INJECTIVE DIMENSION OF GENERALIZED MATRIX RINGS

By

Kazunori SAKANO

A Morita context $\langle M, N \rangle$ consists of two rings R and S with identity, two bimodules ${}_RN_S$ and ${}_SM_R$, and two bimodule homomorphisms called the pairings $(-,-):N\otimes_SM\to R$ and $[-,-]:M\otimes_RN\to S$ satisfying the associativity conditions (n,m)n'=n[m,n'] and [m,n]m'=m(n,m'). The images of the pairings are called the trace ideals of the context and are denoted by ${}_RI_R$ and ${}_SJ_S$.

Let Λ be the generalized matrix ring defined by the Morita context $\langle M, N \rangle$, i.e.,

$$\Lambda = \begin{bmatrix} R & N \\ M & S \end{bmatrix},$$

where the addition is given by element-wise and the multiplication by

$$\begin{bmatrix} r & n \\ m & s \end{bmatrix} \begin{bmatrix} r' & n' \\ m' & s' \end{bmatrix} = \begin{bmatrix} rr' + (n, m') & rn' + ns' \\ mr' + sm' & [m, n'] + ss' \end{bmatrix}.$$

For a right R-module U, id- U_R (fd- U_R) denotes the injective (flat) dimension of U_R , respectively.

Let

$$\Gamma = \begin{bmatrix} R & 0 \\ M & S \end{bmatrix}$$

be the generalized matrix ring defined by the trivial context $\langle M, 0 \rangle$. In a previous paper [9], we have established a theorem concerning the estimation of the injective dimension of Γ_{Γ} in terms of those of R_R , M_R and S_S as follows:

THEOREM. Assume that $_SM$ is flat. Then we have $\max(\mathrm{id}-R_R,\,\mathrm{id}-M_R,\,\mathrm{id}-S_S) \leq \mathrm{id}-\Gamma_\Gamma \leq \max(\mathrm{id}-R_R,\,\mathrm{id}-M_R,\,\mathrm{id}-S_S-1)+1$.

The main purpose of this paper is to extend a part of results in the previous paper [9] to Λ under some additional conditions on the Morita context $\langle M, N \rangle$. In Section 1, we decide a lower bound of $\mathrm{id}\text{-}\Lambda_{\Lambda}$ using $\mathrm{id}\text{-}R_R$, $\mathrm{id}\text{-}M_R$, $\mathrm{id}\text{-}S_S$

Received January 30, 1984.

and id- N_S . In Section 2, we investigate an upper bound of id- Λ_A as well as a lower bound of id- Λ_A in terms of id- R_R , id- M_R , id- S_S and id- N_S under the condition that N=NJ, both S_SM and S_RM are flat, and the natural maps $I\otimes_R I$ I and $I\otimes_S I$ are isomorphisms. The estimation of id-I is as follows:

THEOREM 2.6. If N=NJ, both $_SM$ and $_RN$ are flat, and the natural maps $I \otimes_R I \rightarrow I^2$ and $J \otimes_S J \rightarrow J^2$ are isomorphisms, then we have

$$\max(\mathrm{id}\text{-}R_R, \mathrm{id}\text{-}M_R, \mathrm{id}\text{-}S_S, \mathrm{id}\text{-}N_S)$$

$$\leq$$
id- $\Lambda_A \leq$ max (id- R_R , id- M_R , id- S_S , id- N_S)+1.

In Section 3, we examine the condition for Λ to be a right self-injective ring. Section 4 is devoted to study $\operatorname{id}-\Lambda_{\Lambda}$ in case of the derived context. Furthermore, we show that $\operatorname{id}-R_R=\operatorname{id}-\Lambda_{\Lambda}$, if M_R is finitely generated projective, which is the extension of the well-known fact that $\operatorname{id}-\begin{bmatrix} R & R \\ R & R \end{bmatrix}=\operatorname{id}-R$, In the final Section 5, we exhibit some example when the left-hand side or the right-hand side equality holds in Theorem 2.6.

Throughout this paper, uniess otherwise specified, Λ denotes the generalized matrix ring defined by the Morita context $\langle M, N \rangle$ with pairings (-, -) and [-, -], and the trace ideals ${}_RI_R$ and ${}_SJ_S$. For a right R-module U, id- U_R (fd- U_R) denotes the injective (flat) dimension of U_R , respectively. Moreover, we set $e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in \Lambda$ and $e' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \Lambda$.

The author wishes to express his hearty thanks to Professor T. Kato for his useful suggestions and remarks.

1. General cases.

The following lemma is essentially in [3, p. 346].

LEMMA 1.1. Let A_R , $_RB_A$ and C_A be modules such that $\operatorname{Ext}_A^i(B, C) = 0$ (i>0) and $\operatorname{Tor}_i^R(A, B) = 0$ (i>0). Then there holds

$$\operatorname{Ext}_{R}^{n}(A, \operatorname{Hom}_{A}(B, C)) \cong \operatorname{Ext}_{A}^{n}(A \otimes_{R} B, C)$$
.

