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A STABLE COMPLETE SLICE
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0. Introduction

Tilting modules and associated tilted algebras, introduced by Brenner and
Butler in [7] and generalized by Happel and Ringel $[12, 13]$ has been shown in
[1, 8, 12, 13, 14, 16, 18, 19] to be of interest in representation theory. Recall [12]

that a module $T_{A}$ over a finite-dimensional algebra $A$ is called a tilting module
provided it satisfies the following three properties:

(1) proj $\dim_{A}(T_{A})\leq 1$

(2) $Ext_{A}^{1}(T_{A}, T_{A})=0$

(3) There is an exact sequence $0\rightarrow A_{A}\rightarrow T_{A}^{\prime}\rightarrow T_{A}^{\prime\prime}\rightarrow 0$ with $T^{\prime},$ $T^{\prime\prime}$ being
direct sums of summands of $T$.
An algebra $B$ is called a tilted algebra if there is an hereditary algebra $A$ and a
tilting module $T_{A}$ such that $B=End(T_{A})$ . Tilted algebras together with recently
developed covering techniques provide a rather general setting for dealing with
arbitrary representation-finite algebras, that is, algebras with finitely many non-
isomorphic finitely generated indecomposable modules. Happel and Ringel showed
in [12] (see also [6, 15]) that representation-finite tilted algebra have the following
nice characterization in the term of the associated Auslander-Reiten quiver: A
connected representation-finite algebra $B$ is a tilted algebra if and only if the
Auslander-Reiten quiver of $B$ contains a complete slice, that is, a set $S$ of inde-
composable modules with the following properties

(i) Given any indecomposable module $X,$ $S$ contains precisely one module
from the orbit $\{\tau^{r}X;r\in Z\}$ of $X$, where $\tau=DTr$ and $\tau^{-1}=TrD$ and $\tau^{-1}=TrD$ are
the Auslander-Reiten operators [3].

(ii) If $X_{0}\rightarrow X_{1}\rightarrow X_{2}\rightarrow\ldots\rightarrow X_{r}$ is a chain of non-zero maps and inde-
composable modules, and $X_{0},$ $X_{r}$ belong to $S$ , then all $X_{i}$ belong to $S$ .

(iii) There is no oriented cycle of irreducible maps $U_{0}\rightarrow U_{1}\rightarrow\ldots\rightarrow U_{r}$

$\rightarrow U_{0}$ with all $U_{i}$ in $S$ .
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Recently two interesting classes of representation-finite algebras, $PHI$ algebras
considered by Simson-Skowro\’{n}ski $[18, 19]$ and trivial extension algebras investigated
by Hughes-Waschb\"usch [16] (see also [14]), have been completely classified by
invariants involving only tilted algebras. In general the Auslander-Reiten quiver
of such algebras contains no complete slice but the Auslander-Reiten quiver

modulo projective-injectives has a complete slice of a Dynkin class.
In this paper we shall give a rather simple description of all algebras having

this property. We use many ideas and extend results from [12, 16, 19].

We use the term algebra to mean finite-dimensional algebra over a fixed com-
mutative field $K$ and the term module to mean a finitely generated right module.
Algebras, as is usual in representation theory, are assumed to be basic and con-
nected. For any algebra $A$ and an A-module $M$ we shall denote by $E_{A}(M)$ the
A-injective envelope of $M$, by $P_{A}(M)$ the A-projective cover of $M$, by $top_{A}(M)$ the
top of $M$, by soc$A(M)$ the socle of $M$, by rad $(M)$ the radical of $M$. For any inde-
composable projective-injective A-module $Q$ , define $\sigma_{A}(soc_{A}(Q))=top_{A}(Q)$ . Further,

we will denote by $mod$ $A$ the category of (finite dimensional) A-modules and by
ind $A$ the full subcategory of $mod$ $A$ formed by the chosen representatives of the
isomorphism classes of indecomposable modules. We will frequently ignore the
distinction between the isomorphism class of a module and the module itself. Left
modules will usually be regarded as right modules over the opposite algebra. We
shall denote by $D$ : $mod A\rightarrow mod A^{op}$ the usual duality $Hom_{K}(-, K)$ . We will
use freely the properties of irreducible maps, almost split sequences, almost split
morphisms, and the Auslander-Reiten operators $\tau=DTr$ and $\tau^{-1}=TrD$ . For any
algebra $A$ , we will denote by $\Gamma_{A}$ the Auslander-Reiten quiver of $A[10]$ . For
definitions and further details we refer to [2, 3, 4, 5, 10]. Finally, for the defini-
tion of valued quivers and of the Cartan class of a valued quiver we refer to [11,

17].

