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SCALENE METRIC SPACES

By

Hisao KATO

Abstract. In this paper, we introduce the notion of scalene metric and study

it. In particular, we prove that a compactum with scalene metric is an AR and
a locally compact space with locally scalene metric is an ANR. Also, we show
that scalene metric subsets of a metric space play important roles as convex sub-
sets of a Banach space in some selection theorems, and the notion of scalene
metric gives another aspect which differs from that of E. Michael with respect to
the constructions of selections ([6], [7], [8] and [9]).

0. Introduction.

A compactum is a compact metric space and a connected compactum is a
continuum. It is well-known that a continuum is locally connected if and only if

it has a convex metric. Natually, the following problem is raised: Is there a
metric characterization of an absolute retract, $i$ . $e.$ , AR or absolute neighborhood
retract, $i$ . $e.$ , ANR? In this paper, we consider the following problem: Which
metric implies AR or ANR?

A metric $\rho$ on a space $X$ is said to be a scalene metric provided that if $a,$
$b$

are different points of $X$, then there is a point $c$ of $X$ such that for each $x\in X$,

either $\rho(x, a)>\rho(x, c)$ or $\rho(x, b)>\rho(x, c)$ holds. Scalene metric spaces are general-
ization of convex subsets in the Hilbert space $l_{2}$ . In fact, take two points $a,$

$b$ of
a convex subset $X$ in $l_{2}$ . Choose a point $c\in\{x|x=(1-t)a+tb, 0<t<1\}\subset X$ Clearly,
$c$ satisfies the desired property. A metric $\rho$ on a space $X$ is said to be a locally

scalene metric provided that for each point $x$ of $X$ there is a neighborhood $U$ of
$x$ in $X$ such that the restriction $\rho U$ of $\rho$ to $U$ is a scalene metric.

We study some properties of scalene metrics and locally scalene metrics. In
particular, we prove that if a compactum has a scalene metric, then it is an AR.
Moreover, if a locally compact space has a locally scalene metric, then it is an
ANR. But the converse assertions are not true. Also, by using the notion of
scalene metric, we investigate some selection theorems from another aspect which
differs from that of E. Michael ([6], [7], [8] and [9]).
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In [8, $(8.1)1$ , Michael proved the following theorem.

THEOREM (E. Michael). Let $X$ be a topological space, $Y$ a Banach space, and
$F(Y)$ the family of non-empty, closed, convex subsets of Y. If $\varphi;X\rightarrow F(Y)$ is con-
tinuous, then it admits a continuous selection.

In the statement of the above theorem, we show that the family $F(Y)$ of
non-empty, closed convex subsets of a Banach space $Y$ is replaced by the family
$S(Y)$ of non-empty, compact scalene metric subsets of a metric space $Y$.

The author wishes to thank the referee for helpful comments.

1. Notations and preliminaries.

Let $X$ be a matric space with metric $\rho$ For any subsets $A$ and $B$ of $X$, let
$\rho(A, B)=\inf\{\rho(a, b\}|a\in A,$ $b\in B$}. Also, let $H_{\rho}(A, B)=\max\{\sup_{a\in A}\rho(a, B), \sup_{b_{c}^{\prime}B}\rho(b, A)\}$ .
$H_{\rho}$ is called the Hausdorff metric. The hyperspace $2^{x}=\{A\subset X|A$ is non-empty
and compact} is metrized with $H_{\rho}$ . It is well-known that $X$ is a locally connected
continuum if and only if $2^{x}$ is an AR [10]. Moreover, it was proved that $2^{X}$ is
homeomorphic to the Hilbert cube $Q=[-1,1]^{\infty}[2]$ . Let $a,$ $b\in X$. We define the set
$I_{\rho}(a, b)$ as follows: If $a=b,$ $l_{\rho}(a, b)=\{a\}$ and if $a\neq b,$ $I_{\rho}(a, b)=\{c\in X|\max\{\rho(x, a)$ ,
$\rho(x, b)\}>\rho(x, c)$ for each $x\in X$ }. Note that $\rho$ is a scalene metric if and only if for
any $a,$ $ b\in Xl_{\rho}(a, b)\neq\psi$ . A function $\varphi:Y\rightarrow 2^{x}$ is lower semi-continuous if $\{y\in Y|\varphi(y)$

$\cap V\neq\phi\}$ is open in $Y$ for each open subset $V$ of $X$. A function $\varphi:Y\rightarrow 2^{X}$ is upper
semi-continuous if $\{y\in Y|\varphi(y)\subset V\}$ is open in $Y$ for each open subset $V$ of $X$ A
function $\varphi:Y\rightarrow 2^{X}$ is continuous if $\varphi$ is lower semi-continuous and upper semi-
continuous. A continuous selection for $\varphi:Y\rightarrow 2^{x}$ is a continuous function $s:Y\rightarrow X$

such that $s(y)\in\varphi(y)$ for each $y\in Y$.

2. Examples of scalene metric spaces.

In this section, we give several examples in order to clarify the definition of
scalene metric.

(2.1) EXAMPLE. Let $X$ be a dendrite, $i.e.$ , l-dimensional compact AR, and let
$p\in X$. For $y,$ $z\in X$, let $y\leqq pz$ mean $y$ lies on the unique arc in $X$ from $p$ to $z$ .
Then $(X,$ $\leqq_{p})$ is a partially ordered space, and hence $X$ has a metric $d$ which is
radially convex with respect to $\leqq_{p}$ . Define a metric $\rho$ on $X$ as follows [3, (2.16)]:

Let $y,$ $z\in X$ and let $y\wedge z$ denote the last point with respect to $\leqq_{p}$ where the arc
from $p$ to $y$ intersects the arc from $p$ to $z$ . Set

$\rho(y, z)=d(y, y\wedge z)+d(y\wedge z, z)$ .
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Then $\rho$ is a scalene metric.

(2.2) EXAMPLE. Let $P$ be a l-dimensional locally finite polyhedron with tri-
angulation $T$. For any points $x,$ $y$ of $P$ which belong to l-simplex $\langle v_{0}, v_{1}\rangle\in T$, de-
fine $d(x, y)=|t-t^{\prime}|$ , where $x=tv_{0}+(1-t)v_{1},$ $y=t^{\prime}v_{0}+(1-t^{\prime})v_{1}$ . If points $y,$ $z$ belong

to a component of $P$, we define

$\rho(y, z)=\inf\{\sum_{i\approx 0}^{m}d(x_{i}, x_{i+1})|x_{0}=y,$ $x_{m\vdash 1}=z,$ $x_{i}(1\leqq i\leqq m)$ is a vertex of $T$ and

each successive points $x_{i},$ $x_{i+1}$ belongs to l-simplex of $T\}$ .