THEOREM 1.2. Assume that $fd_{-R}M$ and $fd_{-R}N$ are finite. Then we have

$$\max(\max(\operatorname{id}-R_R, \operatorname{id}-M_R)-\operatorname{fd}-R_N, \max(\operatorname{id}-S_S, \operatorname{id}-N_S)-\operatorname{fd}-S_M)$$

 $\leq \operatorname{id}-\Lambda_A.$

PROOF. Let L be a right ideal of R. Since

Injective dimension of generalized matrix rings

$$\operatorname{Hom}_{\Lambda}(R/L \otimes_{R} e \Lambda, \Lambda) \cong \operatorname{Hom}_{R}(R/L, \operatorname{Hom}_{\Lambda}(e\Lambda, \Lambda))$$

$$\cong \operatorname{Hom}_{R}(R/L, \Lambda e)$$

$$\cong \operatorname{Hom}_{R}(R/L, R \oplus M)$$

and $\operatorname{Ext}_{\Lambda}^{i}(e\Lambda, \Lambda)=0$ (i>0), the resulting spectral sequence is

$$E_2^{p,q} = \operatorname{Ext}_{\Lambda}^q(\operatorname{Tor}_p^R(R/L, e\Lambda), \Lambda) \xrightarrow{q} \operatorname{Ext}_R^n(R/L, R \oplus M).$$

Since $E_2^{p,q}=0$ for either $q>\operatorname{id}-\Lambda_{\Lambda}$ or $p>\operatorname{fd}_{-R}N$, we have $\operatorname{Ext}_R^n(R/L,R\oplus M)=0$ for $n>\operatorname{id}-\Lambda_{\Lambda}+\operatorname{fd}_{-R}N$. Thus we have $\max(\operatorname{id}-R_R,\operatorname{id}-M_R)-\operatorname{fd}_{-R}N\leq\operatorname{id}-\Lambda_{\Lambda}$. In the similar manner, we also obtain $\max(\operatorname{id}-S_S,\operatorname{id}-N_S)-\operatorname{fd}_{-S}M\leq\operatorname{id}-\Lambda_{\Lambda}$, completing the proof.

2. Trace accessible cases.

We prepare some lemmas needed after.

LEMMA 2.1. Every right ideal of Λ has the form of [X Y] with X_R a submodule of $\begin{bmatrix} R \\ M \end{bmatrix}_R$ and Y_S a submodule of $\begin{bmatrix} N \\ S \end{bmatrix}_S$ satisfying $\{\begin{bmatrix} (n,m) \\ sm \end{bmatrix} | \begin{bmatrix} n \\ s \end{bmatrix} \in Y$, $m \in M$ and $\{\begin{bmatrix} rn \\ m,n \end{bmatrix} | \begin{bmatrix} r \\ m \end{bmatrix} \in X$, $n \in N$ and $\{\begin{bmatrix} rn \\ m,n \end{bmatrix} | \begin{bmatrix} r \\ m \end{bmatrix} \in X$, $n \in N$ and $\{[rn,n], rm \} \in X$.

PROOF. Let P be a right ideal of Λ . Put $X = \left\{ \begin{bmatrix} r \\ m \end{bmatrix} \middle| \begin{bmatrix} r & 0 \\ m & 0 \end{bmatrix} \in P \right\}$ and $Y = \left\{ \begin{bmatrix} n \\ s \end{bmatrix} \middle| \begin{bmatrix} 0 & n \\ 0 & s \end{bmatrix} \in P \right\}$. Then X and Y satisfy the above conditions. The converse part is obvious.

The following lemmas are well-known.

LEMMA 2.2.

- (1) $I \operatorname{Ker}(-, -) = \operatorname{Ker}(-, -)I = 0$.
- (2) $J \operatorname{Ker} \lceil -, \rceil = \operatorname{Ker} \lceil -, \rceil J = 0$.

Lemma 2.3. Assume that N = NJ. Then

- (1) NJ = IN = N.
- (2) $I = I^2$ and $J = J^2$.

Following [10], a right R-module W is called L-accessible for an ideal L of R if W = WL.

LEMMA 2.4. Assume that N = NJ and that $_RN$ are flat. Then the following are equivalent:

- (1) The natural maps $I \otimes_R I \rightarrow I^2$ and $J \otimes_S J \rightarrow J^2$ are isomorphisms.
- (2) The pairings (-, -) and [-, -] are monic.

PROOF. $(1) \Rightarrow (2)$. The exact sequences

and
$$0 \longrightarrow \operatorname{Ker}(-, -)_R \xrightarrow{\nu_1} N \otimes_S M_R \xrightarrow{(-, -)} I_R \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Ker}[-, -]_S \xrightarrow{\nu_2} M \otimes_R N_S \xrightarrow{[-, -]} J_S \longrightarrow 0$$

induce the following commutative diagrams with exact rows and columns

and

$$\operatorname{Ker} [-, -] \otimes_{S} J \xrightarrow{\nu_{2} \otimes J} M \otimes_{R} N \otimes_{S} J \xrightarrow{[-, -] \otimes J} J \otimes_{S} J \longrightarrow 0$$

$$\downarrow^{\alpha_{2}} \qquad \downarrow^{\beta_{2}} \qquad \downarrow^{\gamma_{2}} \qquad (**)$$

$$0 \longrightarrow \operatorname{Ker} [-, -] \cap (M \otimes_{R} N) J \xrightarrow{\subseteq} (M \otimes_{R} N) J \xrightarrow{\delta_{2}} J^{2} = J,$$

$$\downarrow^{0} \qquad 0$$

where α_i , β_i and γ_i (i=1,2) are the natural maps, $\delta_1=(-,-)|I(N\otimes_S M)$, and $\delta_2=[-,-]|(M\otimes_R N)J$. Since γ_i is an isomorphism by assumption, α_i is epic by the 5-lemma. Since $\operatorname{Im}\alpha_1=I\operatorname{Ker}(-,-)=0$ and $\operatorname{Im}\alpha_2=\operatorname{Ker}[-,-]J=0$ by Lemma 2.2, δ_1 and δ_2 are monic. Since N=IN=NJ by Lemma 2.3, it is easy to see that $\delta_1=(-,-)$ and $\delta_2=[-,-]$. Hence the pairings (-,-) and [-,-] are monic.

