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1. Introduction

For the nonparametric hypotheses of symmetry about zero and equality of
distribution functions in one- and two-sample problems, we often consider only
location alternatives. But after treatments are received, we cannot predict enough
that many observations give rise to only variation of location of a distribution.
In fact, Lehmann, in [2], considered three sorts of alternatives which are not the
location alternatives and, in Section 7 A of Chapter 2 of [3], pointed out that the
location alternative may be an oversimplication. So in this paper, we consider
the alternative distribution of the form $(1-\epsilon)F(x-\theta)+\epsilon H(x-\theta)$ for the null dis-
tribution of the form $F(x)$ and discuss asymptotic powers of one- and two-sample
rank tests under contiguous sequences of the above alternatives. When $F(x)$ and
$H(x)$ are symmetric distributions about zero, $\theta$ is the mean and the median of
$(1-\epsilon)F(x-\theta)+\epsilon H(x-\theta)$ . Then it follows that we test whether the mean equals
zero or not in the one-sample case and the difference of the two means of the
two-sample case.

In Section 2, we shall state the one-sample case and will show that asymptotic
relative efficiencies (ARE’s) of signed rank tests with respect to the t-test are
equivalent to the classical ARE-results against shift alternatives for the distribu-
tion $H(x)$ that is symmetric about zero and that ARE of the signed rank test
based on normal scores with respect to the t-test is one for $F(x)=normal$ irre-
spective of $H(x)$ and that the Wilcoxon signed rank test is asymptotically most
powerful for $F(x)=logistic$ and $H(x)=\{F(x)\}^{2}$ . In Section 3, we shall give results
of the two-sample case similar to some results obtained in Section 2 and will
discuss asymptotic powers of k-sample rank tests additionally.
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2. One-sampe problem.

Let $X_{1},$
$\cdots,$

$X_{n}$ be independent and identically distributed with continuous
distribution function $F_{1}(x)$ . We consider the testing problem of the null hypo-

thesis $H_{0}$ : $F_{1}(x)=F(x)$ versus the alternative $K:F_{1}(x)=(1-\epsilon)F(x-\theta)+\epsilon H(x-\theta)$ ,

where $F(x)$ has density $f(x)$ that is symmetric about zero and $H(x)$ is absolutely
continuous and $\epsilon>0$ and $\theta\neq 0$ . Further assume that there exists a distribution
function $G(u)$ on $[0,1]$ such that $H(x-\theta)=G(F(x-\theta))$ fer all $x$ . In order to derive
asymptotic powers of signed rank tests, the student t-test and the most powerful
test, we consider the following sequence of alternatives included in $K$ which is
converging to the null hypothesis $H_{0}$ .

(2. 1) $K_{n}$ : $F_{1}(x)=(1-\lambda/\sqrt{n})F(x-\Delta/\sqrt{n})+(\lambda/\sqrt{n})G(F(x-\Delta/\sqrt{n}))$

where $\lambda>0$ and $\Delta\neq 0$ . The joint density functions of $(X_{1}, \cdots, X_{n})$ under $H_{0}$ and
under $K_{n}$ are respectively given by

(2. 2) $p_{n}(x)=\prod_{i=1}^{n}f(x_{i})$ and

(3. 3) $q_{n}(x)$

$=\prod_{i=1}^{n}\{(1-\lambda/\sqrt{n})f(x_{i}-\Delta/\sqrt{n})+(\lambda/\sqrt{n})g(F(x_{i}-\Delta/\sqrt{n}))f(x_{i}-\Delta/\sqrt{n})\}$ .

where $g(u)=G^{\prime}(u)$ .
We shall set Assumptions (1) and will prove the contiguity introduced by VI. 1
of H\’ajek and $Sid\acute{a}k\forall[1\rfloor$ .

ASSUMPTIONS (1)

(i) $f(x)$ has positive and finite Fisher’s information $I(f)=\int_{-\infty}^{\infty}\{f^{\prime}(x)/f(x)\}^{2}f(x)dx$ .
(ii) $g(u)$ is bounded.

(iii) $\lim_{\theta\rightarrow 0}\int_{-\infty}^{\infty}[\{g(F(x-\theta))-g(F(x))\}/\theta]f(x)dx=-\int_{-\infty}^{\infty}g^{\prime}(F(x))\{f(x)\}^{2}dx$ .