0therwise we define $\rho(y, z)=1$ . Then for each $x\in P,$
$\rho_{B}$ is a scalene metric,

where $B=\{y\in P|\rho(x, y)\leqq 1/2\}$ . Hence $P$ has a locally scalene metric $\rho$ .

(2.3) EXAMPLE. A scalene metric is not always convex. Recall that a metric
$d$ on $X$ is convex if for any two points $x$ and $y$ of $X$ there is a point $z$ of $X$ such

that $d(x, z)=d(z, y)=1/2\cdot d(x, y)$ . In the plane $E^{2}$ with Euclidean metric $\rho$ , con-
sider the set $S=\{(x, y)\in E^{2}|x^{2}+y^{2}=1, y\geqq 0\}$ . Clearly $\rho s$ is scalene but convex.

3. Compact scalene metric spaces are ARs.

In this section, we study scalene or locally scalene metric spaces. In parti-
cular, we prove that a compactum with scalene metric is an AR and a locally

compact space with locally scalene metric is an ANR.

(3.1) LEMMA. Suppose that $X$ has a scalene metric $\rho$ Let $a,$ $b\in X$ and $a\neq b$ .
$lfc\in l_{\rho}(a, b)$ , then $\rho(a, b)>\rho(a, c)>0$ and $\rho(a, b)>\rho(b, c)>0$ .

This follows immediately from the definition of scalene metric.

(3.2) LEMMA. If $X$ has a scalene metric $\rho$ , then for each $x\in X$ and $t>0\rho_{B}$

is a scalene metric, where $B=\{y\in X|\rho(x, y)\leqq t\}$ . Furthermore, for any points $a,$ $b\in X$

$\rho_{A}$ is scalene, where $A=\overline{I_{\rho}(a,b}$).

PROOF. We shall prove that $\rho_{A}$ is a scalene metric. Note that if $c\in A$ , either
$\rho(x, a)\geqq\rho(x, c)$ or $\rho(x, b)\geqq\rho(x, c)$ holds for each $x\in X$. Let $x_{1},$

$x_{2}\in A$ and $x_{1}\neq x_{2}$ .
Take a point $c\in l_{\rho}(x_{1}, x_{2})$ . Then we can easily see that $c\in I_{\rho}(a, b)\subset A$ , which implies

that $\rho_{A}$ is scalene. Similarly, $\rho_{B}$ is scalene.

(3.3) PROPOSITION. If a compactum $X$ has a scalene metric $\rho$ , then $X$ is con-
nected and locally connected.

PROOF. Suppose, on the contrary, that $X$ is not connected. There exist two
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disjoint nonempty closed subsets $A$ and $B$ of $X$ such that $X=A\cup B$ . Since $X$ is
compact, we can choose two points $a\in A$ and $b\in B$ such that $\rho(A, B)=\rho(a, b)>0$ .
Since $\rho$ is scalene, there is a point $c\in l_{\rho}(a, b)$ . Assume that $c\in A$ . By (3.1), we
have $\rho(A, B)=\rho(a, b)>\rho(b, c)$ , which is a contradiction. Hence $X$ is connedted. Also,
by (3.2) we can see that $X$ is locally connected.

(3.4) PROPOSITION. Suppose that a compactum $X$ has a scalene metric. Let
$a,$ $b\in X$ and $a\neq b$ . Then $\overline{I_{\rho}(a,b}$) is a locally connected continuum containing $a$ and
$b$ and diam $\overline{l_{\rho}(a,b)}=\rho(a, b)$ .

PROOF. By (3.2) and (3.3), $\overline{l_{\rho}(a,b}$) is a locally connected continuum. We shall
prove that $a,$ $b\in\overline{l_{\rho}(a,b}$). Suppose, on the contrary, that $a\not\in\overline{I_{\rho}(a,b}$). Since $1_{\rho}(a, b)$ is
compact, there is a point $z\in\overline{I_{\rho}(a,b}$) such that $\rho(a,\overline{I_{\rho}(a,b}))=\rho(a, z)$ . Note that for
each $x\in X$, either $\rho(x, a)\geqq\rho(x, z)$ or $\rho(x, b)\geqq\rho(x, z)$ holds. Choose a point $c\in I_{\rho}(a, z)$ .
Since $I_{\rho}(a, z)\subset I_{\rho}(a, b)$ , by (3.1) we have $\rho(a,\overline{I_{\rho}(a,b}))=\rho(a, z)>\rho(a, c)$ and $c\in I_{\rho}(a, b)$ .
This is a contradiction. Similarly, $b\in\overline{l_{\rho}(a,b}$). If $c_{1},$ $c_{2}\in I_{\rho}(a, b)$ , then $\rho(c_{2}, a)>\rho(c_{2}, c_{1})$

or $\rho(c_{2}, b)>\rho(c_{2}, c_{1})$ . By (3.1), $\rho(a, b)>\rho(c_{2}, c_{1})$ . Hence diam $\overline{I_{\rho}(a,b}$) $=\rho(a, b)$ .

(3.5) PROPOSITION. If a locally compact space $X$ has a locally scalene metric,
then $X$ is locally connected.

This follows from (3.2) and (3.3).

(3.6) EXAMPLE. In the statement of (3.3), we cannot omit the condition that
$X$ is compact. Consider the following set in the real line $E$ :

$X=\{x\in E|0\leqq x\leqq 1\}-\{1/2\}$ .
Let $\rho$ be the metric defined by $\rho(x, y)=|x-y|$ for $x,$ $y\in X$. Then $\rho$ is scalene and
$X$ is locally compact but not connected.

(3.7) EXAMPLE. In the statement of (3.5), we cannot omit the condition that
$X$ is locally compact. Consider the following set in $E^{n}$ with Euclidean metric $\rho$ :

$X=$ { $(x_{1},$ $x_{2},$ $\cdots,$
$x_{n})\in E^{n}|$ each $x_{i}$ is a rational number}.

Then $\rho_{X}$ is scalene but $X$ is totally disconnected.

(3.8) EXAMPLE. The Euclidean metric $\rho$ on $E^{n}$ is scalene. Then if $a,$ $b\in E^{n}$

and $a\neq b$ ,

$1_{\rho}(a, b)=$ { $x\in E^{n}|x=ta+(1-t)b$ and $0<t<1$}.

(3.9) EXAMPLE. Let $S^{2}$ be the unit sphere in $E^{3}$ . Define the metric $\rho$ on $S^{2}$ by
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$\rho(x, y)=arc\cos(\sum_{i=1}^{3}x_{i}y_{i})$ for $x=(x_{1}, x_{2}, x_{3}),$ $y=(y_{1}, y_{2}, y_{3})\in S^{2}$ .

