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ANR-RESOLUTIONS OF TRIADS

By

Sibe MARDESIC

1. Introduction.

By a triad of topological spaces (X, A, A’) we mean a topological space X
and two subsets A, A’SX such that AUA’=X. By an ANR-triad we mean a
triad (X, A, A’) such that A and A’ are closed subsets of X and X, A, A’ and
ANA’ are ANR’s (for metric spaces). A map of triads f:(X, A, A")—(Y, B, B’)
is a map f:X—Y such that f(A)EB, f(A)ESDB".

An inverse system of triads (X, 4, A)=(X, A, A", pas, A) consists of a
directed index set A, of a collection of triads (X, A, A")=(Xa:, Ai, A), A€ 4,
and of maps triads pi1 (X, 4, ANz — (X, A, A");, A=X, such that p;=1x,,
A=A and payparar=pra, ASAZA.

By a morphism p=(p;): (X, A, A)—~(X, A, A’) of a triad into an inverse
system of triads we mean a collection of maps of triads p, : (X, 4, A)—(X, A, A"),,
A=, such that pairpr=pai, A=A

A resolution of a triad (X, A, A’) is a morphism p=(p;):(X, 4, A)—~(X, 4, A")
which satisfies the following two conditions :

(R1) Let (P, Q, Q') be an ANR-triad, let <V be an open covering of P and
fi(X, A, A)—(P, Q, Q') a map of triads. Then there exist a A4 and a map
of triads g:(X, A, A"):—(P, Q, Q) such that the maps gp; and f are V-near
maps.

(R2) Let (P, Q, Q') be an ANR-triad and let <V be an open covering of P.
Then there exists an open covering ¢V’ of P such that whenever 1=/ and
g, g (X, A, A");—(P, Q, Q') are maps such that the maps gp, and g’p, are
cy’-near, then there exists a A’=4 such that the maps gz and g'paar are
Cy-near.

If all (X, A, A");, A, are ANR-triads, p:(X, A, A)—(X, A, A’) is called
an ANR-resolution of the triad (X, A, A).

Note that the definition of a resolution of triads given in the present paper
differs from the definition given in [3].

In an analogous way one defines resolutions and ANR-resolutions of pairs of
spaces (X, A)—(X, A)=((X, A)z, pa1, A) and of single spaces X—>X=(X;, paa, 4)
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(see [7], [8], [5], [6]). Note that an ANR-pair (X, A) consists of ANR’s (for
metric spaces) X, A such that A is a closed subset of X.

Resolutions for single spaces were introduced in and [6] (also see [8))
and can be viewed as special inverse limits. K. Morita has recently shown
that they coincide with the proper morphisms X—X introduced in his paper [9].
In Morita also gave an internal characterization of resolutions. Another
internal characterization is due to T. Watanabe [11]. Resolutions for pairs were
introduced in and studied and characterized in [7].

ANR-resolutions are essentially used in in constructing the Steenrod-
Sitnikov homology for arbitrary spaces. In order to prove the excision axiom for
this homology theory, we need several facts concerning ANR-resolutions of triads.
To establish these facts is the main purpose of the present paper. The obtained
results, together with results in [4], show that our homology indeed satisfies the
excision axiom.

The main result of the paper is [Theorem 3, which asserts that every triad
of topological spaces admits an ANR-resolution. Moreover, the ANR-resolution,
which we shall construct, will have some additional properties (see (4.1)), needed
in establishing the excision axiom.

2. A factorization theorem for maps of triads.

The least cardinal of subsets dense in a space X is called the density of X
and will be denoted by s(X). Note that for any map f:X—Y one has s(f(X))
<s(X). If (X, A, A’) is a triad, then

s(X)=s(A)+s(A)=max(s(4), s(4"), Ro).

Moreover, for any metric pair (X, A) one has s(A)=s(4)<s(X).
Generalizing of [7], we will now establish a factorization theorem
needed in § 3.

THEOREM 1. Let f:(X, A, A")—(Y, B, B’) be a map of triads, where (Y, B, B’)
is an ANR-triad. Then there exists an ANR-triad (Z, C, C’) and there exist maps
of triads g: (X, A, A)—(Z, C, C"), h:(Z, C, C")=(Y, B, B’) such that f=hg and
the following inequalities hold :

(1) s(Z)=s(X),
(2) s(C)=s(A),

(3) s(C)=s(A".
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The proof repeatedly uses the following simple lemma.