1. Main result

In this section we formulate the main result of the paper. Let $A$ be a con-
nected basic algebra over a field $K$ and let $\mathfrak{C}$ be a connected component of $\Gamma_{A}$ .
Then a subquiver $S$ of $\mathfrak{C}$ is said to be path-complete if, whenever $M$ and $N$ are
vertices of $S$ and there is a path $M\rightarrow\ldots\rightarrow L\rightarrow\ldots\rightarrow N$ in $\mathfrak{C},$ $L$ is a vertex
of $S$ . We say that a full subquiver $S$ of $\mathfrak{C}$ is a stable complete slice of $\mathfrak{C}$ if the
following conditions are satisfies:

(1) $S$ is path-complete.
(2) There is no oriented cycles $X_{0}\rightarrow X_{1}\rightarrow\ldots\rightarrow X_{r}\rightarrow X_{0}$ with all $X_{i}$ in

$S$ .
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(3) $S$ has no projective-injective modules.
(4) Given any non-projective-injective module $X$ in $\mathfrak{C},$ $S$ contains precisely

one module from the orbit $\{\tau^{r}X;r\in Z\}$ of $X$

It is easy to see that $S$ is a stable complete slice in $\mathfrak{C}$ if and only if $S$ is a
complete slice of the full subquiver $s\mathfrak{C}$ of $\mathfrak{C}$ obtained by suppressing the vertices
corresponding to projective-injective indecomposable modules.

A complete slice $S$ of $\mathfrak{C}$ is of Dynkin class $\Delta$ provided $S$ , considered as a
nonoriented graph, is a Dynkin graph $\Delta$ . It follows from [9] that if $A$ is a con-
nected representation-finite hereditary algebra, then the vertices of $\Gamma_{A}$ correspond-
ing to the indecomposable projective A-modules form in $1_{A}^{\urcorner}$ a complete slice of
Dynkin class. If $A$ is a hereditary representation-finite algebra, and $T_{A}$ a tilting
module, then the Cartan class of the tilted algebra $B=End(T_{A})$ is defined to be
that of $A$ (see [16]).

For any algebra $A$ , we will denote by $F(A)$ , the set of isomorphism classes
of simple A-modules.

A system $C$ of Dynkin class $\Delta$ is defined to be $C=(B, n, m, F_{*}, F_{*}^{\prime})$ , where $B$

is a tilted algebra of Dynkin class $\Delta,$ $n$ and $m$ are nonnegative integers, and $F_{*}$ ,
$F_{*}^{\prime}$ are chains

$F_{*}:$ $F(B)=F_{0}\supset F_{1}\supset\ldots\supset F_{n}$

$F_{*}^{\prime}$ : $F(B^{op})=F_{0}^{\prime}\supset F_{1}^{\prime}\supset\ldots\supset F_{m}^{\prime}$

of nonempty subsets of $F(B)$ and $F(B^{op})$ .
Then the algebra $R(C)$ , for a given system $C=(B, n, m, F_{*}, F_{*}^{\prime})$ , is defined to

be $R(C)=R(-m)$ , where the sequence of algebras
$B=R(O),$ $R(1),$ $\cdots$ , $R(n),$ $R(-1)$ , $\cdot$ . . , $R(-m)$

is obtained as follows:

$R(1)=\left(\begin{array}{ll}E(1), & I(1)\\0, & R(0)\end{array}\right)$

where $1(1)=\bigoplus_{S\in F_{1}}E_{B}(S),$ $E(1)=End_{B}(l(1))$ , and 1(1) has the canonical structure of
$E(1)-R(O)$ -bimodule. Let $i\geq 1$ and write $\sigma_{R(i)}=\sigma_{i}$ ; similarly as in [19] one shows
that the set $F(R(i))$ of $R(i)$ -simples has a natural identification with the union of
$F(R(i-1))$ and a new set of simples $\overline{F}_{i}=\{\sigma_{i}\sigma_{i-1}\cdots\sigma_{1}(S);S\in F_{i}\}$ . Then $R(i+1)$ , for
$i=1$ , $\cdot$ . ., $n-1$ , is the triangular matrix algebra