(iv) $\int_{-\infty}^{\infty}g^{\prime}(F(x))\{f(x)\}^{2}dx=-\int_{-\infty}^{\infty}g(F(x))f^{\prime}(x)dx$ .

Then lemma 2. 1 and the equation (2.10) of Shiraishi [4] show the following
Lemma 2. 1.

LEMMA 2.1. Suppose that Assumptions (1) are satisfied. Then we get, as $n$

tends to infinity, under $H_{0}$ ,

(2. 4) $|\log\{q_{n}(X)/p_{n}(X)\}-(1/\sqrt{n})\sum_{i=1}^{n}[\lambda\{g(F(X_{i}))-1\}-\Delta f^{\prime}(X_{i})/f(X_{i})]$

$+(1/2)$ [ $\lambda^{2}$ Var $\{g(F(X_{1}))\}+\Delta^{2}I(f)$] $+\lambda\Delta E\{g^{\prime}(FtX_{1})f(X_{1})\}|0\vec{P}$
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where $p_{n}(x)$ and $q_{n}(x)$ are respectively defined by (2.2) and (2.3) and $\vec{}^{P}$ de-

notes convergence in probability. Moreover the family of densities $\{q_{n}(x)\}$ is $con$ .

tiguous to $\{p_{n}(x)\}$ .
Taking the absolute values of observations, Let $R_{i}^{+}$ be the rank of $|X_{i}|$ among

the values $\{|X_{i}| : i=1, \cdots, n\}$ and let $a_{n}(\cdot)$ be a mapping from $\{1, \cdots, n\}$ to real
values. Further define sign(X) $=1$ for $X>0,0$ for $X=0$ and $-1$ otherwise. Then
we can describe the signed rank test statistic as

$S=\sum_{i=1}^{n}\{sign(X_{i})\}a_{n}(R_{i^{+}})/\sqrt{\sum_{k1}^{n}\{a_{n}(k)\}^{2}}\overline{-}$

THEOREM 2. 2. Suppose that there exists square integrable function $\phi(u)$ such
that $\int_{0}^{1}\{\varphi(u)\}^{2}du>0$ and

(2. 5) $\lim_{n\rightarrow\infty}\int_{0}^{1}\{a_{n}(1+[un])-\varphi(u)\}^{2}du=0$

with [un] being the largest integer not exceeding $un$ and that Assumptions (1)

are satisfied. Then the signed rank test statistic $S$ has asymptotically a normal
distribution with mean $\nu$ and variance 1 under $K_{n}$ as $n$ tends to infinity, where

$\nu=\int_{-\infty}^{\infty}\{\lambda g(F(t))f(t)-\Delta f^{\prime}(t)\}\{sign(t)\}\varphi(2F(|t|)-1)dt$ .

PROOF. Set $T=(1/\sqrt{n})\sum_{i\Leftarrow 1}^{n}\{sign(X_{i})\}\varphi(2F(|X_{i}|)-1)$ . Then from the central

limit theorem, $((1/\sqrt{n})\sum_{i=1}^{n}[\lambda\{g(F(X_{i}))-1\}-\Delta f^{\prime}(X_{i})/f(X_{i})], T)^{\prime}$ , under $\{p_{n}(x)\}$ has
asymptotically a bivariate normal distribution with mean zero vector and convar-
iance matrix

(2. 6) $\Sigma=\left(\begin{array}{ll}\sigma_{0}^{2}, & \sigma_{12}\\\sigma_{12}, & \sigma_{2}^{2}\end{array}\right)$

where

(2. 7) $\sigma_{0}^{2}=\lambda^{2}$ Var $\{g(F(X_{1}))\}+\Delta^{2}I(f)-2\lambda\Delta E\{g^{\prime}(F(X_{1}))f(X_{1})\}$ ,