LEMMA 1. Let M be a metric space, P an ANR and f: M—P a map. Then
there exist an ANR N and a map g:N—P such that M is a closed subset of N,
gIM=f and s(N)=s(M). Moreover, if M is finite, then N=M.

Proor. If M is finite, we put N=M and g=f. Now assume that M is
infinite. By the Kuratowsky-Wojdistawski embedding theorem (see [8], I, §3.1,
Theorem 2), one can assume that M is embedded in a normed vector space X
and is closed in the convex hull L of M. Note that s(L)=s(M) because M is
infinite. The map f:M—P extends to a map g:N—P, where N is an open
neighborhood of M in L. Since L is an AR, N is an ANR. M is closed in N.
Moreover, s(N)=s(M), because MS NS L implies s(M)=s(N)=s(L).

PrROOF OF THEOREM 1. Let f(A), f(A") denote the closures in Y of the
sets f(A) and f(A’) respectively. Since B and B’ are closed sets, we have
f(AEB, f(AHSB’. By [Lemma 1, there is an ANR D and there is a map
ho:D—BNB’ such that F(A)NF(A") is closed in D, h,|f(A)NF(A’) is the inclu
sion map and

(4) s(D)y=s(F(ANFIAD)=min(s(f(A)), s(f(A)).

Let E be the metric space obtained from the topological sum Duiif(A) by
identifying the two copies of f(A)Nf(A’). Note that D and f(A) are closed
subsets of £ and

(5) s(EY=s(D)+s(f(A) .

Since s(D)=s(f(A)), we see that s(D)+s(f(A)=s(f(A)), whenever f(A) is
infinite, and thus

(6) S(E)=s(f(A)=s(A)

(6) also holds if f(A) is finite because then also F(A)Nf(A") is finite, D=/7(A)
Nf(A) and E=f(A). Let h,: E—B be the only map such that h,|D=h, and
h,| F(A) is the inclusion map.

By Lemma 1, there is an ANR C and there is a map h,:C— B such that E
is a closed subset of C, h, extends A, and

(7) s(C)=s(E).

Note that f(A4) and D are closed subsets of C, h;|f(A) is the inclusion map and
h|D=h, If f(A) is finite, then C=E=f(A) and h,=h,.
In the same way we define an ANR C’ and a map h;:C'—B’ such that
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J(A’) and D are closed subsets of C’, hj|f(A’) is the inclusion map, h}|D=h,
and

(8) s(C=s(f(A)=s(A").

Moreover, if f(A’) is finite, then C’'=f(A’).

We now form a new space Z. It is obtained from the topological sum CLIC’
by identifying the two copies of D. Note that C and C’ are closed in Z,
CNC’'=D and CUC’'=Z. By the sum theorem for ANR’s we see that Z is an
ANR and therefore (Z, C, C’) is an ANR-triad.

We take for h:Z—Y the unique map such that h|C=h,, h|C’=h} Clearly,
h is a map of triads h:(Z, C, C")—(Y, B, B’). We define the map g:X—Z by
requiring that

glA=f|A: A-FfA)SCcZ,

glA'=flA": A>FANSC'SZ .

Clearly, g is a map of triads g:(X, A, A)—(Z, C, C’) and hg=7.
By (6), (7) and (8), we have

(9) S(Z)=s(C)+s(C)=s(f(A)+s(f(A)).

If at least one of the sets f(A), f(A’) is infinite, then s(f(A))+s(f(A4’)=
max(s(f(A)), s(f(AM=s(f(X)=s(X), and thus (1) holds. If both sets f(A),
f(A’) are finite, then C=f(A4), C'=f(A’) and therefore Z=f(X), which again
implies (1).

3. An approximate factorization theorem.
The following approximate factorization theorem will be used in §4. in the

proof of the main theorem (existence of ANR-resolutions).

THEOREM 2. Let f:(X, A, A)~(Y, B, B’) be a map of triads, let (Y, B, B’)
be an ANR-triad and let <V be an open covering of Y. Then there exists an
ANR-triad (Z, C, C’) and there exist maps of triads

g:(X, A, A)~(Z,C, C", h:(Z,C, C)»(Y, B, B)
such that the maps hg and f are V-near and the following relations hold :
(1) s(C)=max(s(A4), ¥o), s(C)=max(s(A"), ¥,),
(2) s(Z)=max(s(X), R,),
(3) &(A)EIntz(C), g(A)EIntz(C).
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Proor. In view of [Theorem 1 there is no loss of generality in assuming