 $(2)\Rightarrow(1)$. Since $_RN$ is flat, N=IN and (-,-) is monic, it is easily verified that γ_1 is an isomorphism in view of the commutative diagram (*). Moreover, since (-,-) and [-,-] are monic and N=NJ, it is easily checked that β_2 is the following comdosition of maps

$$M \otimes_{R} N \otimes_{S} J \xrightarrow{M \otimes N \otimes [-, -]^{-1}} M \otimes_{R} N \otimes_{S} M \otimes_{R} N \xrightarrow{M \otimes (-, -) \otimes N}$$

$$M \otimes_{R} I \otimes_{R} N \xrightarrow{\sim} M \otimes_{R} IN = M \otimes_{R} N$$
.

It follows from the commutative diagram (**) that γ_2 is an isomorphism.

In the remainder of this section, we assume that both ${}_SM$ and ${}_RN$ are flat and that the natural maps $I \otimes_R I \rightarrow I^2$ and $J \otimes_S J \rightarrow J^2$ are isomorphisms.

- LEMMA 2.5. Assume further that N = NJ. Let $[X_0 \ Y_0]$ be a right ideal of Λ and put $X_i = \left\{\sum_j {n_j \choose s_j m_j} \right\} {n_j \brack s_j} \in Y_{i-1}, m_j \in M$ and $Y_i = \left\{\sum_k {r_k n_k \brack m_k, n_k} \right\} {r_k \brack m_k} \in X_{i-1}, n_k \in N$ (i = 1, 2, 3). Then
- (1) $Y_{i-1} \bigotimes_S M \cong X_i$ as a right R-module and $X_{i-1} \bigotimes_R N \cong Y_i$ as a right S-module
- (2) $[X_{i-1} \ 0] \otimes_R e \Lambda \cong [X_{i-1} \ Y_i]$ and $[0 \ Y_{i-1}] \otimes_S e' \Lambda \cong [X_i \ Y_{i-1}]$ as right Λ -modules.
- PROOF. (1) Since ${}_{S}M$ is flat, and (-,-) is monic by Lemma 2.4, the homomorphism $Y_{i-1} \otimes_{S} M \to X_{i}$ defined by $\begin{bmatrix} n \\ s \end{bmatrix} \otimes m \to \begin{bmatrix} (n,m) \\ sm \end{bmatrix}$ for $\begin{bmatrix} n \\ s \end{bmatrix} \in Y_{i-1}$, $m \in M$, is an isomorphism. Similarly, we can show that $X_{i-1} \otimes_{R} N \cong Y_{i}$.
- (2) It is easily seen that $[X_{i-1} Y_i]$ and $[X_i Y_{i-1}]$ are right ideals of Λ . Since $X_{i-1} \bigotimes_R N \cong Y_i$ by (1), the homomorphism $[X_{i-1} \ 0] \bigotimes_R e \Lambda \to [X_{i-1} \ Y_i]$ defined via

$$\begin{bmatrix} r & 0 \\ m & 0 \end{bmatrix} \otimes \begin{bmatrix} r' & n \\ 0 & 0 \end{bmatrix} \longmapsto \begin{bmatrix} rr' & rn \\ mr' & [m, n] \end{bmatrix} \quad \text{for } \begin{bmatrix} r \\ m \end{bmatrix} \in X_i, \begin{bmatrix} r & n \\ 0 & 0 \end{bmatrix} \in e\Lambda,$$

is an isomorphism. By the similar manner as above, we obtain $[0 \ Y_{i-1}] \otimes_S e' \Lambda \cong [X_i \ Y_{i-1}]$.

THEOREM 2.6. Assume further that N = NJ. Then we have $\max(\text{id-}R_R, \text{id-}M_R, \text{id-}S_S, \text{id-}N_S)$

$$\leq$$
id- $\Lambda_A \leq$ max (id- R_R , id- M_R , id- S_S , id- N_S)+1.

PROOF. Let $[X_0 \ Y_0]$ be a right ideal of Λ and put $X_i = \left\{\sum_{j} {n_j \choose s_j m_j}\right\} {n_j \choose s_j} \in Y_{i-1}, \ m_j \in M$ and $Y_i = \left\{\sum_{k} {r_k n_k \brack m_k, n_k}\right\} {r_k \brack n_k} \in X_{i-1}, \ n_k \in N$ (i = 1, 2, 3). Then we consider the following exact sequence of right Λ -modules:

$$0 \longrightarrow [X_1 \ Y_0] \longrightarrow [X_0 \ Y_0] \longrightarrow [X_0 \ Y_0]/[X_1 \ Y_0] \longrightarrow 0. \tag{*}$$

Since N=NJ, it is easy to see that $Y_1=Y_1J$, from which it follows that $Y_1=Y_2=Y_3$. Therefore, we have $[X_0\ Y_0]/[X_1\ Y_0]\cong [X_0\ Y_1]/[X_1\ Y_1]=[X_0\ Y_1]/[X_1\ Y_2]$. Moreover, since both ${}_RN$ and ${}_SM$ are flat, and both (-,-) and [-,-] are monic by Lemma 2.4, we have $[X_1\ Y_0]\cong [0\ Y_0]\otimes_S e'\Lambda$ and $[X_0\ Y_0]/[X_1\ Y_0]\cong [X_0\ Y_1]/[X_1\ Y_2]\cong ([X_0\ 0]/[X_1\ 0])\otimes_R e\Lambda$ by Lemma 2.5. Now, we put $\max(\mathrm{id}-R_R,\mathrm{id}-M_R,\mathrm{id}-S_S,\mathrm{id}-N_S)=t$. The exact sequence (*) yields the following exact sequence