$R(i+1)=(^{E(i_{0}+1)},$ $l(i+1)R(i))$

where $1(i+1)=\bigoplus_{S\in F_{i+1}}F_{R(i)}(\sigma_{i}\cdots\sigma_{1}(S))$ and $E(i+1)=End_{R(t)}(I(i+1))$ . Further, $R(-1)$ is

the triangular matrix algebra

$R(-1)=\left(\begin{array}{ll}R(n), & l(-1)\\0 & E(-1)\end{array}\right)$
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where $I(-1)=\bigoplus_{s\epsilon F_{1}},E_{R(n)^{Op}}(S)$ and $E(-1)=End_{R(n)}\circ p(I(-1))$ . Finally, for $-m\leq i\leq-2$ ,
$R(i)$ is the triangular matrix algebra

$R(i)=\left(\begin{array}{ll}R(i+1), & l(i)\\0 & ,E(i)\end{array}\right)$

where $I(i)=\oplus E_{R(i,1)^{Op}}(\sigma_{i+1}\cdots\sigma_{-1}(S))$ and $E(i)=End_{R(i+1)^{\circ p}}(I(i))$ .
$S\in F_{i}^{\prime}$

We can now formulate the main result of this paper.
THEOREM. Let $A$ be a connected finite-dimensional basic algebra. Then $A$ is

representation-finite and $\Gamma_{A}$ contains a stable complete slice of a Dynkin class if
and only if $A$ is isomorphic to an algebra $\Re(C)$ for some system $C$ of a Dynkin
class.

2. Proof of the theorem

First we shall show that for any system $C=(B, n, m, F_{*}, F_{*}^{\prime})$ of a Dynkin
class, the algebra $R(C)$ is representation-finite and $/_{9(C)}^{\urcorner}$ contains a stable complete
slice of a Dynkin class. We will apply results from [16].

Let $C=(B, n, m, F_{*}, F_{*})$ be a system of a Dynkin class $\Delta$ and consider the
doubly infinite matrix algebra without identity

$\hat{B}=\ovalbox{\tt\small REJECT}^{B_{n-}};_{M_{n-\iota_{B_{n+1}.M_{n+1}}}}B_{n}M_{n}......\cdot.\cdot.\cdot\ovalbox{\tt\small REJECT}$

in which matrices are assumed to have only finitely many entries different from
zero, $B_{n}=B$ and $M_{n^{=}B}D(B)_{B}$ for all integers $n$ , all remaining entries are zero, and
the multiplication is induced from the canonical maps $B\otimes_{B}D(B)\rightarrow D(B),$ $D(B)\otimes_{B}B$

$\rightarrow D(B)$ , and zero maps $D(B)\otimes_{B}D(B)\rightarrow 0$ . Hughes and Waschb\"usch proved in
[16] that $mod B$ has almost split sequences, the stable Auslander-Reiten quiver
$s\Gamma_{B}$ is isomorphic to $ Z\Delta$ and that for any indecomposable projective B-module $P$,
$Hom_{B}(P, X)\neq 0$ only for a finite number of nonisomorphic indecomposable B-modules
$X$ It is not hard to see that all algebras $R(O)=B,$ $R(1),$ $\cdots,$ $R(n),$ $R(-1),$ $\cdots,$ $R(-m)$

occuring in the definition of $\Re(C)$ are full finite subcategories of $B$ . Then from
[2, \S 3], the algebras $R(i)$ are representation-finite and consequently $R(C)=R(-m)$
is so. Now it suffices to prove that $\Gamma_{g(C)}$ contains a stable complete slice of a
Dynkin class. By assumption $\Gamma_{B}$ contains a complete slice $\ovalbox{\tt\small REJECT}$ . We shall prove
that the modules from ffl being no projective-injective $9l(C)$-modules form a stable
complete slice in $\Gamma_{9(C)}$ . First observe that the set $\ovalbox{\tt\small REJECT}^{\prime}$ of all modules from $\ovalbox{\tt\small REJECT}$
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being no projective-injective B-modules form a stable complete slice in $J_{B}^{\gamma}$ . Let $X$ be

the set of all (isomorphism classes of) indecomposable projective $R(n)$ -modules $Q\in X$

such that top$(Q)\in F(R(n))\backslash F(B)$ . From [20] we know that all modules from $X$ are
also injective $R(n)$ -modules. Choose a module $Q_{1}$ from $X$ such that rad $(Q_{1})$ is not
successor in $\Gamma_{B}$ of any module rad $(Q^{\prime})$ for $Q^{\prime}\in X$. Note that rad $(Q_{1})$ is a B-module.
Consequently, rad $(Q_{1})$ is an injective B-module isomorphic to $Hom_{R(n)}(B, Q_{1})$ and
the algebras $T_{1}=End_{R(n)}(B\oplus Q_{1})$ and