that

(4) s(Y)=s(X),

(5) s(B)=s(4), S(B’)SS(A’)-
We define (Z, C, C’) by putting

(6) - C=((BNB)XDH\U(BX1)EY I,

(7) C’:((B(\B’)XI)U(B’XO)EYXI,

where I=[0, 1], ’
(8) Z=CUC'SY XI.
Clearly, C, C’, CNC’ and Z are ANR’s and C, C'SZ are closed subsets, so
that (Z, C, C’) is an ANR-triad. Moreover, !
(8) ’ s(C)=s(BxI)=max(s(B), ¥,)<max(s(A4), ¥,),
(9) S(C=max(s(B"), ) =max(s(A), Ro),
10y s(Z)=s(C)+s(C)=max(s(B), s(B’);‘ Ro)=max(s(Y), |y =max(s(X), R,).
Let h:Z—Y be the restriction to ZZSY XI of the first projection ¥ XI—-Y.
Note that A is a map of triads h:(Z, C, C")—(Y, B, B’).

We will also define a map ¢: (Y, B, B)—(Z, C, C’) such that h¢ and the
identity 1y are <V-near maps and

(11) H(B)SIntz(C), H(B)ESInt(C).

To complete the proof, it then suffices to put g=¢f : (X, A4, A)—~(Z, C, C),
because hg=h¢f and f are <V-near maps and (3) is a consequence of and
(12) gA=¢fASHB), gANSYB). o

In order to define ¢¢ we use the following lemma.

LEMMA 2. Let (B, D) be an ANR-pair and let U be an open covering of B.
Then there exists a map ¢ : B>(DXI)\J(BX0)EBXI such that pp and lp are
U-near maps, where p denotes the first projection p: BXI—B. Moreover, ¢(x)=
(x, 1) for xD.

The map ¢:(Y, B, B)—(Z, C, C’) is constructed as follows. We apply
to the ANR-pair (B, D), where D=BNB’, and to the open covering
U=<y|B. We obtain a map
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o B—»((BAB’)X[—%—, 1])U(B><D;~‘C

such that
1 :
(13) o0=(x, 5), x=BNB

and the maps h¢ and lp are CV-near.
The same lemma, applied to (B’, BNB’) yields a map

o : B’—>((BK\B’)><[O, %])U(B’XO)EC’

such that
’ J— 1 7
(14) ¢'()=(x, —2—) ,  xeBNB.

and the maps h¢’ and lp are <V-near.

Because of and the two maps ¢, ¢’ extend to a unique magp
¢:Y—Z, which is a map of triads ¢:(Y, B, B )—(Z, C, C’). Clearly, h¢ and
1y are CV-near maps. Moreover, ¢(B)=¢(B)ESInt,(C), because

(15) ((BmB')x[%, 1))uBxDEmt().

Similarly, ¢(B’)SIntz(C’).
In order to prove Lemma 2, we need the following lemma (see [8], I, 6.5.
Lemma 4).

LEMMA 3. Let (B, D) be an ANR-pair and let U be an open covering of B.
Then there exists an open neighborhood V of D in B and a map k: B—B such
that k|V is a retraction V—D and k is U-near 1p.

PROOF OF LEMMA 2. We choose V and k% according to Let
X: B—I be a map such that
(16) X|D=1, x| B\V=0.
We then define ¢ : B—»BXI by
(17) o(x)=(k(x), X(x)), x € B.

If x&D, then p(x)=(x, ). If x€V, then ¢(x)eDXI and if xB\V, then
¢(x)=(k(x), 0)= Bx0. Consequently, o(B)S(DxI)\U(BX0). Furthermore, 1 and
pp=F are U-near maps.
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4. Existence of ANR-resolutions of triads.

THEOREM 3. Every triad of topological spaces (X, A, A’) admits an ANR-
resolution p=(p;): (X, A, A)—(X, A, A’) indexed by a cofinite set and such that
for every A= A one has

(1) X;=Inty ,A;Ulnty, A}.

In [7, Theorem 6], it was shown that every pair of spaces admits an
ANR-resolution of pairs. Although the present proof proceeds along same general
plan, one must take into account the new additional requirements.

We say that two maps of triads g¢,:(X, A, A)—(Y,, By, B}), ¢.:(X, A, A")
—(Y,, B,, Bj) are equivalent provided there is a homeomorphism A :(Y,, B;, Bj)
—(Y,, B,, Bj) such that

hg,=q, .