Consider the following sets:

$A=\{x\in S^{2}|\rho(a, x)+\rho(x, b)=\rho(a, b)\}$ ,

where $a=(\frac{\sqrt{2}}{2},0,$ $-\frac{\sqrt{2}}{2})$ and $b=(0,$ $\frac{\sqrt{2}}{2},$ $-\frac{\sqrt{2}}{2})$ .

$X=$ { $x\in S^{2}|\rho(z_{0},$ $x)+\rho(x,$ $a^{\prime})=\rho(z_{0},$ $a^{\prime})$ for some $a^{\prime}\in A$ },

where $z_{0}=(0,0,1)$ (see Figure 1).

Then $\rho_{X}$ is scalene and $\overline{I_{\rho}(a,b}$) $\cap A=\{a, b\}$ . Note that $\overline{I_{\rho}(a,b}$) is not an arc (see
(4.1)).

Fig. 1.

The main result of this section is the following theorem.

(3.10) THEOREM. $lf$ a compactum $X$ has a sclene metric $\rho$ , then $X$ is an $AR$.

PROOF. By (3.3), $X$ is a locally connected continuum. Hence by [10], $2^{X}$ is
an AR. Let $A\in 2^{X}$ . Define a function $f_{A}$ : $ X\rightarrow[0, \infty$ ) by

(1) $f_{A}(x)=\sup\{\rho(x, a)|a\in A\}=H_{\rho}(\{x\}, A)$ .

Clearly $f_{A}$ is continuous. Consider the following:

(2) $m(A)=\inf\{f_{A}(x)|x\in X\}$ and
(3) $R(A)=\{x\in X|f_{A}(x)=m(A)\}$ .
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We shall prove that $R(A)$ consists of only one point. If $x_{1},$ $x_{2}\in R(A)$ and $X_{1}\neq x_{2}$ ,

then there is a point $c\in I_{\rho}(x_{1}, x_{2})$ . Since $A$ is compact, there is a point $a_{0}\in A$ such

that $f_{A}(c)=\rho(a_{0}, c)$ . Then either $f_{A}(c)=\rho(a_{0}, c)<\rho(a_{0}, x_{1})\leqq f_{A}(x_{1})=m(A)$ or $f_{A}(c)=$

$\rho(a_{0}, c)<\rho(a_{0}, x_{2})\leqq f_{A}(x_{2})=m(A)$ holds, which implies that $f_{A}(c)<m(A)$ . This is a
contradiction. Let us define a function $r:2^{X}\rightarrow X$ by $\{r(A)\}=R(A)$ for each $A\in 2^{x}$ .
We must prove that $r$ is continuous. Suppose, on the contrary, that there is a
sequence $A,$ $A_{1},$ $A_{2},$ $\cdots$ , of points in $2^{x}$ such that

(4) $H_{\rho}(A_{n}, A)<1/n$ for each $n=1,2,$ $\cdots$ , and
(5) $\lim_{n\rightarrow\infty}r(A_{n})\neq r(A)$ .

Let $a=\lim_{n\rightarrow\infty}r(A_{n})$ . Since $R(A)$ is a one point set, we see that $f_{A}(a)-f_{A}(r(A))=\epsilon>0$ .

Since $\lim_{n\rightarrow\infty}f_{A_{n}}(r(A_{n}))=f_{A}(a)$ , there is a natural number $n_{0}$ such that for each $n\geqq n_{0}$ ,

(6) $f_{A_{n}}(r(A_{n}))-f_{A}(r(A))>2\epsilon/3$ .
By (4), we can choose a natural number $n_{1}\geqq n_{0}$ such that

(7) $H_{\rho}(A, A_{n})<\epsilon/3$ for each $n\geqq n_{1}$ .
Then by (6) and (7), for each $n\geqq n_{1}$ ,

(8) $f_{A_{n}}(r(A))\leqq f_{A}(r(A))+H_{\rho}(A, A_{n})<f_{A_{n}}(r(A_{n}))-2\epsilon/3+\epsilon/3$

$=f_{A_{n}}(r(A_{n}))-\epsilon/3<m(A_{n})$ .

This is a contradiction. Hence $r:2^{x}\rightarrow X$ is continuous. Note that $r(\{x\})=x$ for

each $x\in X$. This implies that $X$ is an AR. This completes the proof.

(3.11) THEOREM. $lf$ a locally compact space $X$ has a locally scalene metric,

then $XlS$ an $ANR$ . Moreover, each point of $X$ has a compact neighborhood which

is an $AR$ .

PROOF. It follows from (3.2) and (3.10) that for each $x\in X$ there is a compact

AR $V$ such that $x$ is an interior point of $V$ in $X$. Hence $X$ is an ANR ( $e$ . $g.$ , see
[1, p. 102]).

(3.12) REMARK. In the statement of (3.10), we cannot replace ” compactum”

by “ locally compact space” (see (3.6)). Also, in the statement of (3.11), we can-
not omit the condition that $X$ is locally compact (see (3.7)).

(3.13) REMARK. There is a compact 2-dimensional AR $X$ not admitting a
locally scalene metric. In fact, the space $X$ in [1, p. 155, (4.17)1 is one of such

compacta. It cannot be decomposed into a finite or countable number of compact

ARs distinct from $X$. By (3.11), $X$ does not admit a locally scalene metric.
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4. Some properties of scalene metric spaces.

In this section, we study further properties of scalene metric spaces.

(4. 1) PROPOSITION. Let $X$ be a compactum with metric $\rho$ . If $a,$ $b\in X$ and $a\neq b$ ,
then $I_{\rho}(a, b)$ is open in $X$.

PROOF. Let $c\in l_{\rho}(a, b)$ . Since $X$ is compact, there is a positive number $\epsilon$ such
that $\max\{\rho(x, a), \rho(x, b)\}\geqq\rho(x, c)+\epsilon$ for each $x\in X$ Set $U_{\epsilon}(c)=\{x\in X|\rho(x, c)<\epsilon\}$ . If
$y\in U.(c)$ , then

$\rho(x, y)\leqq\rho(x, c)+\rho(c, y)\leqq\max\{\rho(x, a), \rho(x, b)\}-\epsilon+\rho(c, y)$

$<\max\{\rho(x, a), \rho(x, b)\}$ .

Hence $U_{\epsilon}(c)\subset l_{\rho}(a, b)$ , which implies that $I_{\rho}(a, b)$ is open in $X$.