$$\operatorname{Ext}_{A}^{t+1}([X_0 \ Y_0]/[X_1 \ Y_0], \ \Lambda) \longrightarrow \operatorname{Ext}_{A}^{t+1}([X_0 \ Y_0], \ \Lambda) \longrightarrow \operatorname{Ext}_{A}^{t+1}([X_1 \ Y_0], \ \Lambda)$$

from which it follows that $\operatorname{Ext}_{\Lambda}^{t+1}([X_0 Y_0], \Lambda) = 0$ together with the fact that

$$\begin{split} \operatorname{Ext}_{A}^{t+1}([X_0 \ Y_0]/[X_1 \ Y_0], \ \varLambda) &\cong \operatorname{Ext}_{A}^{t+1}([X_0 \ Y_1]/[X_1 \ Y_1], \ \varLambda) \\ &\cong \operatorname{Ext}_{A}^{t+1}([X_0 \ Y_1]/[X_1 \ Y_2], \ \varLambda) \\ &\cong \operatorname{Ext}_{A}^{t+1}((X_0/X_1) \bigotimes_R e \varLambda, \ \varLambda) \\ &\cong \operatorname{Ext}_{R}^{t+1}(X_0/X_1, \ \operatorname{Hom}_A(e \varLambda, \ \varLambda)) \\ &\cong \operatorname{Ext}_{R}^{t+1}(X_0/X_1, \ \varLambda e) = 0 \end{split}$$

and that

$$\begin{aligned} \operatorname{Ext}_{\varLambda}^{t+1}([X_1 \ Y_0], \ \varLambda) &\cong \operatorname{Ext}_{\varLambda}^{t+1}([0 \ Y_0] \bigotimes_{S} e' \varLambda, \ \varLambda) \\ &\cong \operatorname{Ext}_{S}^{t+1}(Y_0, \ \operatorname{Hom}_{\varLambda}(e' \varLambda, \ \varLambda)) \\ &\cong \operatorname{Ext}_{S}^{t+1}(Y_0, \ \varLambda e') = 0 \end{aligned}$$

in view of Lemma 1.1. Hence we have $t \le id - \Lambda_{\Lambda} \le t+1$ together with Theorem 1.2.

REMARK. If we assume that M=MI instead of N=NJ in Lemma 2.5 and Theorem 2.6, we obtain the same results by the symmetry of the Morita context $\langle M, N \rangle$.

Theorem 2.7. Assume further that NJ = N.

- (1) If $\max(\text{id-}R_R, \text{id-}M_R) < \max(\text{id-}S_S, \text{id-}N_S) = i \neq 0$, then $\text{id-}\Lambda_A = i$ if and only if $\text{Ext}_S^i(N, S \oplus N) = 0$.
- (2) If $\max(\text{id-}S_S, \text{id-}N_S) < \max(\text{id-}R_R, \text{id-}M_R) = i \neq 0$ and if $\operatorname{Ext}_R^i(M/JM, R \oplus M) \neq 0$, then $\operatorname{id-}\Lambda_A = i + 1$.
 - (3) Suppose that $\max(\text{id-}R_R, \text{id-}M_R) = \max(\text{id-}S_S, \text{id-}N_S) = i \neq 0.$
 - (i) If $\operatorname{Ext}_R^i(X, R \oplus M) \neq 0$ for some $X_R \subseteq (R \oplus M)_R$, then $\operatorname{id} A_A = i + 1$.
 - (ii) If id- $S_S > id-N_S$ and if $\operatorname{Ext}_R^i(M/JM, R) \neq 0$, then $\operatorname{id}-\Lambda_A = i+1$.
 - (iii) If id- N_S > id- S_S and if $\operatorname{Ext}_R^i(M/JM, M) \neq 0$, then id- $\Lambda_A = i+1$.

PROOF. (1) Let $[X_0 \ Y_0]$ be a right ideal of A and put $X_i = \left\{\sum_k {n_k \choose s_k m_k}\right\}$ $\begin{bmatrix} n_k \\ s_k \end{bmatrix} \in Y_{i-1}, \ m_k \in M$ and $Y_i = \left\{\sum_j {r_j n_j \brack [m_j, \ n_j]}\right\} \begin{bmatrix} r_j \\ m_j \end{bmatrix} \in X_{i-1}, \ n_j \in N$ (i = 1, 2, 3). Since NJ = N, it is easy to see that $Y_1 = Y_2$. Moreover, since

$$\operatorname{Ext}_{\Lambda}^{i}([X_{0} \ Y_{0}]/[X_{1} \ Y_{0}], \ \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}([X_{0} \ Y_{1}]/[X_{1} \ Y_{1}], \ \Lambda)$$

$$= \operatorname{Ext}_{\Lambda}^{i}([X_{0} \ Y_{1}]/[X_{1} \ Y_{2}], \ \Lambda)$$

$$\cong \operatorname{Ext}_{\Lambda}^{i}(([X_{0} \ 0] \otimes_{R} e\Lambda)/([X_{1} \ 0] \otimes_{R} e\Lambda), \ \Lambda)$$

$$\cong \operatorname{Ext}_{\Lambda}^{i}(X_{0}/X_{1} \otimes_{R} e\Lambda, \ \Lambda)$$

$$\cong \operatorname{Ext}_R^i(X_0/X_1, R \oplus M) = 0$$

and

$$\operatorname{Ext}_{\Lambda}^{i}([X_{1} Y_{0}], \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}([0 Y_{0}] \otimes_{S} e' \Lambda, \Lambda)$$
$$\cong \operatorname{Ext}_{S}^{i}(Y_{0}, S \oplus N)$$

by Lemmas 1.1 and 2.5, we have $\operatorname{Ext}_{A}^{i}([X_{0} Y_{0}], \Lambda) \cong \operatorname{Ext}_{S}^{i}(Y_{0}, S \oplus N)$ from the following exact sequence

$$0 = \operatorname{Ext}_{\Lambda}^{i}([X_{0} Y_{0}]/[X_{1} Y_{0}], \Lambda) \longrightarrow \operatorname{Ext}_{\Lambda}^{i}([X_{0} Y_{0}], \Lambda) \longrightarrow \operatorname{Ext}_{\Lambda}^{i}([X_{1} Y_{0}], \Lambda)$$
$$\longrightarrow \operatorname{Ext}_{\Lambda}^{i+1}([X_{0} Y_{0}]/[X_{1} Y_{0}], \Lambda) = 0.$$