$\left(\begin{array}{ll}C_{1}, & rad(O_{1})\\0, & B\end{array}\right)$

where $C_{1}=End_{B}(rad(Q_{1}))$ , are isomorphic. Algebra $T_{1}$ is representation-finite as a
full subcategory of $B$. Moreover, just as in [16, 3.5, 3.6], we see that $\ovalbox{\tt\small REJECT}^{\prime}$ is a
stable complete slice in $\Gamma_{T_{1}}$ provided rad $(Q_{1})$ is not projective B-module. On the

other hand, if rad $(Q_{1})$ is projective-injective (as B-module), then rad $(Q_{1})$ belongs to
$\ovalbox{\tt\small REJECT}$ and $\ovalbox{\tt\small REJECT}^{\prime}\cup\{rad(Q_{1})\}$ forms a stable complete slice in $\Gamma_{T_{1}}$ . Moreover, since all
modules from $X$ are projective-injective $R(n)$ -modules, if $Y=radR(n)(Q)$ , for $Q\in X$,

is a projective-injective $T_{1}$ -module, then $Y$ is a projective-injective B-module and
so belongs to $\ovalbox{\tt\small REJECT}$ . Then we can repeat this procedure taking $T_{1}$ instead of $B$.
Consequently, after a finite number of steps, we obtain $R(n)$ and the modules $Z$

from ,St being no projective-injective $R(n)$ -modules form a stable complete slice in
$\Gamma_{R(n)}$ . Then the corresponding $R(n)^{op}$-modules $D(Z)$ form a stable complete slice

in $\Gamma_{R(n)^{\circ p}}$ . Considering $9\mathfrak{i}(C)^{op}$-modules $Q$ whose tops belong to $F^{\prime}(\Re(C))\backslash F^{\prime}(R(n))$ ,

and applying above arguments, we conclude that the modules $D(Z)$ , where $Z$ ranges

over all modules $Z$ from $M$ being no projective-injective R(C)-modules, form a
stable complete slice in $\Gamma_{R(C)}\circ p$ . Consequently, $\Gamma_{\Re(C)}$ contains a stable complete
slice $S$ being a connected subgraph of the complete slice ,-S4t of $\Gamma_{B}$ . Since $\mathscr{R}$ is
of Dynkin class, $S$ is so and we are done.

At the end of this paper we shall give an example showing that the graphs
$\ovalbox{\tt\small REJECT}$ and $S$ can be different.

Now let $A$ be a representation-finite algebra and let $\Gamma_{A}$ contains a stable
complete slice $\mathscr{R}=\{M_{1}$ , $\cdot$ . ., $M_{l}\}$ of Dynkin class $\Delta$ . We shall show that $A$ is
isomorphic to an algebra $R(C)$ for some system $C=(B, n, m, F_{*}, F_{*}^{\prime})$ of Dynkin

class $\Delta$ .
We start with the following lemma.

LEMMA 1. Under the above assumption, $\Gamma_{A}$ has no oriented cycle.

PROOF. Assume that $\Gamma_{A}$ has an oriented cycle

$X_{0}\rightarrow X_{1}\rightarrow\ldots\rightarrow X_{r}\rightarrow X_{o}$ .
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Since $\Gamma_{A}$ has a stable complete slice, one of the modules $X_{0},$ $X_{1},$ $\cdots X_{r}$ is projec-
tive-injective. Indeed, in the opposite case, similarly as in [12, Prop. 8.1] one
proves that there is an oriented cycle $Y_{0}\rightarrow Y_{1}\rightarrow\cdots\rightarrow Y_{s}\rightarrow Y_{o}$ with all
modules $Y_{j}$ from $\ovalbox{\tt\small REJECT}$ , but this is a contradiction to the stable slice condition (2).
Denote by $\mathfrak{D}$ the full subcategory of ind $A$ formed by all non-projective-injective
modules. From the stable slice condition (4), for each module $X$ of $\mathfrak{D}$ , there is
exactly one module $M_{i}$ from $\mathscr{R}$ and one integer $z$ such that $X=\tau^{z}(M_{i})$ , and put
$z=z(X)$ . Suppose that there is an irreducible map $X=\tau^{z(X)}(M_{i})\rightarrow Y=\tau^{z(X)}(M_{j})$