(4.2) LEMMA. Let $X$ be a compactum with scalene metric $\rho$ . If $a,$ $b\in X,$ $a\neq b$

and $\epsilon$ is a positive number, then there is a point $c\in I_{\rho}(a, b)$ such that $\rho(a, c)<\rho(a, b)$

and $\rho(c, b)<\epsilon$ .

PROOF. By (3.4), $b\in\overline{I_{\rho}(a,b}$). Choose a point $c\in l_{\rho}(a, b)$ with $\rho(b, c)<\epsilon$ . Since
$c\in I_{\rho}(a, b),$ $\rho(a, c)<\rho(a, b)$ .

(4.3) LEMMA. Let $X$ be a compactum with scalene metric $\rho$ . $lfa,$ $b\in X$, then
$\overline{I_{\rho}(a,b})=$ {$c\in X|\max\{\rho(x,$ $a),$ $\rho(x,$ $b)\}\geqq\rho(x,$ $c)$ for each $x\in X$ }.

PROOF. We may assume that $a\neq b$ . It is easily seen that if $c\in\overline{l_{\rho}(a,b}$),
$\max\{\rho(x, a), \rho(x, b)\}\geqq\rho(x, c)$ for each $x\in X$. Conversely, let $c\in X$ such that
$\max\{\rho(x, a), \rho(x, b)\}\geqq\rho(x, c)$ for each $x\in X$ Then $1_{\rho}(a, c)\subset I_{\rho}(a, b)$ , and hence $ c\in$

$\overline{l_{\rho}(a,c})\subset\overline{I_{\rho}(a,b})$ .

(4.4) PROPOSITION. Let $X$ be a compactum with scalene metric $\rho$ . If $K_{\rho}$ : $ 2^{X}\times$

$[0, \infty)\rightarrow 2^{X}$ is the function defined by

$K_{\rho}(A, t)=\{x\in X|\rho(x, A)\leqq t\}$ for $A\in 2^{X}$ and $ t\in[0, \infty$),

then $K_{\rho}$ is cmtinuous.

PROOF. Suppose that $A_{1},$ $A_{2},$ $\cdots$ , is a sequence of closed subsets of $X$ and $t_{1}$ ,
$t_{2},$ $\cdots$ , is a sequence of positive numbers such that iim $A_{n}=A$ and $\lim t_{n}=t$ . Then
it is easily seen that

(1) $\lim\sup K_{\rho}(A_{n}, t_{n})\subset K_{\rho}(A, t)$ .
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Let $y\in K_{\rho}(A, t)$ and $\epsilon>0$ . Choose a point $a\in A$ such that $\rho(a, y)\leqq t$ . By (4.2), there
is a point $c\in X$ such that $\rho(y, c)<\epsilon$ and $\rho(a, c)<\rho(a, y)\leqq t$ . Choose a natural number
$n_{0}$ such that if $n\geqq n_{0}$ , there is a point $a_{n}\in A_{n}$ such that $\rho(a_{n}, a)<t_{n}-\rho(a, c)$ . Then

we have

(2) $\rho(a_{n}, c)\leqq\rho(a_{n}, a)+\rho(a, c)<t_{n}$ .

Hence $c\in K_{\rho}(A_{n}, t_{n})$ for each $n\geqq n_{0}$ . This implies that

(3) $\lim\inf K_{\rho}(A_{n}, t_{n})\supset K_{\rho}(A, t)$ .

By (1) and (3), $\lim K_{\rho}(A_{n}, t_{n})=K_{\rho}(A, t)$ . Therefore $K_{\rho}$ is continuous.

A metric $\rho$ defined on a space $X$ is strongly convex provided that for each
$a,$ $b\in X$, there is only one point $c\in X$ such that $\rho(a, c)=\rho(c, b)=1/2\cdot\rho(a, b)$ .

(4.5) PROPOSITION. $lf$ a scalene metric is convex, then it is strongly convex.

PROOF. Let $X$ be a space with scalene metric $\rho$ , and let $a,$ $b\in X$ and $a\neq b$ .
Consider the set $ C=\{c\in X|\rho(a, c)=\rho(c, b)=1/2\cdot\rho(a, b)\}\neq\phi$ . We must show that $C$ is
a one point set. Suppose, on the contrary, that there exist $c_{1},$

$c_{2}\in C$ and $c_{1}\neq c_{2}$ .
Since $\rho$ is a scalene metric, there is $c_{0}\in I_{\rho}(c_{1}, c_{2})$ . Then

$\rho(a, b)\leqq\rho(a, c_{0})+\rho(b, c_{0})<\frac{1}{2}\cdot\rho(a, b)+\frac{1}{2}\cdot\rho(a, b)=\rho(a, b)$ .

This is a contradiction. Hence $\rho$ is strongly convex.

(4.6) REMARK. Suppose that $\rho$ is a scalene metric on a compactum $X$ If $\rho$

is convex (and hence strongly convex), the retraction $r:2^{X}\cong Q\rightarrow X$ in the proof

of (3.10) is a cell-like map. Moreover, for each $x\in X,$ $r^{-1}(x)$ is contractible. For
let $t_{0}=\sup\{f_{A}(x)|A\in r^{-1}(x)\}\geqq 0$ . If $t_{0}=0,$ $r^{-1}(x)$ is one point set. Assume that $t_{0}>0$ .
Let us defined a function $H:r^{-1}(x)\times[0, t_{0}]\rightarrow 2^{X}$ by

$H(A, t)=\left\{\begin{array}{l}V(A,t), 0\leqq t\leqq f_{A}(x),\\B(x,t), f_{A}(x)\leqq t\leqq t_{0},\end{array}\right.$

where $A\in r^{-1}(x),$ $V(A, t)=$ { $y\in X|\rho(y,$ $A)\leqq 2t$ and $\rho(x,$ $y)\leqq f_{A}(x)$ } and $B(x, t)=\{y\in X|$

$\rho(x, y)\leqq t\}$ . By (3.1), (3.2), (3.4) and the same argument as (4.4), $H$ is continuous.
Next, we shall show that $H(r^{-1}(x)\times[0, t_{0}])\subset r^{-1}(x)$ . Let $A\in r^{-1}(x)$ and $0\leqq t\leqq f_{A}(x)$ .
By the definitions of $r$ and $f_{A}(x),$ $H(A, t)\in r^{-1}(x)$ . Let $A\in r^{-1}(x)$ and $f_{A}(x)<t\leqq t_{0}$ .
Note that $r(H(A, t_{0}))=r(B(x, t_{0}))=x$ . We may assume that $f_{A}(x)<t<t_{0}$ . Suppose,

on the contrary, that for some $t(f_{A}(x)<t<t_{0}),$ $r(H(A, t))=r(B(x, t))=x^{\prime}\neq x$ . Then
$f_{B(x.t)}(x^{\prime})<f_{B(x,t)}(x)=t$ . Let $y\in B(x, t_{0})$ . If $y\in B(x, t),$ $\rho(x^{\prime}, y)\leqq f_{B(x.t)}(x^{\prime})<f_{B(x.t)}(x)$

$=t<t_{0}$ . If $y\in B(x, t_{0})-B(x, t)$ , there is a point $y^{\prime}\in B(x, t)$ such that $\rho(x, y)=\rho(x, y^{\prime})$
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$+\rho(y^{\prime}, y)$ and $\rho(x, y^{\prime})=t$ , because $\rho$ is convex and $X$ is compact. Then

$\rho(x^{\prime}, y)\leqq\rho(x^{\prime}, y^{\prime})+\rho(y^{\prime}, y)<t+\rho(y^{\prime}, y)=\rho(x, y)\leqq t_{0}$ .