It follows that $\operatorname{id} - \Lambda_{\Lambda} = i$ if and only if $\operatorname{Ext}_{\Lambda}^{i}([X_{0} Y_{0}], \Lambda) \cong \operatorname{Ext}_{S}^{i}(Y_{0}, N \oplus S) = 0$ for every right ideal $[X_{0} Y_{0}]$ of Λ if and only if $\operatorname{Ext}_{S}^{i}(N, S \oplus N) = 0$ from the following exact sequence

$$\operatorname{Ext}_{S}^{i}(N, S \oplus N) = \operatorname{Ext}_{S}^{i}(S \oplus N, S \oplus N) \longrightarrow \operatorname{Ext}_{S}^{i}(Y_{0}, S \oplus N)$$
$$\longrightarrow \operatorname{Ext}_{S}^{i+1}((S \oplus N)/Y_{0}, S \oplus N) = 0.$$

(2) The exact sequence of right Λ -modules

$$0 \longrightarrow \begin{bmatrix} 0 & 0 \\ IM & I \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 \\ M & I \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 \\ M & I \end{bmatrix} / \begin{bmatrix} 0 & 0 \\ IM & I \end{bmatrix} \longrightarrow 0$$

yields the following exact sequence

$$\operatorname{Ext}_{A}^{i-1}\left(\begin{bmatrix}0&0\\JM&J\end{bmatrix},\Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}0&0\\M&J\end{bmatrix}/\begin{bmatrix}0&0\\JM&J\end{bmatrix},\Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}0&0\\M&J\end{bmatrix},\Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}0&0\\M&J\end{bmatrix},\Lambda\right).$$

Since $J = J^2$ by Lemma 2.3, we have $\begin{bmatrix} 0 & 0 \\ JM & J \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ JM & J^2 \end{bmatrix}$. Since

$$\operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix}0 & 0\\ M & J\end{bmatrix}\middle/\begin{bmatrix}0 & 0\\ JM & J\end{bmatrix}, \Lambda\right) = \operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix}0 & 0\\ M & J\end{bmatrix}\middle/\begin{bmatrix}0 & 0\\ JM & J^{2}\end{bmatrix}, \Lambda\right)$$

$$\cong \operatorname{Ext}_{\Lambda}^{i}\left(\left(\begin{bmatrix}0 & 0\\ M & 0\end{bmatrix}\otimes_{R}e\Lambda\right)\middle/\left(\begin{bmatrix}0 & 0\\ JM & 0\end{bmatrix}\otimes_{R}e\Lambda\right), \Lambda\right)$$

$$\cong \operatorname{Ext}_{\Lambda}^{i}(M/JM\otimes_{R}e\Lambda, \Lambda)$$

$$\cong \operatorname{Ext}_{\Lambda}^{i}(M/JM, R \oplus M) \neq 0$$

and

$$\operatorname{Ext}_{\Lambda}^{k}\left(\begin{bmatrix}0&0\\JM&J\end{bmatrix},\Lambda\right)\cong\operatorname{Ext}_{\Lambda}^{k}(J\otimes_{S}e'\Lambda,\Lambda)$$

$$\cong \operatorname{Ext}_{S}^{k}(J, S \oplus N) = 0 \quad (k = i-1, i),$$

by Lemmas 1.1 and 2.5, we have $\operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}0&0\\M&J\end{bmatrix},\ \varLambda\right)\cong\operatorname{Ext}_{R}^{i}(M/JM,\ R\oplus M)\neq 0.$ Hence $\operatorname{id-} \varLambda_{A}=i+1$ together with Theorem 2.6.

(3) (i) Let X_R be a submodule of $(R \oplus M)_R$ such that $\operatorname{Ext}_R^i(X, R \oplus M) \neq 0$ and $Y_1 = \left\{\sum_j \begin{bmatrix} r_j n_j \\ [m_j, n_j] \end{bmatrix} \middle| \begin{bmatrix} r_j \\ m_j \end{bmatrix} \in X, \ n_j \in N \right\}$. Since $[X Y_1]$ is a right ideal of Λ and

$$\operatorname{Ext}_{\Lambda}^{i}([X Y_{1}], \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i}([X 0 \otimes_{R}] e\Lambda, \Lambda)$$

$$\cong \operatorname{Ext}_{R}^{i}(X, R \oplus M) \neq 0$$

by Lemmas 1.1 and 2.5, we have $id-\Lambda_A = i+1$ by Theorem 2.6.

