TSUKUBA J. MATH.
Vol. 10 No. 1 (1986). 121—130

A REMARK ON TILED ORDERS OVER
A LOCAL DEDEKIND DOMAIN

Dedicated to Professor Hisao Tominaga
on his 60th birthday

By

Hisaaki Funita

Let R be a noetherian domain with the quotient ring K. An R-order in the
full #zx#» matrix ring (K). is called tiled if it contains » orthogonal idempotents
(cf. [3]). There are many papers on noetherian ring theory which contain tiled
R-orders as examples. Concerning global dimension, tiled R-orders are studied by
K.L. Fields [1], R.B. Tarsy [10], [11], V.A. Jategaonkar [Z], [3], and K.W. Rog-
genkamp [8], [9].

In [5], B.J. Miiller introduced the concept of links between prime ideals of
Fully Bounded Noetherian (FBN) rings to study localizability of semiprime ideals.
Recently in [6], he initiated a detailed study of the link graph and announced some
results on FBN prime rings of Krull dimension one, especially, with self-injective
dimension one.

In this note, we shall attempt a study on the link graph of tiled orders over
a local Dedekind domain, which are FBN prime rings of Krull dimension one and
have arbitrarily large global dimension (cf. [I], [7] and Example 3.5).

After recalling some definitions and notations, in Section 1, we shall point out
that the link graph coincides with the quiver of orders introduced by A. Wiede-
mann and K.W. Roggenkamp [12].

Confining ourselves to tiled R-orders between (R). and its radical, in Section
2, we shall prove the following.

THEOREM. Let R be a local Dedekind domain with the maximal ideal =R and
the quotient ring K. Let A be a basic tiled R-order between (R)n and (aR)n, Q(A)
the quiver of the R/zR-algebra A=A/(zR)» and M., -, M, the maximal ideals of
A. Then, there is a link from M; to M; if and only if there is an arrow from i
to j in Q(A), or else i is a non-domain and j is a non-range in Q(A).

We shall give some remarks after proving the theorem. We shall add an
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Appendix in which we shall announce global dimension of some special 4, i.e.

’

Q(A) is a tree, of A,-type, a cycle and so on.

1. Preliminaries

Let R be a local Dedekind domain with the maximal ideal =R and the quotient
ring K. Let (K), be the full »x# matrix ring over K and 4 be a tiled R-order
in (K). (i.e, 4 contains » orthogonal primitive idempotents). By virtue of [4,
Lemma 1), we may assume A———(nl”R)C(R)n where 2;;’s are non-negative integers
and 2;=0 for 1=i=<n. Since 4 is a subring of (R),, it holds that

(*-1) Aie+Ar;=2;; for all 1=i, j, k=n.

Since R is a local ring, 4 is semiperfect. Using (*-1), it is easily checked
that /4 is basic if and only if 4 satisfies

(*-2) If i+#j, 4;=0 implies ;0.

In what follows, A=(z"*R) is a basic tiled R-order contained in (R),.

Since A is finitely generated over a local Dedekind domain, 4 is an FBN prime
ring of Krull dimension one.

For 1=k=n, let My=(z"*R)C/A where mu;=1 (if i=j=£k) A; (otherwise).
Then M,,---,M, are the maximal ideals of A.

There exists a /ink from M; to M; (denoted by M, ~> M) if MyN\M;2 MM,
holds (cf. [5, Remark (2), p 236)]).

Let I, I, be ideals of R. Since R is a local Dedekind domain, I, =R, I,==*R
for some integers @,b=0. Then I,D1, if and only if a=<b. We define an order
between ideals of R by I,=<I, if and only if a<b. (The symbol “ =" may not
be confused in the context.) We shall use Max and Min among ideals of R under
the above order.

Put My;=x"%*/R for 1=i, j, k=n. For 1=k, h=n, put
Xin=Max{Mixn, Mjen},
Yin=Min{My, Mipn|1=4=n}.
Then MiN\M;=(Xw) and M;M;=(Yin).

Lemma 1.1. If (k, B+, i), then Xwn=Yin.

Proor. It holds that Mun=Xin=Yuin=Mjix Myxn. If Xin+#Yin, we have
M+ R. Hence k=j. Similarly 4=i.

For 1=i=n, let e; be the matrix in 4 with (i,9)-entry equal to 1 and all others
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0, and put Pi=eid, J;=rad(P;)=e;J, where J=rad(4). P(X) denote a projective
cover of a module X.

We now repeat the (right-handed) definition of the valued quiver of the tiled
R-order given by A. Wiedemann and K.W. Roggenkamp [12]. (The links that we
have been using are right-handed, but is left-handed.)