Since $B(x, t_{0})$ is compact, $f_{B(x,t_{0})}(x^{\prime})<t_{0}$ , hence $r(B(x, t_{0}))\neq X$ . This is a contradic-
tion. Thus $r:2^{X}\cong Q\rightarrow X$ is a cell-like map.

But we cannot omit the condition that $\rho$ is convex, as shown in the next
example.

(4.7) EXAMPLE. There is a scalene metric $\rho$ on a compactum $X$ such that

the retraction $r:2^{X}\cong Q\rightarrow X$ in the proof of (3.10) is not monotone. Consider the
following sets in the plane $E^{2}$ :

$M=\{x\in E^{2}|ta+(1-t)b, 0\leqq t\leqq 1\}$ ,

$N=$ { $x\in E^{2}|x=t_{1}b+t_{2}c+t_{3}d,$ $t_{i}\geqq 0(i=1,2,3)$ and $t_{1}+t_{2}+t_{3}=1$ },

where $a=(-1,0),$ $b=(O, 1),$ $c=(1,0),$ $d=(3,0)$ , and

$X=M\cup N$ .

Let $\rho$ be the Euclidean metric on $E^{2}$ . Then we can easily check that $\rho x$ is a
scalene metric. Let $r:2^{X}\rightarrow X$ be the retraction in the proof of (3.10). Note that
$r^{-1}(c)\ni\{a, d\}$ . Then the point $c$ is an isolated point of $r^{-1}(c)$ . In fact, if $A\in r^{-1}(c)$

and $0<f_{A}(c)\leqq 1$ , then $r(B(c,f_{A}(c))\neq c$ . Let $c^{\prime}=\frac{1}{2}e+\frac{1}{2}f$, where $e=(1-\frac{f_{A}(c)}{\sqrt{2}},$ $\frac{f_{A}(c)}{\sqrt{2}})$ ,

$f=(1+f_{A}(c), 0)$ . Then $f_{A}(c^{\prime})\leqq f_{B(c.f_{A}(c))}(c^{\prime})<f_{A}(c)$ . Hence $c$ is an isolated point of
$r^{-1}(c)$ .

Let $A$ be a subset of a metric space $X$ with metric $\rho$ . Then $A$ is scalene
convex in $X$ provided that if $a,$ $b\in A$ and $a\neq b$ , there is a point $c\in A$ such that for
each $x\in X,$ $\max\{\rho(x, a), \rho(x, b)\}>\rho(x, c)$ holds. Note that every convex subset of $l_{2}$

is scalene convex in $l_{2}$ , and if $A$ is scalene convex in $X$, the restriction $\rho A$ is a
scalene metric on $A$ .

(4.8) PROPOSITION. If $A$ is a scalene convex, compact subset of a metric space
$X$ with metric $\rho$ , then there is the unique continuous retraction $r;X\rightarrow A$ such that
$\rho(x, r(x))=\rho(x, A)$ for each $x\in X$.

PROOF. For $x\in X$, let $r(x)$ be a point of $A$ with $\rho(x, r(x))=\rho(x, A)$ . We have

to prove that such $r(x)$ is unique. Suppose that there are points $x_{0}\in X,$ $y_{0}\in A$

such that $y_{0}\neq r(x_{0})$ and $\rho(x_{0}, y_{0})=\rho(x_{0}, A)$ . Since $A$ is scalene convex, we can find
a point $c\in A$ such that $\rho(x_{0}, c)<\max\{\rho(x_{0}, y_{0}), \rho(x_{0}, r(x_{0}))\}=\rho(x_{0}, A)$ . This is a con-
tradiction. Thus we have a function $r:X\rightarrow A$ . We shall show that $r$ is continu-
ous. Let $x_{0}\in X$ and $x_{1},$ $x_{2},$ $\cdots$ be a sequence of points of $X$ with $\lim x_{n}=x_{0}$ .
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Since $A$ is compact, we may assume that the sequence $r(x_{1}),$ $\gamma(x_{2}),$ $\cdots$ , converges.
Then

$\rho(x_{0}, r(x_{0}))=\rho(x_{0}, A)=\rho(\lim x_{n}, A)$

$=\lim\rho(x_{n}, A)=\lim\rho(x_{n}, r(x_{n}))$

$=\rho(\lim x_{n}, \lim r(x_{n}))$

$=\rho(x_{0}, \lim r(x_{n}))$ .
Hence $r(x_{0})=\lim r(x_{n})$ . This implies that $r$ is continuous. Obviously, $r$ is a re-
traction from $X$ to $A$ .

(4.9) EXAMPLE. There is a smooth arc $A$ in the plane $E^{2}$ with Euclidean
metric $\rho$ such that $\rho_{A}$ is scalene but there is no neighborhood $U$ of $A$ in $E^{2}$ in
which $A$ is scalene convex. In fact, let $A_{n}(n=1.\prime 2, \cdots)$ be the set of points $(x, y)$

$\in E^{2}$ such that $(-1)^{n}y\geqq 0$ and

$(x-\frac{2n+1}{2n(n+1)})^{2}+(y+\frac{(-1)^{n}}{n(n+1)})^{2}=(\frac{\sqrt{2}}{n(n+1)})^{2}$

Set $A=\{(0,0)\}\cup\bigcup_{n-1}^{\infty}A_{n}$ (see Figure 2). Then $A$ is a smooth arc and $\rho_{A}$ is scalene,
but there is no neighborhood $U$ of $A$ in $E^{2}$ such that $A$ is scalene convex in $U$.

Fig. 2.

(4.10) PROPOSITION. Let $X$ be a compactum with scalene metric $\rho$ . Then for
any maps $f,$ $g;Y\rightarrow X$, there is a homotopy $H:Y\chi I\rightarrow X$ such that $H(y, O)=f(y)$ ,
$H(y, 1)=g(y)$ and diam $H(\{y\}\times I)=\rho(f(y), g(y))$ for each $y\in Y$.

