin{array}{ll}2Z & 2Z\\Z & Z\end{array}\right)$

and $\Lambda=R\ltimes R/I$ . Then both $(R/I)_{R}$ and $R(R/I)$ have finite Goldie dimension and

$D=\{\left(\begin{array}{ll}z_{1} & 2z_{3}\\z_{2} & z_{4}\end{array}\right)\in C(\Lambda)|z_{1}\not\in 2Z\}$ . Since $R$ does not satisfy the right Ore condition with

respect to $D,$ $\Lambda$ does not have the right quotient ring in view of Theorem 2.1.

3. Generalized triangular matrix rings.

Let

$\Gamma=\left(\begin{array}{ll}S & 0\\U & T\end{array}\right)$

be a generalized triangular matrix ring, where $S$ and $T$ are rings with identity
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and $U$ a $(T, S)$ -bimodule. We put $R=S\oplus T$. Since $U$ is regarded as an $(R, R)-$

bimodule in the natural way, $\Gamma$ is isomorphic to $R\ltimes U$. Let $D_{1}=\{d_{1}\in C(S)|ud_{1}\neq 0$

for every $0\neq u\in U$ } and $D_{2}=$ { $d_{2}\in C(T)|d_{2}u\neq 0$ for every $0\neq u\in U$ }. It is clear that
$RU_{R}$ satisfies the right Ore condition with respect to a subset $(D_{1}, D_{2})$ of $R$ if,

given $u\in U$ and $d_{2}\in D_{2}$ , there exist $u^{\prime}\in U$ and $d_{1}\in D_{1}$ such that $ud_{1}=d_{2}u^{\prime}$ . (In this
case, $\tau U_{S}$ is called to satisfy the right Ore condition with respect to $D_{1}-D_{2}$ ). It
is to be noted that $RU_{R}$ is unfaithful, whenever $S$ or $T$ is non-zero. So, we con-
sider only in case both $U_{R}$ and $RU$ have finite Goldie dimension. If we apply

Theorems 2.1 and 2.3 to $\Gamma$ , then we have the following.

COROLLARY 3.1. Assume that both Us and TU have finite Goldie dimension.
Then the following are equivalent.

(1) $\Gamma$ has the right quotient ring.
(2) $S,$ $T$ and $\tau U_{S}$ satisfy the righl Ore condition with respect to $D_{1},$ $D_{2}$ , and

$D_{1}-D_{2}$ , respectively.

COROLLARY 3.2. In the same situation as in the $p$receding corollary, the right

quotient ring of $\Gamma$ has the form of

$\left(\begin{array}{ll}S[D_{1}^{-1}] & 0\\U[D_{1}^{-1}] & T[D_{2}^{-1}]\end{array}\right)$

COROLLARY 3.3. Let $T_{n}(R)$ be the ring of $n\times n$ lower triangular matrices over
R. Assume that both $R_{R}$ and $RR$ have finite Goldie dimension and that $R$ has the
right quotient ring $Q(R)$ . Then $T_{n}(R)$ has the right quotient ring isomorphic to
$T_{n}(Q(R))$ .

PROOF. We prove by induction on $n$ . If $n=1$ , then it is obvious. We suppose
that $T_{n-1}(R)$ has the right quotient ring iomorphic to $T_{n-1}(Q(R))$ . Since $T_{n}(R)$

can be considered as

$\left(\begin{array}{llll} & & & 0\\T_{n-1}(R) & & & \vdots\\ & & & 0\\R & \cdots & R & R\end{array}\right)$

,

$R(R\cdots R)_{T_{n-1}(R)}$ satisfies the right Ore condition with respect to $C(R)-C(T_{n-1}(R))$

and both $R(R\cdots R)$ and $(R\cdots R)_{T_{n-1}(R)}$ have finite Goldie dimension, $T_{n}(R)$ has the
right quotient ring isomorphic to $T_{n}(Q(R))$ by Corollary 3.2.

REMARK. It is well-known that, if $R$ has the right quotient ring $Q(R)$ and
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$Q(R)_{Q(R)}$ has finite Goldie dimension, then $R_{R}$ has finite Goldie dimension. There-
fore, Corollary 3.3 holds under weaker conditions than in [1, Corollary 3.6].
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