A valued quiver Q=(Q., O1, d, 7, v) consists of a finite set Q, of vertices and
a finite set Q, of arrows. d and 7 are maps from Q; to Q. such that d(a) is the
domain and 7(a) is the range of an arrow a€(Q,. v is a map from (Q; to non-
negative integers. Forgetting the valuation map » from a valued quiver, we call
it a quiver.

For the tiled R-order /1=(7r'“R)c(R)n, the valued quiver Q(A) of A is defined
by the vertices Q(4)o={1,---,n}, there exists an arrow ae(Q(4);, with d(a)=i,
7r(a)=j if P; is isomorphic to a direct summand of P(J;), and v(a)=2;. In [12],
a procedure is given to construct a tiled R-order A(Q) from a certain valued quiver
Q and it is shown that A=A(Q(4)) [12, §2, Theorem 1].

ProrosiTION 1.2. The link graph between maximal ideals of A coincides with
the quiver of A.

Proor. There is an arrow from i to j in Q(4) & P; is isomorphic to a direct
summand of P(J;)<ejfeide;]e; & X% Y &> M;~~~> M; by Lemma 1.1.

CoroLLARY 1.3. If A has finite global dimension, then all maximal ideals of
A are idempotent.

Proor. It follows from [12, § 1, Lemma 3] that Q(4) has no loops (i.e., there
is no arrows from a vertex to itself). So, by the proposition, M;~+ M;, and
hence M;=M: for all 1=i=x.

ReEMARK. There is a tiled R-order of infinite global dimension with all of
whose maximal ideals are idempotent. See Example 3.4.

An ideal I is eventually idempotent if I™=I™+'=... for some integer m>0.
Of course, there are many tiled R-orders with non-idempotent maximal ideals,
however, we note the following.

ProposiTION 1.4. Let A be the tiled R-order in (R), m=2). Then all maximal
ideals of A are eventually idempotent.

Proor. Fix 1=k=xn. By induction on ¢, define



124 Hisaaki Fujita

{mku =Mkij,
mi} =min{mly, +minj| 1 =h=mn}.

Then it is easily shown that m{;=¢ (if i=j=%k) and =21;; (otherwise). It follows
that M¢=M¢i*'=--., where d=min {Axn+Ank|1=A=n, h+Ek}.

2. The link graph of 4 and the quiver of the factor algebra

Let A=(z"*/R) be a basic tiled R-order between (R), and (zR). (i.e., (R)»DAD
(zR)n). Put Ayj=z"YR, A=A/(zR), and N=rad(A). Then A is a basic R/zR-
algebra. The quiver Q(A) of A is defined by the set of vertices Q(A)o={1,---,n}
and there is an arrow from ¢ to j if

(*'—3) ejNei/eszeHﬁO.

Let /=(/i;) be the Jacobson radical of 4 and B;;=Min {Jix Jxj|1=k=n}. Then (*-3)
is equivalent to /;;/(Bju+=xR)#0. So Q(A) has no loops. It follows from (*-2)
that Q(A) has no oriented cycles. Let 9 (resp. R) denote a subset of Q(A), con-
sisting of non-domains (resp. non-ranges) in Q(A).

Here, we give an example which helps the reader’s understanding of the

theorem.
R 7R =R kK 00
ExampLE 2.1. Let A=|zR R =zR]. Then A={0 k 0|, where k=R/zR.
R R R 0 k k
The quiver Q(A) is given by
1
2—>3.

So 9={1, 3} and R={1, 2}. Thus the link graph is given by

()
/N

LemMmAa 2.2. (1) If deD, then Aju==R for all j+d.
2) If re R, then A.,==R for all i+r.

Proor. (1) For each j+d, since e;Nes/e;N%*eqs=0,
(i) Aja/(Bja+nR)=0.

Assume that Aj,=R for some j#*d. Then by (i), Bja=R. Since B;a=Min {/;, /|
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l=¢=n}, Jj, Jsja=R for some 1=¢,=n. Clearly, Jj,,=/,u=R and j+4,+d.
Hence 4,,6=J;,,a=R, and by (i), B,,=R. Repeating the above argument, we ob-
tain 4o=j, 6, - ,4n (#d) and J,,_,,=R (1=i=n). So ¢n=4x (=4, say) for some
0=Ah<k=n. We get xRDJy,,, - -Js_,.=R, a contradiction. This completes the
proof of (1). Similarly, (2) is proved.

