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1. Introduction.

The linear isotropy representation of a Riemannian symmetric pair (G, K) is
defined as the differential of the left action of K on G/K at the origin. Every
orbit of the linear isotropy representation of (G, K) is called an R-space associated
with (G, K), which is an important example of equivariant homogeneous Rieman-
nian submanifolds in a Euclidean sphere (See Takagi-Takahashi and Takeuchi-
Kobayashi [3]).

This paper is concerned with the linear isotropy representation of a Hermitian
symmetric pair (G, K). Its restriction to the center of K defines an S'-action on
the associated R-spaces. We determine all R-spaces associated with Hermitian
symmetric pairs (G, K) on which the semisimple part of K acts transitively. In
particular, we know all irreducible Hermitian symmetric pairs such that each of
the associated R-spaces has such a property. This result is utilizable for the
classification of orthogonal transformation groups by their cohomogeneity (See the
forthcoming paper [4] concerned with this problem in low cohomogeneity).

The authors are profoundly grateful to Professor Ryoichi Takagi for his help-
ful suggestion and critical reading of a primary manuscript.

2. Statement of the result.

Let (G, K) be an irreducible Hermitian symmetric pair of compact type and
g [resp. f] the Lie algebra of G [resp. K]. Then g has the canonical direct sum
decomposition :

g=f+m,
where m is the subspace of ¢ satisfying
[f,mlJcm and [m,m]cE.

The tangent space of G/K at the origin can be naturally identified with m. Then
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the linear isotropy representation of (G, K) is nothing but the adjoint action Ad
of K on m.

Let K, be the analytic subgroup of K corresponding to the semisimple part
t,=[f,f] of ¥ and 3 be the 1-dimensional center of ¥. We can take an element H,
in 3 such that

(ad Holw)?=—idn ,
because (G, K) is a Hermitian symmetric pair.
Take a maximal Abelian subalgebra §) in . Then } is also a maximal Abelian
subalgebra in g and the complexification )€ of § is a Cartan subalgebra of g€. Let

4 denote the set of all non-zero roots of 8¢ with respect to )¢. For each ae4, de-
fine a subspace g. of g€ by

0.={Xe8C;[H, X]=a(H)X for all Hel)c}
and choose a non-zero vector X,€8, such that

2

Xo—X_o VoI X+ X 0)eg and [X,, X_o]l=—c
a(H,)

H,,

where H, in Y€ is the dual vector of a with respect to the Killing form ¢, ) of
g€. The set of all compact [resp. noncompact] roots in 4 is denoted by 4. [resp.
4d,):

fc=9yc+ > g, and mC= 3 q,.

a€de a€dy,

Fix the lexicographic ordering in the dual space of the real vector space
v/ —1% with respect to an ordered basis

V=IH(=Y)), Yz, - -+, Ym; m=dimg (V —15)

in V=15, Let 4* [resp. 4;] denote the set of all positive roots in 4 [resp. 4.].
There is a direct sum decomposition of m:

m= Z+{R(X4—X_a)+R«/“ZT(Xa+X_a)} )

nedn

According to Harish-Chandra [1, § 6], there exists a subset I'={y, ---,7,} of
43 such that y;x7,44 (1=¢,7=7) and
a=X 7. R«/——l(X,i+X_,t)
is a maximal Abelian subspace of m, where 7 is the rank of the symmetric pair
(G, K).
Consider the automorphism, so-called Cayley transformation,
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v=exp - ad (D1 (X, X))
of the Lie algebra g¢. We have v(a)Cf, since

2v -1

(V=X + X)) ="+
( 1(X7’L+X 7’7,)) r@(Hn) T

(I=i=r).

Let denote the restriction of a linear form on %€ to v(a€). The sets of all

non-zero elements in 4, 4+, 4., 4., and 4; are denoted by R, R+, R., R,, and R}
respectively. R is isomorphic to the restricted root system of the Hermitian
symmetric pair (G, K). By Harish-Chandra [1, § 6], there are only two possibilities :

Case i) R is of type C;

Case ii) R is of type BC;
_ . 1._
R={ir}U[;( IRES O zv&]}u{ - }
R 1
c= ‘2— —Fs)s i#] ——ri
Rn={i'i}u{i3(?’i+ﬁ); ia&j} u[tiﬂ-} :
Then our result is the following:

THEOREM. Let M be an R-space associated with an irreducible Hermitian
symmetrvic pair (G,K). Then the following two conditions are equivalent.