(ii) Let

$$h_{i}^{*}: \operatorname{Ext}_{\Lambda}^{i}\left(\Lambda \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e\Lambda\right) \oplus \operatorname{Ext}_{\Lambda}^{i}\left(\Lambda \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e'\Lambda\right)$$

$$\longrightarrow \operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix} R & N \\ M & J \end{bmatrix} \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e\Lambda\right) \oplus \operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix} R & N \\ M & J \end{bmatrix} \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e'\Lambda\right)$$

be the induced map by the inclusion map

Since

$$\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda \Big/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e\Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{i}(S/J \otimes_{S} e'\Lambda, e\Lambda)$$

$$\cong \operatorname{Ext}_{S}^{i}(S/J, N) = 0$$

by Lemma 1.1, we have $\operatorname{Im} h_i^* \subseteq \operatorname{Ext}_A^i \left(\begin{bmatrix} R & N \\ M & J \end{bmatrix} \middle / \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, e'A \right)$. Since NJ = N, we have $J = J^2$ by Lemma 2.3. Therefore, if

$$\operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}R & N\\ M & J\end{bmatrix} \middle/ \begin{bmatrix}R & N\\ JM & J\end{bmatrix}, e\Lambda\right) = \operatorname{Ext}_{A}^{i}\left(\begin{bmatrix}R & N\\ M & J\end{bmatrix} \middle/ \begin{bmatrix}R & N\\ JM & J^{2}\end{bmatrix}, e\Lambda\right)$$

$$\cong \operatorname{Ext}_{A}^{i}\left(\left(\begin{bmatrix}R & 0\\ M & 0\end{bmatrix} \otimes_{R} e\Lambda\right) \middle/ \left(\begin{bmatrix}R & 0\\ JM & 0\end{bmatrix} \otimes_{R} e\Lambda\right), e\Lambda\right)$$

$$\cong \operatorname{Ext}_{A}^{i}\left(M/JM \otimes_{R} e\Lambda, e\Lambda\right)$$

$$\cong \operatorname{Ext}_{R}^{i}\left(M/JM, R\right) \neq 0,$$

then h_i^* is not epic. It follows that $\operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda\Big/{\begin{bmatrix}R & N\\ M & J\end{bmatrix}}, \Lambda\right) \neq 0$ from the exactness of the following sequence

$$\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, \Lambda\right) \xrightarrow{h_{i}^{*}} \operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix} R & N \\ M & J \end{bmatrix} \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, \Lambda\right)$$

$$\longrightarrow \operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda \middle/ \begin{bmatrix} R & N \\ M & J \end{bmatrix}, \Lambda\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda \middle/ \begin{bmatrix} R & N \\ JM & J \end{bmatrix}, \Lambda\right) = 0,$$

hence id- $\Lambda_A = i+1$ together with Theorem 2.6.

(iii) This can be proved by the similar manner as in (ii).

If we assume that MI = M instead of NJ = N, Theorem 2.7 can be rewrited as follows:

Theorem 2.8. Assume further that MI = M.

- (1) If $\max(\text{id-}S_S, \text{id-}N_S) < \max(\text{id-}R_R, \text{id-}M_R) = i \neq 0$, then $\text{id-}\Lambda_A = i$ if and only if $\text{Ext}_R^i(M, R \oplus M) = 0$.
- (2) If $\max(\text{id-}R_R, \text{id-}M_R) < \max(\text{id-}S_S, \text{id-}N_S) = i \neq 0$ and if $\text{Ext}_S^i(N/IN, S \oplus N) \neq 0$, then $\text{id-}\Lambda_A = i + 1$.
 - (3) Suppose that $\max(\text{id-}S_S, \text{id-}N_S) = \max(\text{id-}R_R, \text{id-}M_R) = i \neq 0.$
 - (i) If $\operatorname{Ext}_{S}^{i}(Y, S \oplus N) \neq 0$ for some $Y_{S} \subseteq (S \oplus N)_{S}$, then $\operatorname{id} A_{A} = i + 1$.
 - (ii) If id- $R_R > id-M_R$ and if $\operatorname{Ext}_S^i(N/IN, S) \neq 0$, then $\operatorname{id}-\Lambda_A = i+1$.
 - (iii) If id- M_R >id- R_R and if $\operatorname{Ext}_S^i(N/IN, N) \neq 0$, then id- $\Lambda_A = i+1$.

3. Self-injective rings.

In this section, we consider the condition for \varLambda to be right self-injective.

Let $\alpha: N \to \operatorname{Hom}_R(M, R)$ be a map defined by $n \mapsto (m \mapsto (n, m))$ for $n \in N$, $m \in M$ and $\sigma: S \to \operatorname{End}(M_R)$ the canonical map. Then we have the following theorem:

THEOREM 3.1. If

- (1) R_R , M_R , N_S' and $l_S(M)_S$ are injective, where $N' = \text{Ker } \alpha$ and $l_S(M) = \{s \in S \mid sm = 0 \text{ for every } m \in M\}$,
 - (2) α and σ are epic,
 - (3) $\operatorname{Hom}_{S}(N, N' \oplus \boldsymbol{l}_{S}(M)) = 0$

are satisfied, then Λ_{Λ} is injective.

PROOF. Let $[X \ Y]$ be a right ideal of \varLambda . The exact sequence of right \varLambda -modules

$$0 \longrightarrow \begin{bmatrix} 0 & N' \\ 0 & I_S(M) \end{bmatrix} \longrightarrow \Lambda \longrightarrow \begin{bmatrix} R & M^* \\ M & \operatorname{End}(M_R) \end{bmatrix} \longrightarrow 0,$$

where $M^* = \operatorname{Hom}_R(M, R)$, induces the following exact sequence

$$\operatorname{Ext}_{A}^{1}\left(A/[XY],\begin{bmatrix}0&N'\\0&\boldsymbol{l}_{S}(M)\end{bmatrix}\right) \longrightarrow \operatorname{Ext}_{A}^{1}(A/[XY],A)$$

$$\longrightarrow \operatorname{Ext}_{A}^{1}\left(A/[XY],\begin{bmatrix}R&M^{*}\\M&\operatorname{End}(M_{P})\end{bmatrix}\right).$$