Proor oF THE THEOREM. (=) It follows from Lemma 1.1 that Xj;; £ Y.
Case 1. Xj;;=rnR.
Then Y;;=#*R. It holds that
Miji=iji:7fR lf Z=],
(ii)
Miji=Aj1;:ij7;=ﬂ'R if ]qﬁl

Hence Yj;=Min {M;;x Miy|1=k=n}=Min [{4du|l=k=n, k+i, j}\U{z?R}]1=r’R.
Therefore n*R=Y;=Audx; for 1=k=n, k+i, j. Hence by (ii), Adjx=nR if k+j
and Ax;=znR if k+#i. Thus

exNei/exN®e; = Ayi/(Bri+nR)=rnR/(Bri+7R)=0 if k=i,
ejNex/ejN*er=Aji/(Bjx+nR)=nR/(Bjx+=R)=0 if k#j.
Consequently, ie9 and jeR.
Case 2. X;;=R.
Then Y;=zR. It holds that i=#j, Miji=A;=M;;=R. Observe that
(iii) Biji=Min {Jj Jxi|1=k=n}
=Min {M;x M| 1=k=n}
=Y.

Thus e;Ne;/e;N*e;=A;;/(Bji+rR)=R/xR+0. Hence i— jeQ(A):.
(&) Case 1. ie9 and jeR.

It follows from Lemma 2.2 that Mj;=M;:==R for all k=1,---,n. Hence
X;i=rR<n?R=Y;,. Therefore M;~ M;.

Case 2. There is an arrow from ¢ to j in Q(A).

It holds that i+j, A;/(Bji+nR)+0, so that A;=R and Bj;==R. Since i+#j,
Miji:Aji:iji- Hence inz/qu;:R. By (111), ij;:BjiZTtR>R=Xj,;. Therefore
Mi WV*MJ'.

ReEMARKS. (1) We note the following fact that is shown in the proof; If
M};vvv» Mj and MiﬂMj=(th), then



126 Hisaaki Fujita

{in:ﬂR®i€@ and jG,QQ,
Xj=R i jeQ(A).

(2) In our vein, we note that the link graph of maximal ideals of 4 is con-

nected.

(3) A maximal ideal M; of A is not idempotent if and only if / is an isolated
vertex in Q(A).

(4) Q(A) has full information about /. As for the link graph, there are tiled
R-orders 4,, A, with the same link graph, but Q(A,) is different from (Q(A.) where
Ai=4:/(zR)n (1=1,2).

ExampLE 2.3. Let

R R =R =R ( R R R R
R R 2R =R R R =R zR
Lh=p R R p wWd L= p p R R
R R zR R R R =R R
1 1
Then Q(A;)= 3 4 and Q(A.)= 3 4.
PSS

It follows from the theorem that the link graphs of A, and /, are given by
1
/N
3 | 4
NS
2
ProrosiTiON 2.4. Let A,, A be the tiled R-orders between (R)., and (zR), with

the same link graph and put Ai=A:i/(zR)n (i=1,2). Then Q(A.,) is connected if
and only if Q(A,) is connected.

Proor. Suppose that Q(4,) is disconnected and put Q(A,)=\JcY (disjoint
union) with ¢J connected.

If Uo={mj}, then the link graph has a loop on m. Assume that Q(A.) is con-
nected. Then there exist a non-domain (or non-range) vertex » in €V and an
arrow v —m (or m—v) in Q(A.). Hence the link graph of 4, has no loops on e,

a contradiction. Therefore Q(A.) is disconnected.
Let U, be not a singleton and assume that Q(A:) is connected. Then (i) there

exist a source s, in ¢ and a non-domain d in €V with d —— s,e(Q(A.), or (ii) there
exist a sink s; in U and a non-range 7 in €I with s; — reQ(A»).



A Remark on Tiled Orders Over a Local Dedekind Domain 127

In the case (i), since Q(A:) is connected, there exist a sink x and a path
So—=>---—>x in ((A;). Assume xe€Cl,. Then there is an arrow B in the path
from s, to x such that d(8)eU, and 7(8)eC’s. Then d(p) is a sink in ¢J. Since

So is a range of « in (Q(A.), there must exist an arrow from s to s, in Q(A4,) for
—_—

each sink s in ¢J. Hence (Q(A:) has an oriented cycle s{]—+- . -—>\d(/3), a contradi-
ction. Therefore ze?J,. Similarly, there exist a source ¥ and a path y —>---—d
in Q(A4.) with yeCl’,. Hence there is an arrow x —y in the link graph of /,.
But, since x is not a sink in U, the link graph of /4, has no arrows from z to v,
a contradiction. Similarly, we can deduce a contradiction in the case (ii). There-
fore Q(A.) is disconnected.

3. Appendix: Global dimension of some special /

Let 4 be a basic tiled R-order between (R), and (zR). and put A=A/(zR)..
Before attacking some special cases, we shall note the following proposition whose
proof mainly depends on the infinite global dimensional criterion given by V.A.

Jategaonkar [4].

ProrosiTiON 3.1. If A has finite global dimension, then the quiver Q(A) is
connected.