between two objects $X$ and $Y$ from $\mathfrak{D}$ . Then $z(X)=z(Y)$ and there is an irredu-
cible map $M_{i}\rightarrow M_{j}$ or $z(X)=z(Y)+1$ and there is an irreducible map $M_{j}\rightarrow M_{i}$ .
Indeed, if $z(X)=z(Y)$ then obviously there is an irreducible map $M_{i}\rightarrow M_{j}$ . If
$z(X)\leq 0$ and $z(Y)\geq 0$ , then there is a chain of irreducible maps $M_{i}\rightarrow\cdots\rightarrow\tau^{z(X)}(M_{i})$

$\rightarrow\tau^{z}(1^{\prime})(M_{j})\rightarrow\cdots\rightarrow M_{j}$ and by the stable slice condition (4), $z(X)=z(Y)=0$ .
Consider the case $z(X)>z(Y)>0$ . Then there is an irreducible map $\tau^{z(x)-z(Y)}(M_{i})$

$\rightarrow M_{j}$ , hence a chain of irreducible maps $M_{j}\rightarrow\tau^{z(X)-z(Y)-1}(M_{i})\rightarrow\cdots\rightarrow M_{i}$ and
by the stable slice condition (4), $z(X)=z(Y)+1$ . Similarly, if $z(Y)>z(X)>0$ , there
is a chain of irreducible maps $ M_{i}\rightarrow\tau$

$z(Y)-z(X)M_{j}\rightarrow\cdots\rightarrow M_{j}$ and $z(Y)-z(X)>0$ ,
contrary to the stable slice conditions (1) and (4). Analogically one proves that
$z(X)=z(Y)+1$ if $z(X)\neq z(Y),$ $z(X)<0,$ $z(Y)<0$ . Finally, if $2(X)>0,$ $z(Y)\leq 0$ , then
$z(X)=1,$ $z(Y)=0$ ; and $z(X)=0,$ $z(Y)=-1$ in case $z(X)\geq 0$ and $z(Y)<0$ .

Consequently one of the modules in the cycle $X_{0}\rightarrow X_{1}\rightarrow\cdots\rightarrow X_{r}\rightarrow X_{o}$ is
projective-injective. Without loss of generality we can assume that this is $X_{1}$ . If
$X_{i}$ is projective-injective, then $X_{i-1}=rad(X_{i}),$ $X_{i+1}=X_{i}/soc(X_{i}),$ $X_{i-1}=\tau(X_{i+1})$ , and
$z(X_{i-1})=z(X_{i+1})+1$ . Thus, from the above remarks, $z(X_{0})>z(X_{2})\geq\cdots\geq z(X_{0})$ and we
get a contradiction. Therefore $\Gamma_{A}$ has no oriented cycles and the lemma is proved.

Denote by $\mathfrak{P}_{A}$ (resp. $\mathfrak{J}_{A}$ ) the set of proiective (resp. injective) modules in ind
$A$ and by $\Sigma_{A}$ the sum $\mathfrak{P}_{A}\cup \mathfrak{J}_{A}$ . Let us denote by $\nu;\Sigma_{A}\rightarrow\Sigma_{A}$ and $\nu^{-1}$ ; $\Sigma_{A}\rightarrow\Sigma_{A}$

two partial functions defined as follows: For each $X\in\Sigma_{A,\nu}(X)$ is defined iff $X\in \mathfrak{P}_{A}$ ,
and then $\nu(X)=E(top(X));\nu^{-1}(X)$ is defined iff $X\in \mathfrak{J}_{A}$ , and then $\nu^{-1}(X)=P(soc(X))$ .
Then the set {$\nu^{z}(X);z\in Z,$ $\nu^{z}(X)$ is defined} is said to be the $\nu$-orbit of $X\in\Sigma_{A}$ .