Consider all maps of triads ¢:(X, A, A")—(Y, B, B’) such that (Y, B, B’) is
an ANR-triad and

(2) s(Y)<max(s(X), ¥,),
(3) s(B)=max(s(A4), R,), s(B)=max(s(A"), R,),
(4) g(A)EInty(B), ¢(A")SInty(B),

where Inty denotes interior with respect to Y. Note that (2) implies that the
weight w(Y)=s(Y)=<max(s(X), ¥, and card(Y)=2*® <max(2:¥’, 2%0), There-
fore, the equivalence classes of the maps ¢ form a set I. We choose for each
r<lI’" a unique representative g, : (X, 4, A)—(Y, B, B’), of the class 7.

Let 4 be the set of all finite subsets of I, ordered by inclusion. If d=
{ry, ===, 72} €4, we define a triad (X, B, B’); by putting

(5) B;=B; X XBy,, Bj=BjX-XBj,,
(6) Ys=Bs\UB}SY, X XY, .

Since B,, B; are ANR’s, which are closed in Y, it follows that Bs; Bj are
ANR’s closed in Y; Moreover,

(7) BsN\Bj=(B, NB} )X X (B,,NB},)

is an ANR, because B,,N\B;, are ANR’s. Therefore, by the sum theorem for
ANR’s, Y; is also an ANR and (Y, B, B’); is an ANR-triad.

If 650'={ry, ~*, Tn =, I'm}, we define gs5 : (Y, B, B")3—(Y, B, B’); as the
restriction to Y of the projection Y, X+ XY, X-- XY, -V X--XY,. We
also define ¢;: (X, A, A")—(Y, B, B’) as the map
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Qo=qy XXy, - X=Y X XY, .

Since ¢s(A)E B;,> - X B,,=B;s and ¢s(A")S Bs, we see that ¢;(X)& B;\UB;=Y;.
Clearly, (Y, B, B")=(Y, B, B’)s, gssr, 4) is an inverse system of ANR-triads and
q=(gs) : (X, A, A)—(Y, B, B’) is a morphism.

We will now show that

(8) q(A)ESInty(Bs), gs(A")SIntyy(Bs),
so that ¢, also satisfies (4). Indeed, if 6=1{r;, --, 72}, then
(9) g(A)E g, (A) X+ X gy, (A)EInty (B )X - XInty, (By,).

Clearly, IntY;,l(Bn)x---XIntyrn(B,n) is an open set of Y, X---XY, , contained in
B;SY;s and therefore it is an open set of Y, Consequently, (9) implies the
first of the formulas (8). The second one is established analogously. Note that
(8) implies

(10) gs(X) Elnty,(Bs)UInty(Bs) Y 5.

We now define a new directed set M. Its elements are pairs pu=(d, U),
where d€4 and U is an open neighborhood of ¢;(X) in Y contained in Inty;(Bs)
Ulnty,(B3). :

We put p=(0, U)<(¢’, U')=y’ provided 0=<0’ and ¢;(U)SU. The set M
is directed. Indeed, if p;=(d;, U)EM, i=1, 2, we first choose 0=0,, 0,. Note
that

aun 75,0(qs(X))=q: (X)SU;,  i=1, 2.
Therefore, the open set

(12) U=(gs,5)"(U1)M\(qa,5) " (U)EY 5

satisfies
(13) g(X)&U,
(14) q5i5(U)gUiv7 Z': 1) 2:

so that (51;, Uz)_—<_—_(6; U): Z.__“l: 2.
For pu=(0, U) we put

(15) X,=U, A,=UNBs;, A,=UNBj.

Note that X,, A,, A, and A,NA, are ANR’s because they are open sets of the
ANR’s Y;, B;s, B; and BsN\Bj respectively. Furthermore, A, and A}, are closed
in X,=U, because B, and Bj are closed in Y, Also A, UA,=X,, so that
(X, A, A"), is an ANR-triad. This triad satisfies (1). Indeed, the set UNInty;B;
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is open in U=X, and is contained in A,=UNB;s. Therefore,
(16) UNlnty;B;SInty A, .

An analogous formula holds for Bj and A,. Consequently,

(17) X,=U=UN(Inty;B;Ulnty;B;)SInty A, Ulntx AL .