(2. 8) $\sigma_{12}=\int_{-\infty}^{\infty}\{\lambda g(F(x))f(x)-\Delta f^{\prime}(x)\}\{sign(x)\}\varphi(2F(|x|)-1)dx$

and $\sigma_{2}^{2}=\int_{-\infty}^{\infty}\{\varphi(2F(|x|)-1)\}^{2}f(x)dx$ . Also if we set $S_{1}=\sqrt{\sum_{k=1}^{n}\{a_{n}(k)\}^{2}/n}\cdot S$ , by the

proof of V. 1.7 theorem of H\’ajek and \v{S}id\’ak [1], we get

(2. 9) $S_{1}-T0\vec{P}$

Hence combining (2.9) with (2.4), we get, under $\{p_{n}(x)\}$ ,

$(\log\{q_{n}(X)/p_{n}(X)\}, S_{1})^{\prime}N((-\sigma_{0}^{2}/2.0)^{\prime}\vec{L}\Sigma)$ ,

where $\vec{}^{L}$ denotes convergence in law and $\sigma_{0}^{2}$ and $\Sigma$ are respectively defind by
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(2.7) and (2.6). From LeCam’s third lemma stated in VI. 1.4 lemma of Hajek

and $\check{S}id\acute{a}k[1],$
$S_{1}\vec{L}N(\sigma_{12}, \sigma_{2}^{2})$ . As V. 1.7 theorem of H\’ajek and 8id\’ak [1] shows

$\lim_{n\rightarrow\infty}[n\int_{0^{1}}\{\varphi(u)\}^{2}du/\sum_{k=1}^{n}\{a_{n}(k)\}^{2}=1$ , we get the result.

Further we get the following theorem for the parametric t-test based on

$U=\sqrt{n(n-}1)\overline{X}/\sqrt{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}$ where $\overline{X}=\sum_{i=1}^{n}X_{i}/n$ .

THEOREM 2.3. Suppose that Assumptions (1) are satisfied. Then $U$ has
asymptotically a normal distribution with mean $\nu^{\prime}$ and variance 1 under $\{q_{n}(x)\}$ ,

where

$\sigma^{2}=\int_{-\infty}^{\infty}x^{2}f(x)dx$ and $\nu^{\prime}=\int_{-}^{\infty_{\infty}}\{\lambda g(F(x))f(x)-\Delta f^{\prime}(x)\}xdx/\sigma$ .

PROOF. From the way similar to the proof of Theorem 2. 4, we find that
$(\log\{q_{n}(X)/p_{n}(X)\}, U)^{\prime}$ has asymptotically a bivariate normal distribution with

mean $(-\sigma_{0}^{2}/2,0)^{\prime}$ and covariance matrix $\left(\begin{array}{ll}\sigma_{0}^{2}, & \nu^{\prime}\\\nu, & 1\end{array}\right)$ under $\{p_{n}(x)\}$ , where di is de-
fined by (2.7).

Hence LeCam’s third lemma shows the result.
The square of the ratio of the asymptotic mean stated in Theorem 2. 2 to the

one stated in Theorem 2. 3 gives the asymptotic relative efficiency of $S$ with re-
spect to $U$.

COROLLARY 2. 4. If the assumptions of Theorem 2. 2 are satisfied, the asymp-
totic relative efficiency of the signed rank test based on $S$ with respect to the t-
test based on $U$ for $H_{0}$ versus $K_{n}$ is given by

ARE $(S, U)=\sigma^{2}[\int_{-\infty}^{\infty}\{\lambda g(F(x))f(x)-\Delta f^{\prime}(x)\}\{sign(x)\}\varphi(2F(|x|)-1)dx]^{2}$

$/([\int_{-\infty}^{\infty}\{\lambda g(F(x))f(x)-\Delta f^{\prime}(x)\}xdx]^{2}\int_{0}^{1}\{\varphi(u)\}^{2}du)$ .

Further if $g(F(x))f(x)$ is a symmetric density function about $0$ , we get

ARE $(S, U)=\sigma^{2}[\int_{-\infty}^{\infty}f^{\prime}(x)$ {sign $(x)$ } $\varphi(2F(|x|)-1)dx]^{2}$

$/[\{\int_{-\infty}^{\infty}f^{\prime}(x)xdx\}^{2}\int_{0}^{1}\{\varphi(u)\}^{2}du]$ .

$\varphi(u)s$ satisfying (2.5) for $a_{n}(k)=k/(n+1)$ (Wilcoxon-type) and $E|Z_{n}|^{(k)}$ (normal

scores) are respectively equal to $u$ and $\Phi^{-1}(u/2+1/2)$ , where $\Phi(x)$ is the standard
normal distribution function.