Since

$$\operatorname{Ext}_{\Lambda}^{1}\left(\Lambda/[XY],\begin{bmatrix}0&N'\\0&\boldsymbol{l}_{S}(M)\end{bmatrix}\right) \cong \operatorname{Ext}_{\Lambda}^{1}(\Lambda/[XY],\operatorname{Hom}_{S}(\Lambda e',N'\oplus\boldsymbol{l}_{S}(M)))$$

$$\cong \operatorname{Ext}_{S}^{1}(\Lambda/[XY]\otimes_{\Lambda}\Lambda e',N'\oplus\boldsymbol{l}_{S}(M)) = 0$$

and

$$\operatorname{Ext}\nolimits_{A}^{1}\!\left(\varLambda/[X\,Y],\left[\begin{matrix}R&M^{*}\\M&\operatorname{End}\nolimits\left(M_{R}\right)\end{matrix}\right]\right) \cong \operatorname{Ext}\nolimits_{R}^{1}(\varLambda/[X\,Y]\otimes_{\varLambda}\varLambda e,\,\varLambda e) = 0\,,$$

we have $\operatorname{Ext}_{\Lambda}^{1}(\Lambda/[XY], \Lambda) = 0$, that is, Λ_{Λ} is injective.

THEOREM 3.2. If

- (1) $_{S}M$ and $_{R}N$ are flat,
- (2) The natural maps $I \otimes_R I \rightarrow I^2$ and $J \otimes_S J \rightarrow J^2$ are isomorphisms,
- (3) N = JN,
- (4) s(S/J) is flat,

then the converse of Theorem 3.1 holds.

PROOF. The exact sequence of right Λ -modules

$$0 \longrightarrow \begin{bmatrix} I & N \\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} R & N \\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} R & N \\ 0 & 0 \end{bmatrix} / \begin{bmatrix} I & N \\ 0 & 0 \end{bmatrix} \longrightarrow 0$$

yields the following exact sequence

$$\operatorname{Hom}_{A}\left(\begin{bmatrix}R & N\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right) \longrightarrow \operatorname{Hom}_{A}\left(\begin{bmatrix}I & N\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right)$$
$$\longrightarrow \operatorname{Ext}_{A}^{1}\left(\begin{bmatrix}R & N\\ 0 & 0\end{bmatrix} \middle/ \begin{bmatrix}I & N\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right).$$

Since $\operatorname{Hom}_{A}\left(\begin{bmatrix}R & N\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right) \cong \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}e = 0$ and

$$\operatorname{Ext}_{A}^{1}\left(\left[\begin{matrix}R&N\\0&0\end{matrix}\right]\middle/\left[\begin{matrix}I&N\\0&0\end{matrix}\right], \begin{bmatrix}0&N'\\0&\boldsymbol{l}_{S}(M)\end{bmatrix}\right) = \operatorname{Ext}_{A}^{1}\left(\left[\begin{matrix}R&N\\0&0\end{matrix}\right]\middle/\left[\begin{matrix}I&IN\\0&0\end{matrix}\right], \begin{bmatrix}0&N'\\0&\boldsymbol{l}_{S}(M)\end{bmatrix}\right)$$

$$\cong \operatorname{Ext}_{A}^{1}\left(R/I \otimes_{R} \begin{bmatrix} R & N \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & N' \\ 0 & \boldsymbol{l}_{S}(M) \end{bmatrix}\right)$$

$$\cong \operatorname{Ext}_{R}^{1}\left(R/I, \operatorname{Hom}_{A}\left(\begin{bmatrix} R & N \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & N' \\ 0 & \boldsymbol{l}_{S}(M) \end{bmatrix}\right) = 0,$$

we have $\operatorname{Hom}_{\Lambda}\left(\begin{bmatrix} I & N \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & N' \\ 0 & \boldsymbol{l}_{S}(M) \end{bmatrix}\right) = 0$. Since (-, -) is monic by Lemma 2.4, we obtain (3) of Theorem 3.1 by

$$\operatorname{Hom}_{S}(N, N' \oplus \boldsymbol{l}_{S}(M)) \cong \operatorname{Hom}_{S}\left(N, \operatorname{Hom}_{A}\left(\begin{bmatrix}0 & 0\\ M & S\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right)\right)$$

$$\cong \operatorname{Hom}_{A}\left(\begin{bmatrix}0 & N\\ 0 & 0\end{bmatrix} \otimes_{S}\begin{bmatrix}0 & 0\\ M & S\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right)$$

$$\cong \operatorname{Hom}_{A}\left(\begin{bmatrix}I & N\\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & N'\\ 0 & \boldsymbol{l}_{S}(M)\end{bmatrix}\right) = 0.$$

Let $\nu:\begin{bmatrix}0&0\\M&J\end{bmatrix} \subseteq \begin{bmatrix}0&0\\M&S\end{bmatrix}$ and put $g=\operatorname{Hom}_{\varLambda}(\nu,\,\varLambda)$. Then the diagram

$$\operatorname{Hom}_{\Lambda}\left(\left[\begin{array}{cc} 0 & 0 \\ M & S \end{array}\right], \Lambda\right) \xrightarrow{g} \operatorname{Hom}_{\Lambda}\left(\left[\begin{array}{cc} 0 & 0 \\ M & J \end{array}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}(\operatorname{Coker} \nu, \Lambda) = 0$$

$$\downarrow Q$$

$$\operatorname{Hom}_{\Lambda}\left(\left[\begin{array}{cc} 0 & 0 \\ M & 0 \end{array}\right] \otimes_{R} e \Lambda, \Lambda\right)$$