1) The action of Ks on M is transitive.
2) The restricted root system R of (G,K) is of type BC or there exists a v, in
I such that y:(o(MnNa))={0}.

In particular, K acts trvansitively on each of the associated R-spaces if and only if
R is of type BC.

ReEMARK. Suppose that M is an R-spéce of the highest dimension among
those associated with a given irreducible Hermician symmdtric pair (G, K), i.e
M is a maximum dimensional K-orbit of the linear isotropy representation of
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(G,K). Then MnNa contains a regular element H, which satisfies y:(v(H ))+0 for
all 7. Then the transitivety of K, on M is equivalent to the condition that the
restricted root system R is of type BC.

3. Proof of

Fix an Ad (G)-invariant inner product on ¢, which is a negative multiple of
the restriction of the Killing form ¢, > of g€ to g.
Let H be any fixed element of MUa and fx denote the centralizer of A in f:

tu={Tet;[T, H]=0}. (1)

The orthogonal complement of f; in ¥ is denoted by 4.
Since f; is the orthogonal complement of 3 in f, the kernel of the orthogonal

projection p of f to 3 is equal to f;.
Since K and K, are compact and connected, the condition 1) in is

equivalent to
dimt—dim {gy=dim ¥ —dim (fx N¥%),
that is,
dimfg=1+dim ({xNt;),

which is equivalent to p(fy)=3, because dimj3=1.
On the other hand, p(fyz)={0} if and only if fyzcf;=3*, that is, f4D3 If we
take H,efy and H,efj such that

H0=H1+H2, (2)

then H,=0 is equivalent to f} D3.
So the condition 1) in is equivalent to H,+0 in the equation (2).
Therefore the following lemma completes the proof of our theorem.

LeEmMA. H,#0 if and only if either the vestricted root system R of (G,K) is
of type BC or there exists a y; in I' such that yi(v(H ))=0.

ProOF of Let b be the orthogonal complement of v(a)= i, RV —1H,,
in )= RV —1H,.

a€d

Put Iy={rel; 7do(H))=0}, an= 3, RV —=1H,, and a= Z RV =1H,. Then
i€l gy £
ay is the orthogonal comlement of az in v(a). We have an orth%gonal direct sum

decomposition of §:

h=(b+axn)+ay . (3)
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As the first step, we claim that the decomposition of H, with respect to the
decomposition (3) is the same as the equation (2). In fact, 5z D0+ax, since [v(b+agy),
v(H )1={0} by

2v =1 .
[ 7, ==
vp=1id, and v(b+a)=Y.

We also have fjDag, since <{v(ty), v(ag))>=0 by

ofm)Ch+ L Qate-o),  v(aR)C 2, @ +e-r) -

ag.
a€((H)) =0

Therefore H)Nfz=b+ay and HNty=a}. In particular,

V-1 H,, (4)

H.= —TiGEZpH Ti(Hri)

because we have
7(Hy)=—v=1  for all yed;

by the definition of 4;;. As a result, we obtain

V=1
H1=HO+ Z 1

r$1"H T'L<Hm> Hrt . ( 5 )

As the second step, we claim that H,+0 in the equation (5) if and only if

either R is of type BC or I'e#+¢. We may assume that H+0. Then there exists
TGF I He-
If R is of type BC, then there is a compact root « such that

a=Ls
o7

In this case, by the equation (4) and a(H,)=0 for all aed., we have

VA |
a(H)=a(~ Hy)= 51~ H)="""2 0,

especially H,+0.

Now suppose that R is of type C. If I'y+#¢, we can take y;el'nr. There ex-
ists a compact root a such that

In this case, by the equation (4),
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a(H ) =a(— Ha)=1(— H) =5V =120,

especially H,#+0. Here we have used the fact

riax)={0},

which follows from the orthogonality of elements in /'. If I'y=¢, then

BH)=B(Ho) +B(—H3)=—~V —1+p(— H,)=0

for all Bed;, by the equation (4) and R,*,z{%(;’p—qu); 1=p,q=r};. On the other

hand

a(H))=a(—H;)=0 for all acd.,

by R.= %(71,—7,,); p#qt. So H,=0. This completes the proof of
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