If $F(x)$ is nomal and $a_{n}(k)$ is the normal scores function, we get ARE$(S, U)$
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$=1$ without assuming that $q(F(x))f(x)$ is a symmetric function about $0$ . The
values of ARE $(S, U)$ are equal to the classical ARE-results against shift alterna-
tives for density $g(F(x))f(x)$ which is symmetric about $0$ , for instance, ARE $(S$ ,

$ U)=3/\pi$ for $F(x)=normal$ and $a_{n}(k)=k/(n+1)$ .

COROLLARY 2. 5. Assume that $G(u)=u^{2}$ and $\lambda+\Delta>0$ and $F(x)$ is a logistic dis-
tribution function. Then the one-sided Wilcoxon signed rank test is asymptotical-
ly most powerful for $H_{0}$ versus $K_{n}$ as $n$ tends to infinity.

PROOF. The assumptions and (2.4) show that

$\log\{q_{n}(X)/p_{n}(X)\}\vec{L}N(-(\lambda+\Delta)^{2}/6, (\lambda+\Delta)^{2}/3)$ under $\{p_{n}(x)\}$ .

Using LeCam’s third lemma, the asymptotic power of the most powerful
test of level $\alpha$ based on $\log\{q_{n}(X)/p_{n}(X)\}$ is given by

(2. 10) $1-\Phi(s_{\alpha}-(\lambda+\Delta)/\sqrt{3})$ ,

where $s_{\alpha}$ is the upper $ 100\alpha$ percentage point of the standard normal distribution.
Further from Theorem 2. 2, the asymptotic power of the Wilcoxon signed rank
test is given by (2. 10). Hence the result follows.

Corollary 2. 5 shows that the Wilcoxon signed rank test is asymptotically
admissible for logistic distribution $F(x)$ and unknown distributon $G(u)$ .

3. Two-sample problem.

In this section, we shall give some results similar to the one-sample problem.
Throughout this section, we shall use the same notations as in section 2. Let
$X_{11},$

$\cdots,$ $X_{\iota n_{1}},$ $X_{21},$
$\cdots,$ $X_{2n_{2}}$ be independent random variables and suppose that the

distribution of $X_{ij}$ is given by a cotinuous distribution function $F_{i}(x)$ for $i=1,2$

and $j=1,$ $\cdots,$ $n_{i}$ . Let $N=n_{1}+n_{2}$ be the size of the pooled sample and consider
the testing problem of the null hypothesis $H_{0}$ : $F_{1}(x)=F_{2}(x)=F(x)$ versus the alter-
native $K:F_{i}(x)=(1-\epsilon_{i})F(x-\theta_{i})+\epsilon_{i}G(F(x-\theta_{i}))(i=1,2)$ , where $\epsilon_{1},$

$\epsilon_{2}\geqq 0$ and $\theta_{1}\neq\theta_{2}$ .
In order to compare asymptotic powers of two-sample rank tests and a t-test, we
consider the following sequence of alternatives included in $K$ which is converging
to the null hypothesis $H_{0}$ .

(3. 1) $K_{N}$ : $F_{i}(x)=(1-\lambda_{i}/\sqrt{N})F(x-\Delta_{i}/\sqrt{N})+(\lambda_{i}/\sqrt{N})G(F(x-\Delta_{i}/\sqrt{N}))(i=1,2)$ ,

where $\lambda_{1},$ $\lambda_{2}\geqq 0$ and $\Delta_{1}\neq\Delta_{2}$ .
The joint density functions of $(X_{11}, \cdots, X_{1n_{1}}, X_{21}, \cdots, X_{2n_{2}})$ under $H_{0}$ and under
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$K_{N}$ are respectively given by

(3. 2) $p_{N}(x)=\prod_{i\Leftarrow 1}^{2}\prod_{j\Leftarrow 1}^{ni}f(x_{ij})$ and

(3. 3) $q_{N}(x)=\prod_{i=1}^{2}\prod_{j=1}^{ni}\{(1-\lambda_{i}/\sqrt{N})f(x_{ik}-\Delta_{i}/\sqrt{N})$

$+(\lambda_{i}/\sqrt{N})g(F(x_{ij}-\Delta_{i}/\sqrt{N}))f(x_{ij}-\Delta_{i}/\sqrt{N})\}$ ,

where $f(x)=F^{\prime}(x)$ and $g(u)=G^{\prime}(u)$ .
We get Lemma 3. 1 from the argument similar to that of Lemma 2. 1.