We now define maps 7., : (X, A, A)pw—(X, A, A)p, p=p’, and 7,:(X, A, A")
—(X, A, A", as ¢ |U’ and ¢;: X—qgs(X)SU=X, respectively. Clearly, we
obtain an inverse system of ANR-triads (X, 4, A)=(X, A, Ay, Tpw, M) and 2
morphism r=(r,): (X, 4, A)—(X, 4, A"). ‘

We will now show that r is a resolution. We first establish property (R2).
Let (P, Q, Q") be an ANR-triad and let <&V be an open covering of P. Let pu=
(6, UyeM and let g, g’: (X, A, A"),—(P, Q, Q') be maps of triads such that oy
and g’r, are “V-near maps. Since r,=¢; and ¢s(X)SU=X,, we see that glgsX)
and g’]gs(X) are cV-near maps. Therefore, every point z&g¢s(X) admits a V()
eV such that g(z), g’(z)€V(z). By continuity, there exists an open neighbor-
hood U(z) of z in U such that for any z’€U(z) the points g(z’), g’'(z")€V(2).
Let U’ be the union of all U(z), when z ranges over ¢;(X). Then U’ is an open
neighborhood of ¢;(X) in U. Moreover, the maps g|U’, g’|U’ are <V-near. Note
that U’ S Inty;(Bs)\Ulnty,(Bj) because U’ SU. Consequently, p'=(3, U’) belongs to
M, p=<y’ and the maps gr,, =g|U’, g'rp. =g’ |U’ are Y-near.

We will now establish property (R1). Let f:(X, A, A)—(P, Q, Q') be a
map of triads, let (P, Q, Q") be an ANR-triad and let € be an open covering
of P. 1t suffices to find an ANR-triad (Y, B, B’), which satisfies (2), (3) and (4),
and to find maps of triads ¢: (X, 4, A")—~(, B, B), h:(Y, B, B)—(P, Q, Q")
such that g satisfies (4) and the maps hg and f are <V-near. In that case ¢ is
equivalent to g, for some y=I" and we can assume that ¢g=g¢,. If we now take
any p=(9, U)eM such that 6= {y}, then A’'=h|U:X,—P is a map such that
h'r,=hg is cV-near the map f. :

That such an ANR-triad (Y, B, B’) and such a map ¢ exist follows from

In order to complete the proof of [Theorem 3, we will now replace (X, 4, A4")
by a new inverse system (Z, C, C’), which is indexed by the set A of all finite
subsets of M and is therefore cofinite. We choose an increasing function ¢: A4
—M such that ¢({y})=p. We then put (Z, C, C'i=(X, 4, A)pw>» A, sy
=Forparyy ASA, Si=rewm), A=A. It is easy to see that s=(s;):(X, 4, A")—
(Z, C, C’) is a resolution of triads with all the desired properties. This well-
known argument is described in more details in the case of pairs in [7].
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5. Induced resolutions of pairs.

Let p=(p:): (X, A, A")—>(X, A, A’) be a morphism of a triad into an inverse
system of triads. This morphism induces several morphisms of pairs into systems
of pairs. In particular, we have the morphisms

Dx, a: (Xy A)_)(Xy A) ’ Px,a - (X; A,)_)(Xy A’)
and
Dx.B: (X’ B)_,(X‘) B) ’

where B=AN4’, B;=A;NA% (X, B);=(X;, B;) and (X, B)=(X, B)i, paa, A).
We also have morphisms py. 5 :(A, B)—(A4, B) and py . 5 :(A’, B)—(A4’, B),
where (4, B)=((A, B)a, pix, A), (A, B)i=(Ax, Bl).

REMARK 1. If p is a resolution, then so are px, 4 and px, 4,. To verify
properties (R1) and (R2) it suffices to associate with every ANR-pair (P, Q) the
ANR-triad (P, Q, Q’), where Q'=P.

By imposing rather mild restrictions on (X, A, A’) we can show that the
analogous assertion holds also in the case of the induced morphism px 5. The
argument uses some ideas from a proof presented in [3].

THEOREM 4. Let p:(X, A, A)—(X, A, A’) be a resolution of triads. If the
spaces X, X;, A= A, are normal and the sets A, A’S X are closed, then the induced
morphism px. p, : (X, B)—(X, B) is a resolution of pairs.

CoroLLARY 1. If p:(X, A, A)—(X, A, A’) is an ANR-resolution of triads,
X is a normal space and A, A’S X are closed sets, then p x, s : (X, B)—(X, B) is

an ANR-resolution of pairs.

PROOF. First note that the induced morphism py: X—X is a resolution [7].
Therefore, the assertion of will be proved if we show that px p
satisfies the following condition (B1)** (see [7], [Theorem 2):

For every A= /4 and every normal covering U of X,; there exists a 17=2
such that
(1) Daa(Ba)ESt(pa(B), U).