Let us denote by $S=\{S_{1}, \cdots, S_{r}\}$ the set of all composition factors of modules
$M_{1},$

$\cdots,$
$M_{l}$ , and by $B$ the algebra $End_{A}(P_{A}(S_{1})\oplus\cdots\oplus P_{A}(S_{r}))$ . As in [16, Lemmas

3.2, 3.3] one proves that any $\nu$-orbit in $\Sigma_{A}$ contains exactly one module from the
set $\{P_{A}(S_{1}), \cdots, P_{A}(S_{r})\}$ and that the set ,-S4t considered as a set of B-modules is a
complete slice of $\Gamma_{B}$ of Dynkin class $\Delta$ . In particular, $B$ is a tilted algebra of
Dynkin class $\Delta$ . Moreover, any $\nu$-orbit in $\Sigma_{A}$ is the $\nu$-orbit of some module $P_{A}(S_{j})$ ,
$j=1,$ $\cdots,$ $r$, and we can define the function $s:\Sigma_{A}\rightarrow Z$ such that, for $X\in\Sigma_{A},$ $s(X)$
$=i$ iff $X=\nu^{i}(P_{A}(S_{j}))$ for some $j=1,$ $\cdots,$ $r$. Thus, for $X\in\Sigma_{A},$ $s(X)\leq 0$ implies $X\in \mathfrak{P}_{A}$ ,
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and $s(X)>0$ implies $X\in \mathfrak{J}_{A}$ .
Let $A_{A}=Q_{1}\oplus\cdots\oplus Q_{m}$ be some decomposition as a direct sum of indecompos-

able projective A-modules, $n=\max\{s(X);X\in\Sigma_{A}\},$ $m=-\min\{s(X);X\in\Sigma_{A}\}$ , and we
let $A_{p},$ $-m\leq p\leq n$ , be the direct sum of all modules $Q_{k}$ such that $s(Q_{k})=p$ . Then
$A_{A}=\bigoplus_{p=-m}^{n}A_{p}$ and put for $-m\leq p\leq q\leq n,$ $E_{p,q}=End_{A}(\bigoplus_{k=p}^{q}A_{k})$ . We will write simply
$E_{p}$ instead of $E_{p.p},$ $B_{p},$ $0\leq p\leq n$ , instead of $E_{0.p}$ , and $B_{q},$ $-m\leq q\leq-1$ , instead of
$E_{q,n}$ . Obviously the algebras $B$ and $E_{0}$ are isomorphic.

In our proof an important role is played by the following lemma.

LEMMA 2. In the above notation, $Hom_{A}(A_{p}, A_{q})=0$ for $p>q$ and $q>p+1$ .

PROOF. Suppose that $Hom_{A}(A_{p}, A_{q})\neq 0$ for some $p>q$ . Then there are two
indecomposable summands $X$ of $A_{p}$ and $Y$ of $A_{q}$ with $Hom_{A}(X, Y)\neq 0$ . First as-
sume $p>0,$ $q\leq 0$ . In this case $X$ is projective-injective, there is a sequence of

non-zero maps $\bigoplus_{i--1}^{t}M_{i}\rightarrow\nu^{1-P}(X)\rightarrow\cdots\rightarrow X\rightarrow Y\rightarrow\cdots\rightarrow\nu^{-q}(Y)\rightarrow\bigoplus_{i=1}^{l}M_{i}$ , im-
plying the corresponding sequence of irreducible maps, and we get a contradiction
to the stable slice condition (3). If $p=0$ and $f;X\rightarrow Y$ is a non-zero map, then
since $\nu(X)$ is injective, there is a commutative diagram

where $\alpha,$ $\beta$ are canonical epimorphisms, $\gamma,$
$\sigma$ canonical monomorphisms, and ob-

viously $g\neq 0$ . Similarly, there is a non-zero map $h:\nu(X)\rightarrow\nu(Y)$ . But $s(\nu(Y))=$

$q+1\leq 0,$ $\nu(Y)$ is projective-injective, there is a sequence of irreducible maps $\bigoplus_{i=1}^{i}M_{i}$

$\rightarrow\cdots\rightarrow\nu(X)\rightarrow\cdots\rightarrow\nu(Y)\rightarrow\cdots\rightarrow\bigoplus_{i=1}^{t}M_{i}$ , and we get a contradiction to the
stable slice conditions (1) and (3). If $0>p>q$, then as above we conclude that
$Hom_{A}(\nu^{-p}(X), \nu^{-p}(Y))\neq 0$ , but this is impossible since $s(\nu^{-p}(X))=0$ and $s(\nu^{-p}(Y))=$

$q-p<0$ . Finally, in the case $p>q>0$ , similarly, as in [19, Lemma p. 60], we prove
that $Hom_{A}(\nu^{-q}(X), \nu^{-q}(Y))\neq 0$ . Since, $s(\nu^{-q}(X))=p-q>0,$ $s(\nu^{-q}(Y))=0$ , from the first
part of our proof, it is impossible. Consequently, $Hom_{A}(A_{p}, A_{q})=0$ for $p>q$ .