This follows from (5.2) which will be proved in the next section.

(4.11) PROPOSITION. Let $Y$ be a compactum with metric $\rho$ and let $X_{1},$ $X_{2}$ , $\cdot$ . .
be an increasing sequence of subcompacta in Y. $lf$ each $X_{n}$ is scalene convex in
$Y$, then $X=\overline{\bigcup_{n-1}^{\infty}X_{n}}$ is an $AR$ .
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PROOF. Let $r_{n}$ : $X\rightarrow X_{n}$ be the retraction such that

(1) $\rho(x, r_{n}(x))=\rho(x, X_{n})$ for $x\in X$ (see (4.8)).

By (3.10) and Dowker’s result [4, p. 105], it is sufficient to show that for every
$\epsilon>0$ there is a homotopy $H:X\times I\rightarrow X$ such that $H(x, O)=x,$ $H(x, 1)=r_{n_{0}}(x)$ and
$\rho(H(x, t),$ $x$ ) $<\epsilon$ for each $x\in X,$ $t\in I$ and some positive integers $n_{0}$ . Choose a positive
integer $n_{0}$ such that $X\subset U_{\epsilon/3}(X_{n_{0}})$ . Without loss of generality, we may assume
that $n_{0}=1$ . By (4.10), for each $n$ there is a map $\phi_{n}$ : $X_{n}\times X_{n}\times I\rightarrow X_{n}$ such that

(2) $\phi_{n}(x, y, O)=x$ , $\phi_{n}(x, y, 1)=y$ and
(3) $\rho(\phi_{n}(x, y, t), x)\leqq\rho(x, y)$ for each $x,$ $y\in X_{n}$ and $t\in l$ .

Consider the set

(4) $\tilde{X\times I}=\{(x, t)\in X\times I|0\leqq t\leqq\rho(x, X_{1})\}$ .
Define a map $p:X\times l\rightarrow\tilde{X\times I}$ by

(5) $p(x, t)=(x, t\cdot\rho(x, X_{1}))$ for $(x, t)\in X\times I$ .
Also, define a function $G:\tilde{X\times I}\rightarrow X$ by

(6) $G(x, t)=\left\{\begin{array}{l}x, ift=0,\\\phi_{n+1}(r_{n+1}(x),r_{n}(x),\alpha_{n}(x,t)), if\rho(x,X_{n1})\leqq t\leqq\rho(x,X_{n}),\end{array}\right.$

where $\alpha_{n}(x, t)=\left\{\begin{array}{l}0, if\rho(x,X_{n+1})=t,\\\frac{(t-\rho(x,X_{n+1}))}{(\rho(x,X_{n})-\rho(x,X_{n+1}))} if\rho(x,X_{n+1})<t\leqq\rho(x,X_{n}).\end{array}\right.$

By (1), (2), (3), (4) and (6), we can prove that $G$ is continuous. Finally, define $H=$

$G\circ p:X\times I\rightarrow\tilde{X\times I}\rightarrow X$ Then $H(x, O)=x,$ $H(x, 1)=r_{1}(x)$ and $\rho(H(x, t),$ $x$ ) $\leqq 3\cdot\rho(x, X_{1})$

$\leqq\epsilon$ for each $x\in X$ This completes the proof.

(4.12) EXAMPLE. In the statement of (4.11), we cannot conclude that $X=$

$\overline{\bigcup_{n=1}^{\infty}X_{n}}$ has a scalene metric $\rho_{X}$ . Consider the following sets in the 3-dimensional
space $E^{3}$ with Euclidean metric $\rho$ :

$Y=$ { $(x,$ $y,$ $z)\in E^{3}||y|\leqq x,$ $-1\leqq z\leqq 1,$ $x^{2}+y^{2}+z^{2}\geqq 1$ and $(x+1)^{2}+y^{2}+z^{2}\leqq 3^{2}$ } ,

and for each $n=2,3,$ $\cdots$ ,

$X_{n}=Y\cap\{(x, y, z)\in E^{3}|(x+\frac{1}{n})^{2}+y^{2}+z^{2}\geqq(\frac{n+2}{n})^{2}\}$ .

Then $Y=X=\overline{\bigcup_{n=1}^{\infty}X_{n}}$ . It can be checked that each $X_{n}$ is scalene convex in $Y$,

but $\rho Y$ is not a scalene metric. In fact, if $a=(\frac{1}{\sqrt{2}},$ $\frac{1}{\sqrt{2}},0)$ and $b=(\frac{1}{\sqrt{2}},$ $\frac{-1}{\sqrt{2}},0)$ ,
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$ I_{\rho_{Y}}(a, b)=\phi$ .
In general, the limit of scalene metric subspaces in a metric space with met-

ric $\rho$ is not a scalene metric space with respect to $\rho$ . We need the following
definition. Let $Y$ be a metric space with metric $\rho$ . A family $\{X_{\alpha}\}$ of subsets of
$Y$ is uniformly scalene provided that for any $\epsilon>0$ and if $a_{\alpha},$

$b_{\alpha}\in X_{\alpha}$ with $\rho(a_{\alpha}, b_{\alpha})\geqq\epsilon$ ,
then there are points $c_{\alpha}\in X_{\alpha}$ such that if $\delta(a_{\alpha}, b_{a})$ denotes $\inf_{x\in X_{a}}\{\max\{\rho(x, a_{\alpha}), \rho(x, b_{\alpha})\}$

$-\rho(x, c_{a})\}$ , then $\inf_{a}\delta(a_{\alpha}, b_{\alpha})>0$

(4.13) PROPOSITION. Let $Y$ be a compactum with metric $\rho$ . If a sequence $\{X_{n}\}$

of subcompacta of $Y$ is uniformly scalene and $\lim X_{n}=X$, then $\rho_{X}$ is a scalene metric
of X In particular, $X$ is an $AR$ .