LEMMA 3. 1. Assume that Assumptions (1) stated in Section 2 and $\lim_{N\rightarrow\infty}(n_{1}/N)$

$=\alpha(0<\alpha<1)$ and $E\{f^{\prime}(X)/f(X)\}=0$ are satisfied, where random variable $X$ has
the distribution function $F(x)$ . Then as $N$ tends to infinity, we get

(3. 4) $|\log\{q_{N}(X)/p_{N}(X)\}-(1/\sqrt{N})\Sigma^{2}\Sigma^{i}^{n}[\lambda_{i}\{g(F(X_{ij}))-1\}-\Delta_{i}f^{\prime}(X_{lf})/f(X_{ij})]$

$i\Leftrightarrow 1j\Leftarrow 1$

$+(1/2)\{\alpha\lambda_{1}^{2}+(1-\alpha)\lambda_{2}^{2}\}$ Var $\{g(F(X))\}+\{\alpha\lambda_{1}\Delta_{1}+(1-\alpha)\lambda_{2}\Delta_{2}\}E\{g^{\prime}(FtX))f(X)\}$

$+(1/2)\{\alpha\Delta_{1}^{2}+(1-\alpha)\Delta_{2}^{2}\}I(f)|0\vec{P}$

where $p_{N}(x)$ and $q_{N}(x)$ are respectively defined by (3.2) and (3. 3).

Moreover the family of densities $\{q_{N}(x)\}$ is contiguous to $\{p_{N}(x)\}$ .

Let $R_{2j}$ be the rank of $X_{2j}$ among the pooled sample $\{X_{ij} : i=1,2, j=1, \cdots, n_{i}\}$

and let $b_{N}(\cdot)$ be a mapping from $\{1, \cdots, N\}$ to real values. Then the two-sample
rank test statistic is given by

(3. 5) $S=\{\sum_{j-1}^{n_{2}}b_{N}(R_{2j})-n_{2}\overline{b}_{N}\}/\sqrt{[n_{1}n_{2}/\{N(N-1)\}]\sum_{k-1}^{N}\{b_{N}(k)-\tilde{b}_{N}\}^{2}}$

where $\tilde{b}_{N}=\sum_{k-1}^{N}b_{N}(k)/N$ .

THEOREM 3. 2. Assume that, for some square integrable function $\psi(u)$ such that

$\int_{0}^{1}\{\psi(u)-\int_{0}^{1}\psi(v)dv\}^{2}du>0$ ,

(3. 6) $\lim_{N\rightarrow\infty}\int_{0}^{1}\{b_{N}(1+[uN])-\psi(u)\}^{2}du=0$

holds. Further suppose that the assumptions of Lemma 3. 1 are satisfied. Then
the two-sample rank statistic $S$ has asymptotically a normal distribution with
mean $\nu$ and variance 1 under $\{q_{N}(x)\}$ , where randam variable $X$ has the distribu-
tion function $F(x)$ and

(3. 7) $\nu=\sqrt{\alpha(1-\alpha)}$COV $\{\psi(FtX))$ ,
$(\lambda_{2}-\lambda_{1})g(F(X))-(\Delta_{2}-\Delta_{1})f^{\prime}(X)/f(X)\}/\sqrt{Var\{\psi(F(X))\}}$.
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PROOF. If we set

$T=\sqrt{N/(n_{1}n_{2}})(-(n_{2}/N)\sum_{j=1}^{n_{1}}[\psi(F(X_{1j}))-E\{\psi(F(X))\}]$

$+(1-n_{2}/N)\sum_{j=1}^{n_{2}}[\psi(F(X_{2j}))-E\{\psi(F(X)\}])/$ Var $\{\psi(F(X))\}$ ,

from V. 1. 5 theorem a and V. 1. 6 theorem a of H\’ajek and \v{S}id\’ak [1], we get

$S-T0\vec{P}$ under $\{p_{N}(x)\}$ . Further it follows that $(\log\{q_{N}(X)/p_{N}(X)\}, T)^{\prime}$ has

asymptotically a bivariate normal distribution with mean $(-\sigma_{0}^{2},0)^{\prime}$ and covariance
matrix $\left(\begin{array}{ll}\sigma_{0}^{2}, & \nu\\\nu, & 1\end{array}\right)where$ ,

(3. 8) $\sigma_{0}^{2}=\{\alpha\lambda_{1}^{2}+(1-\alpha)\lambda_{2}^{2}\}$ Var $\{g(F(X))\}+\{\alpha\Delta_{1}^{2}+(-\alpha)\Delta_{2}^{2}\}I(f)$

$+2\{\alpha\lambda_{1}\Delta_{1}+(1-\alpha)\lambda_{2}\Delta_{2}\}E\{g^{\prime}(F(X))f(X)\}$ .