Now assume that $Hom_{A}(X, Y)\neq 0$ for $p<q-1$ and indecomposable direct sum-
mands $X$ of $A_{p}$ and $Y$ of $A_{q}$ . If $p\geq 0$ , as in [19, Lemma p. 60], $Hom_{A}(\nu^{-1}(Y), X)$

$\neq 0$ , and since $s(\nu^{-1}(Y))=q-1>p$ we get a contradiction to the fact that
$Hom_{A}(A_{q-1}, A_{p})=0$ . If $p<0,$ $\nu(X)$ is projective-injective, and, as in the first part
of the proof, we conclude that $Hom_{A}(Y, \nu(X))\neq 0$ . This is a contradiction since
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$s(\nu(X))=p+1<q=s(Y)$ and $Hom_{A}(A_{q}, A_{p\tau 1})=0$ . Therefore, $Hom_{A}(A_{p}, A_{q})=0$ for
$p+1<q$ and the lemma is proved.

In our proof we shall need the following fact.

LEMMA 3. For $p<0,$ $Hom_{A}(A_{p}, A)$ is a projective-injective $A^{op}$-module.

PROOF. Let $X$ be an indecomposable direct summand of $Hom_{A}(A_{p}, A)$ . Then
$D(X)\cong E(D(top_{A^{\circ p}}(X)))\cong E(top_{A}(Y))=\nu(Y)$ for $Y=Hom_{A^{\circ p}}(X, A)$ . Since $Y$ is a direct
summand of $A_{p}$ , and $s(\nu(Y))=p+1\leq 0,$ $\nu(Y)$ is a projective-injective A-module.
Hence $X\cong D(\triangleright(Y))$ is a projective-injective $A^{op}$-module and we are done.

Now we shall define a system $C=(B, n, m, F_{*}, F_{*}^{\prime})$ where $B=End_{A}(A_{0}),$ $n=$

$\max\{s(X);X\in\Sigma_{A}\},$ $m=-\min\{s(X);X\in\Sigma_{A}\}$ . The canonical action of $B$ on $top_{A}(A_{0})$

(resp. $top_{A^{\circ p}}(Hom_{A}(A_{0},$ $A))$ ) enabling us to identify the set $F(B)$ (resp. $F(B^{0p})$ ) with
the set $F_{0}(resp. F_{0}^{\prime})$ of simple A-module (resp. $A^{op}$-module) components of $top_{A}(A_{0})$

(resp. of to $top_{A^{op}}(Hom_{A}(A_{0},$ $A))$ ). Then $F_{1}$ consists of the simple components of
of $soc_{A}(A_{1})$ (a summand of $F_{0}=top(A_{0})$); for $1\leq i<n,$ $F_{i}1$ consists of the simples
$S$ in $F_{o}$ such that $\sigma_{A}^{i}(S)$ is a component of $soc_{A}(A_{i\rightarrow 1})$ . Similarly, $F_{1}^{\prime}$ consists of
the simple components of soc $A^{\circ p(Hom_{A}(A_{-1}},$ $A$)) (a summand of $F_{0}^{\prime}$); for $1\leq j<m$ ,
$F_{j+1}^{\prime}$ consists of the simples $S$ in $F_{0}^{\prime}$ such that $\sigma_{A}^{J_{\circ p}}(S)$ is a component of
soc $A^{\circ p(Hom_{A}(A_{-J-1}}A$)).

From Lemma 2 it follows that $A=End_{A}(A_{A})$ is isomorphic to the matrix algebra

$|$

$E_{n}0$

$n_{E_{n-1^{1}}^{n-}}M_{0}$

$n_{E_{1}M_{0}}o_{M_{n-a}-1}0E_{0}$

$0M_{-1}0$

$0$

$|$

$0$ $E_{-1}$ $-1M_{-2}$ $0$ $|$

$0$ . $\cdot$

$0$

$E_{-m+\iota}0$ $-m+\mathfrak{l}M_{-m}E_{-n}$ $|$

where $i+1M_{i}$ is the $E_{i+1^{-}}E_{i}$-bimodule $Hom_{A}(A_{i}, A_{i+1})$ . First we shall prove that
the algebras $B_{i}$ and $R(i),$ $i=0,$ $\cdots,$ $n$ , are isomorphic. We shall proceed by indu-
ction, using [19, Proposition 2] and Lemma 2. For $i=0,$ $B_{0}=R(0)$ by definition.
Assume that for some $i\geq 0$ there is an isomorphism $h:B_{i}\rightarrow R(i)$ . Observe that
there is a canonical isomorphism of algebras
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$B_{i+1}\cong\left(\begin{array}{lll}L_{i\}1}^{\tau^{\urcorner}}, & i & 1M_{i}\\0 & & B_{i}\end{array}\right)$