PROOF. Let $a,$ $b\in X$ and $a\neq b$ . Put $\epsilon=\rho(a, b)$ . Choose sequences $\{a_{n}\},$ $\{b_{n}\}$ of
points such that $a_{n},$ $b_{n}\in X_{n},$ $\lim a_{n}=a$ and $\lim b_{n}=b$ . We may assume that $\rho(a_{n}, b_{n})$

$\geqq 2\epsilon/3$ for each $n$ . Since $\{X_{n}\}$ is uniformly scalene, there are points $c_{n}\in X_{n}$ and
some positive number $\delta$ such that $\max t\rho(x, a_{n}),$ $\rho(x, b_{n})$ } $-\rho(x, c_{n})\geqq\delta$ for each $x\in X_{n}$ .
We may assume that $\lim c_{n}=c\in X$ Then if $x\in X$, for every $x_{n}\in X_{n}$ we have

$\rho(x, c)\leqq\rho(x, x_{n})+\rho(x_{n}, c_{n})+\rho(c_{n}, c)$

$\leqq\rho(x, x_{n})+\max\{\rho(x_{n}, a_{n}), \rho(x_{n}, b_{n})\}+\rho(c_{n}, c)-\delta$ .
Choose a sequence $x_{1},$ $x_{2},$ $\cdots$ of points such that $x_{n}\in X_{n}$ and $\lim x_{n}=x$ . Since
$\lim\rho(x_{n}, a_{n})=\rho(x, a)$ and $\lim\rho(x_{n}, b_{n})=\rho(x, b)$ , we have $\rho(x, c)<\max\{\rho(x, a), \rho(x, b)\}$

for $x\in X$ Hence $c\in I_{\rho}(a, b)$ .

(4.14) QUESTION. Let $Y$ be a compactum with metric $\rho$ and let $\{X_{n}\}$ be a
sequence of subcompacta of $Y$. If $\rho_{X_{n}}$ is scalene $(n=1,2, \cdots)$ and $\lim X_{n}=X$, is
$X$ an AR?

(4.15) QUESTION. If $X_{i}(i=1,2,3)$ is a compactum and $X_{1},$ $X_{2}$ and $X_{3}=X_{1}\cap X_{2}$

admit scalene metrics, does $X_{1}\cup X_{2}$ admit a scalene metric? Does $X_{1}\times X_{2}$ admit
a scalene metric?

In relation to (4.15), the following is clear.

(4.16) PROPOSITION. $lfX_{1}$ and $X_{2}$ admit scalene metrics and have only one
common point, then $X_{1}\cup X_{2}$ admits a scalene metric.

5. Scalene metrics and some selection theorems.

In this section, we shall prove some selection theorems in an aspect which
differs from that of E. Michael.
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(5.1) THEOREM. Suppose that $Y$ is any topological space and $X$ is a metric
space with metric $\rho$ . If $\varphi:Y\rightarrow 2^{X}$ is continuous and $\rho_{\varphi(y)}$ is a scalene metric for
each $\varphi(y)$ , then there is a continuous selection $s:Y\rightarrow X$ for $\varphi$ .

PROOF. For every $y\in Y$, let $s:Y\rightarrow X$ be the function defined by $s(y)=r_{y}(\varphi(y))$ ,
where $r_{y}$ : $2^{\varphi(y)}\rightarrow\varphi(y)$ is defined as in the proof of (3.10). We have to prove that
$s$ is continuous. Let $y_{0}\in Y$ and $\epsilon_{1}>0$ . Note that

(1) $\inf\{f_{\varphi(y_{0})}(x)|x\in\varphi(y_{0})-U_{\text{\’{e}}}1/2(s(y_{0}))\}-m(\varphi(y_{0}))=\epsilon_{2}>0$ .
(for the definitions of $f_{\varphi(y_{0})}$ and $m(\varphi(y_{0}))$ , see the proof of (3.10)). Choose a neigh-
borhood $V$ of $y_{0}$ in $Y$ such that if $v\in V,$ $H_{\rho}(\varphi(y_{0}), \varphi(y))<\delta=1/4\cdot\min\{\epsilon l, \epsilon_{2}\}$ . We
show $s(V)\subset U_{\epsilon_{1}}(s(y_{0}))$ . Suppose, on the contrary, that $s(y)\not\in U_{\epsilon_{1}}(s(y_{0}))$ for some $y\in V$.
Choose a point $y_{1}\in\varphi(y)$ such that $\rho(y_{1}, s(y_{0}))<\delta$ . Note that $y_{1}\neq s(y)$ . Then we have

(2) $ f_{\varphi(y)}(y_{1})\leqq\rho(y_{1}, s(y_{0}))+m(\varphi(y_{0}))+H_{\rho}(\varphi(y_{0}), \varphi(y))<m(\varphi(y_{0}))+2\delta$ .
On the other hand, choose a point $y_{2}\in\varphi(y_{0})$ such that $\rho(s(y), y_{2})<\delta$ . Note that $y_{2}$

$\in\varphi(y_{0})-U_{\epsilon_{1}/2}(s(y_{0}))$ . Then by (1) and (2), we have

(3) $m(\varphi(y))=f_{\varphi(y)}(s(y))\geqq f_{\varphi(y_{0})}(y_{2})-\rho(s(y), y_{2})-H_{\rho}(\varphi(y), \varphi(y_{0}))$

$\geqq m(\varphi(y_{0}))+\epsilon_{2}-2\delta$

$\geqq m(\varphi(y_{0}))+2\delta>f_{\varphi(y)}(y_{1})$ .
This is a contradiction. Hence $s:Y\rightarrow X$ is continuous. This completes the proof.

(5.2) THEOREM. Let $X,$ $Y,$
$\rho$ and $\varphi$ be as in the preceding theorem. If $f,$ $g$ ;

$Y\rightarrow X$ are continuous selections for $\varphi$ , then there is a homotopy $h:Y\times l\rightarrow X$ such
that $h(y, O)=f(y),$ $h(y, 1)=g(y),$ $h(\{y\}\times I)\subset\varphi(y)$ and diam $(h(\{y\}\times I))=\rho(f(y), g(y))$ for
each $y\in Y$.

PROOF. Define a function $\Psi:Y\rightarrow 2^{X}$ by

(1) $\Psi(y)=\overline{I_{\rho_{\varphi(y)}}(f(y),g(y))}\subset\varphi(y)$ for each $y\in Y$.
Then $\Psi$ is continuous.