In order to verify this condition note that p;(B) is contained in G=
St(p:(B), U). Therefore, there is an open neighborhood G, of p;(B) such that

(2) 2.(BYSG,=G,=G.
Note that ¢= {p74G,), X\ A, X\ A’} is an open covering of X, because B=
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ANA’S p7Y(G,). This covering is normal because it is finite and X is a normal

space. By a well-known property of resolutions (see [8], I, §6.2, Theorem 4),
there exists a 2’=2 and a normal covering <V of X} such that (p;.)~'(<V) refines &.
We now put

(3) H=(p32)"'(G),

(4) Hy=(p12)"Y(Go) .
Note that
(5) H,cH.

Moreover, since

(6) P22 (pa(BNEpA(BIEG,

we see that

(7) px(B)SH.
Clearly, the sets p, (A)\H and p;.(A)\H, are closed subsets of X;.. We claim

that they are disjoint. Assume to the contrary that there exists a point

(8) y €D (ANH)N(pa (A\H) .

Let V be a member of ¢, which contains y. For any open neighborhood W of
y, which is contained in V, there exist points a€ A, a’€ A’ such that

(9) {pr(a), pa(a SW.
The set
(Pa) WS (pa) (V)

must be contained in one of the sets X\ A4, X\A’ or p7(G,). It cannot be con-
tained in X\A because a=(p,.)"Y(W). Similarly, the point a’&(p;)"'(W) rules
out the set X\ A’. Hence, we must have

(10) (Pa) " W)E P (Go)=(p 1) (H,) -
However, (9) and imply
(11) {pa(a), pi(a"} SHNW.

This shows that every sufficiently small open neighborhood W of vy intersects H,
and therefore y<= H,Z H, which, however, contradicts (8).
We now choose disjoint open set K, LS X;., such that

(12) pr(ANHEK, pi(AD\HESL.
We then put
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(13) K*=KUH, L*=L\UH.

These are open sets in X, such that

(14) Pr(ASK*, pur(ANSL*

(15) K*NL*=H.

Therefore,

(16) P (BYS pr(DNpr(AVSK*NL*=H.

Now consider an open set K¥<S X, such that
(17) | pr(ASKISKtsK*

qy={K*, X\K¥} is a normal covering of X;.. Therefore, by property (B1)**
applied to p(x. . ([7], Theorem 2), there is a 2”=1" such that

(18) Dara(A1)ESt(Pa(A), W) .
However, St(p; (A4), W)=K* so that becomes
(19) para (A1) S K*

Similarly, we argue with A’ and L*. Therefore, we can assume that 1”
also satisfies

(20) ParaAr)S L*.
It now follows, by that
(21) Par(Ba)Epar(K*NL*)=piz(H).

Consequently, (3) yields the desired result
(22) P (Bi)EG.

In the next theorem we consider the induced morphism p 4, p).

THEOREM 5. Let p:(X, A, A)—(X, A, A") be a resolution of triads. Let
the spaces X, X, A= A, be normal, let the sets A, A’SX be closed and let the

sets ASX and A; S X;, A= A, be normally embedded. Then the induced morphism
Pw.» (A, B)—(A, B) is a resolution of pairs.

COROLLARY 2. If p:(X, A, A)—(X, A, A’) is an ANR-resolution of triads,
X is a normal space, A, A’S X are closed sets and A is normally embedded in X,
then the induced morphism p 4 p : (A, B)—(A, B) is an ANR-resolution of pairs.

We say that AS X is normally embedded in X (or @-embedded) provided
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every normal covering <V of A admits a normal covering U of X such that
U| A refines <.

PROOF OF THEOREM 5. By [7, Theorem 2], it suffices to prove that the
induced morphism p,: A—A is a resolution and p 4, 5, has property (B1)**, Since
Dx, s i a resolution and also ASX and A;SX;, 1€ A, are normally embedded,
[7, Theorem 3] implies that p, is a resolution.

In order to establish (Bl)** for ps s, we apply and conclude
that p.x.m is a resolution. Therefore, p(x,s has property (B1)**. Consequently,
for any 1=/ and any normal covering U of X, there is a A”=2 such that (1)
holds. Now let <V be a normal covering of A;. Since A; is normally embedded
in X;, we can choose ¥ such that U|A refines V. Then the star Sta,
(pa(B), V) (star with respect to A;) clearly contains A;N\St(pi(B), V), which,
by (1), contains p;:-(B;-). This establishes (B1)** for p, 5.
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