Hence LeCam’s third lemma shows the result.
Next we derive the asymptotic distribution of the two-sample t-test based on

$U=\sqrt{}\overline{n_{1}n_{2}(N-1)/N}(\hat{X}_{2}.-\hat{X}_{1})/\sqrt{\sum^{2n}\sum^{i}(X_{ij}-\hat{X}_{i})^{2}}i=1j=1$ where $\hat{X}_{i}\cdot=\sum_{j=1}^{n_{l}}X_{ij}/n_{i}(i=1,2)$ .

THEOREM 3. 3. If the assumptions of Lemma 3. 1 are satisfied, the two-sample

t-test statistic $U$ has asymptotically a normal distribution with mean $\nu^{\prime}$ and vari-
ance 1 under $\{q_{N}(x)\}$ , where

(3. 9) $\nu^{\prime}=\sqrt{\alpha(1-\alpha)}/Var(X)$ Cov {X, $(\lambda_{2}-\lambda_{1})g(F(X))-(\Delta_{2}-\Delta_{1})f^{\prime}(X)/f(X)$ }.

PROOF. $(\log\{q_{N}(X)/p_{N}(X)\}, U)^{\prime}$ has asymptotically a bivariate normal distribu-

tion with mean $(-\sigma_{0}^{2}/2,0)^{\prime}$ and covariance matrix $\left(\begin{array}{ll}\sigma_{0}^{2}, & \nu^{\prime}\\\nu^{\prime}, & 1\end{array}\right)$ under $\{p_{N}(x)\}$ . Le-

Cam’s third lemma shows the result.
The square of the ratio of the asymptotic mean (3.7) stated in Theorem 3. 2

to (3.9) in Theorem 3.3 gives the asymptotic relative efficiency of the rank test
with respect to the t-test.

COROLLARY 3.4. If the assumptions of Theorem 3.2 are satisfied, the asym-
ptotic relative efficiency of the rank test based on $S$ with respect to the two-
sample t-test based on $U$ for $H_{0}$ versus $K_{N}$ is given by

ARE $(S, U)=Var(X)$ [COV $\{\psi(F(X)),$ $(\lambda_{2}-\lambda_{1})g(F(X))$

$-(\Delta_{2}-\Delta_{1})f^{\prime}(X)/f(X)\}]^{2}/(Var\{\psi(F(X))\}$

$\times Cov\{X,(\lambda_{2}-\lambda_{1})g(F(X))-(\Delta_{2}-\Delta_{1})f^{\prime}(X)/f(X)\}]^{2})$ .
Further assume that

(3. 10) COV $\{\psi(F(X)), g(F(X))\}=Cov\{X, g(F(X))\}=0$ ,
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then values of ARE $(S, U)$ are equal to the classical ARE-results against shift
alternatives.

$\psi(u)s$ satisfying (3.6) for $b_{N}(k)=2k/(N+1)-1$ (Wilcoxon type), $E(Z^{(k)})$ (normal

score) and sign $\{2k/(N+1)-1\}$ (sign score) are respectively equal to $2u-1,$ $\Phi^{-1}(u)$

and sign $(2u-1)$ . If $f(x)$ and $q(F(x))f(x)$ are symmetric about $E(X)$ , it follows
that (3.9) is satisfied for these $\psi^{(}u$ ) $s$ . Also we find that ARE $(S, U)=1$ for $b_{N}(k)$

$=E(Z^{(k)})$ and $F(x)=normal$ without assuming (3. 10). Though Corollary 2. 5 shows
that the Wilcoxon signed rank test is asymptotically most powerful against a
specified alternative, there exists no rank test that is asymptotically most powerful
against a specified alternative for $\lambda_{1}\neq\lambda_{2}$ in the two-sample problem.