To prove this, we first show that $\Psi$ is upper semi-continuous. Let $y\in Y$ and
$\epsilon>0$ . Note $\Psi(y)=$ { $c\in\varphi(y)|\max\{\rho(x,$ $f(y)),$ $\rho(x,$ $g(y))\}\geqq\rho(x,$ $c)$ for $x\in\varphi(y)$ }. For each
$c\in\varphi(y)-U_{\epsilon/2}(\Psi(y))$ , let $\alpha(c)=\sup\{\rho(x, c)-\max\{\rho(x, f(y)), \rho(x, g(y))\}|x\in\varphi(y)\}$ . Then we
have

(2) $\inf\{\alpha(c)|c\in\varphi(y)-U_{\text{\’{e}}/2}(\Psi(y))\}=\epsilon_{1}>0$ .
Put $\delta=1/4\cdot\min\{\epsilon, \epsilon_{1}\}>0$ . Since $\varphi:Y\rightarrow 2^{X}$ is continuous, there is a neighborhood $V$

of $y$ in $Y$ such that for $z\in V,$
$\rho(f(z), f(y))<\delta\backslash ’\rho(g(z), g(y))<\delta$ and $ H_{\rho}(\varphi(z), \varphi(y))<\delta$ .
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We show that if $z\in V,$ $\Psi(z)\subset U_{\epsilon}(\Psi(y))$ . Suppose, on the contrary, that for some
$z\epsilon V,$ $\Psi(z)\not\subset U_{*}(\Psi(y))$ . Choose a point $c\in\Psi(z)$ such that $c\not\in U_{\epsilon}(\Psi(y))$ and a point $ c_{0}\in$

$\varphi(y)$ such that $\rho(c, c_{0})<\delta$ . Since $c_{0}\in\varphi(y)-U_{\epsilon/2}(\Psi(y))$ , there is a point $x_{0}\in\varphi(y)$ such
that $\alpha(c_{0})=\rho(x_{0}, c_{0})-\max\{\rho(x_{0}, f(y)), \rho(x_{0}, q(y))\}\geqq\epsilon_{1}>0$ . Let $x_{1}\in\varphi(z)$ with $\rho(x_{0}, x_{1})<\delta$ .
Then by (2) we have

(3) $\rho(c, x_{1})\geqq\rho(c_{0}, x_{0})-\rho(c, c_{0})-\rho(x_{0}, x_{1})$

$>\max\{\rho(x_{0}, f(y)), \rho(x_{0}, g(y))\}+\epsilon_{1}-2\delta$

$\geqq\max\{\rho(x_{1}, f(z)), \rho(x_{1}, g(z))\}-2\delta+\epsilon_{1}-2\overline{0}$

$\geqq\max\{\rho(x_{1}, f(z)), \rho(x_{1}, g(z))\}$ .

(3) implies that $c\not\in\Psi(z)$ . This is a contradiction. Hence $|l$

. is upper semi-continuous.
Next, we show that $\Psi$ is lower semi-continuous. Let $c_{0}\in\Psi(y)$ and $\epsilon>0$ . By

(4.2), there is a point $c_{1}\in l_{\rho_{\varphi(y)}}(f(y), g(y))$ such that $\rho(c_{0}, c_{1})<\epsilon/2$ . Put $\epsilon_{1}=\inf\{\max$

$\{\rho(x, f(y)), \rho(x, g(y))\}-\rho(x, c_{1})|x\in\varphi(y)\}>0$ . Since $\varphi$ is continuous, there is a neigh-
borhood $V$ of $y$ in $Y$ such that if $z\in V,$ $H_{\rho}(\varphi(z), \varphi(y))<1/4\cdot\min\{\epsilon, \epsilon_{1}\}=\delta>0$ and
$\rho(f(z), f(y))<\delta,$ $\rho(g(z), g(y))<\delta$ . Let $z\in V$. Take a point $c\in\varphi(z)$ with $\rho(c, c_{1})<\delta$ .
For each $x\in\varphi(z)$ , choose a point $x^{\prime}\in\varphi(y)$ with $\rho(x, x^{\prime})<\delta$ . Then we have

(4) $\rho(c, x)\leqq\rho(c, c_{1})+\rho(c_{1}, x^{\prime})+\rho(x^{\prime}, x)$

$\leqq\max\{\rho(x^{\prime}, f(y)), \rho(x^{\prime}, q(y))\}-\epsilon_{1}+2\delta$

$<\max\{\rho(x, f(z)), \rho(x, g(z))\}-\epsilon_{1}+4\delta$

$\leqq\max\{\rho(x, f(z)), \rho(x, g(z))\}$ .

Hence $c\in I_{\rho_{\varphi(z)}}(f(z), g(z))\subset\Psi(z)$ . Note that

(5) $\rho(c, c_{0})\leqq\rho(c, c_{1})+\rho(c_{1}, c_{0})<\epsilon$ .

This implies that $\Psi$ is lower semi-continuous. Hence $\Psi$ is continuous.
Next, we define a homotopy $h:Y\times l\rightarrow X$ as follows. Since $\rho_{r(y)}$ is a scalene

metric, there is a retraction $r_{y}$ : $2^{\psi(y)}\rightarrow\Psi(y)$ . Define a homotopy $F:Y\times l\rightarrow X$ by

$F(y, t)=r_{y}(K_{\rho}(f(y), t\cdot\rho(f(y), g(y)))\cap\Psi(y))$ for $y\in Y,$ $t\in I$.

By (4.4) and the proof of (3.10), $F$ is continuous. Then

(6) $F(\{y\}\times l)\subset\Psi(y),$ $F(y, O)=f(y)$ and $F(y, 1)=r_{y}(\Psi(y))$ for $y\in Y$.

Similarly, we have a homotopy $G:Y\times I\rightarrow X$ such that

(7) $G(\{y\}\times I)\subset\Psi(y),$ $G(y, O)=g(y)$ and $G(y, 1)=r_{y}(\Psi(y))$ for $y\in Y$.

By (6) and (7), define a homotopy $h:Y\times l\rightarrow X$ by

$h(y, t)=\left\{\begin{array}{l}H(y,2l), if0\leqq t\leqq 1/2,\\G(y,2-2l), if1/2\leqq t\leqq 1.\end{array}\right.$
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Since diam $\Psi(y)=\rho(f(y), g(y))$ , we have diam $h(\{y\}\times I)=\rho(f(y), g(y))$ . This completes
the proof.

(5.3) COROLLARY. Let $X$ and $Y$ be metric spaces and $\rho$ be a metric on $X$ $lf$

$f:X\rightarrow Y$ is a proper open map and $\rho f-1(y)$ is scalene for each $y\in Y$, then $f$ is a
fiber homotopy equivalence. In particular, if $X$ is an $ANR$ , then $Y$ is an $ANR$ .

(5.4) COROLLARY. Let $Y$ be a complete metric space and $X$ be a compactum
with metric $\rho$ . If $\varphi;Y\rightarrow 2^{x}$ is upper (or lower) semi-continuous and $\rho_{\varphi(y)}$ is a
scalene metric for each $y\in Y$, then there is a dense $G_{\delta}$ -subset $Y^{\prime}$ of $Y$ and a con-
tinuous selection $s:Y^{\prime}\rightarrow X$ for $\varphi|Y^{\prime}$ ; $Y^{\prime}\rightarrow 2^{x}$ .

(5.4) follows from (5.1) and [5, Corollary 1, p. 71].
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