Then $A_{i+1}\cong Hom_{A}(\bigoplus_{k=0}^{i+1}A_{k}, A_{i+1})$ is an injective $B_{i+1}$ -module and $i+1M_{i}=Hom(\bigoplus_{k=0}^{i}A_{k}$ ,

$A_{i+1})$ is an injective $B_{i}$-module as the greatest $B_{i}$-submodule of $A_{i+1}$ . Similarly as
in [19, Proposition 2] we conclude that the algebras $E_{i+1}$ and $End_{B_{i}}(i+1M_{i})$ are iso-
morphic. By definition of $A_{i+1}$ and $I(i+1)$ it is not hard to see that $ I(i+1)\cong$

$H(i+1M_{i})$ where $H:mod B_{i}\rightarrow mod R(i)$ is the functor induced by $h$ . Hence $ B_{i+1}\cong$

$R(i+1)$ and consequently $B_{n}\cong R(n)$ . Further, using Lemma 3 and repeating the
above arguments for $A^{op}$-modules, we get isomorphisms of algebras $B_{j}$ and $R(j)$ ,
$j=-1,$ $\cdots,$ $-m$ . Then $A\cong B.\cong R(-m)=R(C)$ and this completes the proof of
the theorem.

We end the paper with an example illustrating previously considered questions.
Let $B$ be the tilted algebra of Dynkin class $D_{4}$ given by the bounden quiver

algebra (see [10]) $KQ/l$ , where

$Q$ ; $4\rightarrow^{\gamma}3^{\prime_{\alpha 1}^{\beta}}\backslash ^{2}$

and $I$ is generated by the composed arrows $\alpha\gamma$ and $\beta\gamma$ . Consider the system $C=$

$(B, 1,1, F_{*}, F_{*}^{\prime})$ where $F_{1}$ consists of one simple B-module given by the vertex 4
and $F_{1}^{\prime}$ consists of one simple $B^{op}$-module given by the vertex 3. Then it is easy
to see that $R(C)$ is the bounden quiver algebra $KQ^{\prime}/I^{\prime}$ where

$Q^{\prime}$ :
$4^{\prime}\rightarrow^{\sigma}4\rightarrow^{\gamma}3^{\prime^{\beta\eta}}3^{\prime}2_{\sim}$

$\searrow_{a}1\nearrow^{\xi}$

and $I^{\prime}$ is generated by $\alpha\gamma,$
$\beta\gamma,$

$\gamma\sigma$ and $\xi\alpha-\eta\beta$ . Then a straightforward calculation
shows that $\Gamma_{R(C)}$ is of the form

$S_{3}\nearrow_{P_{l}^{1}}\searrow_{rad}\backslash ^{P}\nearrow(P_{8})\frac{\nearrow}{\backslash }P_{3}^{2_{1}}SS\searrow\nearrow\rightarrow P,/S_{3^{\prime}}\nearrow\backslash _{S_{8}-}\backslash _{P^{\$},/P}^{P/P_{2_{1}}}\nearrow P_{4}-S_{4}-P_{4^{\prime}}\rightarrow S_{4^{\prime}}$

where $P_{i}=P(S_{i})$ and $S_{i}$ denotes the simple module given by the vertex $i$ . Here,
$P_{3},$ $P_{4}$ and $P_{4}$ , are projective-injective and the modules $S_{1},$ $S_{2}$ and $P_{3}/S_{3^{\prime}}$ form a
stable complete slice of class $A_{3}$ , so different from the Dynkin class of $B$. On the
other hand, $\Re(C)$ is isomorphic to the algebra $9\mathfrak{i}(\overline{C})$ where $\overline{C}$ is the system $(\overline{B},$ $2$ ,

1, $\overline{F}_{*},\overline{F}_{*}^{\prime}$ ) and $\overline{B}$ is the path algebra of $1\leftarrow 3\rightarrow 2,\overline{F}_{1}=\overline{F}_{2}$ (resp. $\overline{F}_{1}^{\prime}$) consists
of the simple B-module (resp. $\overline{B}^{op}$ -module) given by the vertex 3.
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