Additionally we shall investigate the case of the k-sample problem. Let
$\{X_{ij} : i=1, \cdots, k, j=1, \cdots, n_{i}\}$ be independent random variables and suppose that
the distribution of $X_{ij}$ is given by continuous distribution function $F_{i}(x)$ for $i$

$=1,$ $\cdots,$
$k$ and $j=1,$ $\cdots,$ $n_{i}$ . Let $N=\sum_{i=1}^{k}n_{i}$ and consider the testing problem $H_{0}^{\prime}$ :

$F_{i}(x)=F(x)(i=1, \cdots, k)$ . Further let a sequence of alternatives be defined by

$K_{N}^{\prime}$ : $F_{i}(x)=(1-\lambda_{i}/\sqrt{N})F(x-\Delta_{i}/\sqrt{N})+(\lambda_{i}/\sqrt{N})G(F(x-\Delta_{i}/\sqrt{N}))$ $(i=1, \cdots, k)$

where $\lambda_{i}\geqq 0$ and there exist $i$ and $j$ satisfying $\Delta_{i}\neq\Delta_{j}$ . Setting $R_{ij}=rank$ of $X_{ij}$ ,

the Kruskal-Wallis type rank test statistic is expressed as

$S^{\prime}=\{(N-1)/\sum_{k=1}^{N}(b_{N}(k)-\tilde{b})^{2}\}\sum_{i=1}^{k}n_{i}\{\overline{b}_{N}(R_{i})-\overline{b}\}^{2}$ ,

where $\overline{b}_{N}(R_{i})=\sum_{j=1}^{n_{i}}b_{N}(R_{ij})/n_{i}$ and $\overline{b}=\sum_{k=1}^{N}b_{N}(k)/N$ .

We give some results corresponding to Theorem 3. 2 and Corollary 3.4 of
the two-sample case.

THEOREM 3. 5. Suppose that $\lim_{N\rightarrow\infty}(n_{i}/N)=\alpha_{i}$ and $\alpha_{i}>0$ for $i=1,$ $\cdots,$
$k$ , the as-

sumption of Lemma 3. 1 and the assumption of Theorem 3. 2 for $b_{N}(\cdot)$ are
satified. Then the Kruskal-Wallis type rank test statistic $S^{\prime}$ has asymptotically
a noncentral $\chi$-square distribution with $k-1$ degrees of freedom and noncentrality
parameter

$\sum_{i\Leftarrow 1}^{k}\alpha_{i}[Cov\{\psi(F(X)), (\lambda_{i}-\sum_{l=1}^{k}\alpha_{l}\lambda_{l})g(F(X))-(\Delta_{i}-\sum_{l=1}^{k}\alpha_{l}\Delta_{l})f^{\prime}(X)/f(X)\}]^{2}/Var\{\psi(F(X))\}$

under $K_{N}^{\prime}$ as $N$ tends to infinity, where the random variable $X$ has the distribu-
tion function $F(x)$ , and the asymptotic relative efficiency of the test based on $S^{\prime}$

with respect to the F-test is given by
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ARE ( $S^{\prime}$ , F-test) $=Var(X)\sum_{i=1}^{k}$ [COV $\{\psi(F(X)),$ $(\lambda_{i}-\sum_{l=1}^{k}\alpha_{l}\Delta_{l})g(F(X))$

$-(\Delta_{i}-\sum_{l=1}^{k}\alpha_{l}\Delta_{l})f^{\prime}(X)/f(X)\}]^{2}/(Var\{\psi(F(X))\}\sum_{i=1}^{k}\alpha_{i}$ [COV {X, $(\lambda_{i}-\sum_{l=1}^{k}\alpha_{l}\lambda_{l})g(F(X))$

$-(\Delta_{i}-\sum_{l=1}^{k}\alpha_{l}\Delta_{l})f^{\prime}(X)/f(X)\}]^{2})$ .

Further assume that $Cov\{\psi(F(X)), g(F(X))\}=Cov\{X, g(F(X))\}=0$ , that the values
of ARE ( $S^{\prime}$ , F-test) are equal to the classical ARE-results against shift alternatives.

If $b_{N}(k)$ is normal score and $F(x)$ is normal, ARE( $S^{\prime}$ , F-test) $=1$ irrespective of
$G(u)$ .
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