Proor. Suppose that Q(A) is disconnected. Since there is a permutation
matrix u#e(R), such that

.R % TL'R"'ﬂ'.R

N R ﬂzé-.-nie(
=udu—'= s,
sR---zR R &

zR- 2R + R
we may assume that A=wdu~'. Put M=(R,..--,R)=R" and
M>B,=(R, ---, R,zR, ---, zR)>zM,
M>5B,=(R, ---, 7R, R, ---, R)DzM.

Then B, B;, M are right A-modules and M/zM=B,/atMPB,/=M as right A/zA-
modules. Thus it follows from [4, Lemma 1.7] that proj. dim(M,)=oco, so that
gl. dim A=co.

ProrosiTION 3.2. If Q(A) is a tree, then gl. dim A=3.
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ProoF. Put i-={jeQ(A)ld(@)=j, r(a)=i for some aeQ(A)}, S={jeQ(Alj is
a sink in Q(A)} and L=(R,---,R)=R".
Case 1 (i) i~=¢, S is a singleton.
Let S={j}. Then P;=L. Since J;=(R, - ,sR)=rL=L, proj. dim(J;)=0.
Case 1 (ii) i—=¢, S={s1,--,8} (¢=2).

For a subset ¥ of Q(A),, put FA.(X)={jeQ(A)| there is a path j—---—>z
in Q(A) or j=x for some xeX¥}. Pick up a sink s,. Since Q(A) is connected,
there exist a sink s, outside A.(s;) and j,e %.(s;) such that there is a path
Jji—--+-—s, in Q(A) which branches at the vertex j,. Since Q(A) has no cycles,
such j, is unique. If <#Z.(s:1, s:)*+Q(A),, repeat the above procedure. After some
repetitions, we reach Q(A)o=.F(s1,"-+,s:) with vertices j;,---,ji-1. Then using
canonical maps, we obtain short exact sequences

O-——)le—-—)Psl@P‘gz—)Mg—)O,
OHszéMz@Ps:,—’Ma_‘_’O,

O0—P;, , — M. ®Ps,— M, — 0.

Then proj. dim(M,)=proj. dim(M;-,)="---=proj. dim(M,;)=1 and M,=L. Since
Ji=zL=L, proj. dim(J;)=1.

Case 2 i~ is a singleton.

Let i-={j}. Then J;=P;. Hence proj. dim(/;)=0.

Case 3 (i) i~={ji, -,Ja} (#=2), S is a singleton.

Using canonical maps, we obtain short exact sequences
0—> L — P;, ® Pj,—> N.—0,
0—L— N. @ Pj,—> N; —> 0,

0—>L —> Nues @ Py, —> Nu—0.
Then N,=J;. Hence proj. dim(J;)=proj. dim(L)+1=1.
Case 3 (i) i~={j1, -, jul, S={s1,--+,s} (w, t=2).

As in Case 3 (i), proj. dim(J;)=proj. dim(L)+1=2 from Case 1 (ii).
Therefore gl. dim A=sup {proj. dim(/;)|1=i=n}+1=3.

ReEMARK. It follows from the proof that gl. dim A=2 iff Q(A) has a unique
source or a unique sink. This is a special case of [8, Theorem].
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ExampLE 3.3. Let Q(A) be of A,-type and put m be the number of vertices
at which directions of arrows are changed. Then if m=0, 1,=2, then gl. dim A=
1, 2, 3, respectively.

Proor. This follows from the proof of Prop. 3.2.

ExampLE 3.4. Let Q(A) be a cycle

,L/jl‘..
et .\Z
Zt 1
t !
'f !
I w0

N L

If t=1, =2, then gl. dim 4=2, oo, respectively. It follows from Remark (3) in § 2
that the maximal ideals of 4 are idempotent, while gl. dim A=c0 if #=2.

In [1] and [7], there is an example which is a tiled R-order between (R), and
(zR)» with enough large global dimension. If #=2", then its global dimension is
m. Next one is such an example with smaller #. Calculations of Examples 3.4
and 3.5 are left to the reader.

ExampPLE 3.5. For m=2 and 0=k=m—1, let Q(Ax) be

<« 2 — v e k (_k_{..l(_-‘.

OSSN NN

m+l—m+2 « -+ « m+kem+k+le— - « 2m—1« 2m.

Let 4x be the tiled R-order between (R), and (zR). such that A;=A4;/(xR), where
n=2m. Then A,CAC: - An-2:CAn-, and gl. dim A,=k+3 for 0=k=m—2 and
gl. dim Ay =00

If m=2(3) and £=0(1), then »=4(6) and gl. dim 4,=3(4). It is verified by
computation that 4(6) is the smallest » with global dimension 3(4).
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