$$\downarrow Q$$

$$S \oplus N \xrightarrow{\sigma \oplus \alpha} \operatorname{Hom}_{R}(M, M) \oplus \operatorname{Hom}_{R}(M, R)$$

commutes. Hence σ and α are epic. Let K be a right ideal of S. Since $_S(S/J)$ is flat, $_S\begin{bmatrix}0&0\\M&J\end{bmatrix}$ is a pure submodule of $_S\begin{bmatrix}0&0\\M&S\end{bmatrix}$ (see, e.g., [11, Proposition 11.1, p. 37]). Therefore ν induces $\tilde{\nu}=S/K\otimes_S\nu:S/K\otimes_S\begin{bmatrix}0&0\\M&J\end{bmatrix}$ $\subset S/K\otimes_S\begin{bmatrix}0&0\\M&S\end{bmatrix}$. Since Λ_A is injective and $_SM$ is flat, S_S and N_S are injective by Theorem 1.2. Consider the following commutative diagram

where $g_1 = \operatorname{Hom}_{\Lambda}(\mathfrak{I}, \Lambda)$ and $g_2 = \operatorname{Hom}_{S}(S/K, \sigma \oplus \alpha)$, from which it follows that $\operatorname{Ext}_{S}^{1}(S/K, \boldsymbol{l}_{S}(M) \oplus N') = 0$. Hence N'_{S} and $\boldsymbol{l}_{S}(M)_{S}$ are injective. Moreover, R_{R} and M_{R} are injective by Theorem 1.2.

4. Derived contexts.

In this section, we suppose that $\langle M, N \rangle$ is the derived context of M_R . Then we have the following theorem.

THEOREM 4.1. If $\operatorname{Ext}_R^l(M, R \oplus M) = 0$ (l>0), then $\operatorname{id}-\Lambda_A = \max(\operatorname{id}-R_R)$, $\operatorname{id}-M_R$. Furthermore, assuming that $_SM$ is flat, then $\max(\operatorname{id}-S_S, \operatorname{id}-N_S) = \max(\operatorname{id}-R_R, \operatorname{id}-M_R)$.

PROOF. If both M_R and R_R are injective, then $\Lambda \cong \operatorname{Hom}_R(\Lambda e, \Lambda e)$ is right self-injective, for $_{\Lambda}\Lambda e$ is flat. Suppose that $\max(\operatorname{id-}R_R, \operatorname{id-}M_R) = i \neq 0$. Then there exists a right ideal L of R such that $\operatorname{Ext}_R^i(R/L, R \oplus M) \neq 0$. Now, let [XY] be a right ideal of Λ . Since $_{\Lambda}\Lambda e$ is flat and $\operatorname{Ext}_R^i(\Lambda e, \Lambda e) = 0$ (l>0), we have

$$\operatorname{Ext}_{\Lambda}^{i+1}(\Lambda/[XY], \Lambda) \cong \operatorname{Ext}_{\Lambda}^{i+1}(\Lambda/[XY], \operatorname{Hom}_{R}(\Lambda e, \Lambda e))$$
$$\cong \operatorname{Ext}_{R}^{i+1}(\Lambda/[XY] \otimes_{\Lambda} \Lambda e, \Lambda e) = 0$$

and

$$\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda \middle/ \begin{bmatrix} L & LN \\ M & S \end{bmatrix}, \Lambda\right) \cong \operatorname{Ext}_{R}^{i}\left(\Lambda \middle/ \begin{bmatrix} L & LN \\ M & S \end{bmatrix} \otimes_{\Lambda} \Lambda e, \Lambda e\right)$$
$$\cong \operatorname{Ext}_{R}^{i}(R/L, R \oplus M) \neq 0$$

by Lemma 1.1. Hence id- $\Lambda_A = i$. Let V be a right S-module. Since sM is flat and $\operatorname{Ext}_R^l(M, R \oplus M) = 0$ (l > 0), we have

$$\mathrm{Ext}_S^{i+1}(V,\,S)=\mathrm{Ext}_S^{i+1}(V,\,\mathrm{Hom}_R(M,\,M))\!\cong\!\mathrm{Ext}_R^{i+1}(V\otimes_S M,\,M)=0$$

and

$$\operatorname{Ext}_S^{i+1}(V, N) = \operatorname{Ext}_S^{i+1}(V, \operatorname{Hom}_R(M, R)) \cong \operatorname{Ext}_R^{i+1}(V \bigotimes_S M, R) = 0$$

by Lemma 1.1. Hence $\max(\text{id-}S_s, \text{id-}N_s) \leq i$. Let

$$0 \longrightarrow R \oplus M \longrightarrow E_0 \longrightarrow E_1 \longrightarrow \cdots \longrightarrow E_i \longrightarrow 0$$

be an injective resolution of $(R \oplus M)_R$. Then

$$0 \longrightarrow \operatorname{Hom}_{R}(M, R \oplus M) \longrightarrow \operatorname{Hom}_{R}(M, E_{0}) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{R}(M, E_{i}) \longrightarrow 0$$

is an injective resolution of $\operatorname{Hom}_R(M, R \oplus M)_S = (N \oplus S)_S$, for ${}_SM$ is flat and $\operatorname{Ext}_R^l(M, R \oplus M) = 0$ (l > 0). Thus $\max(\operatorname{id} S_S, \operatorname{id} N_S) = i$.

COROLLARY 4.2. If M_R is finitely generated projective, then $\operatorname{id}-\Lambda_A = \operatorname{id}-R_R$.

PROOF. This directly follows from Theorem 4.1.

5. Examples.

The following Examples are given to show the possibility that the equalities in both sides of Theorem 2.6 hold. In this section, Z denotes the ring of rational integers and Q the field of rational numbers.

EXAMPLE 5.1. Let

$$\Lambda = \begin{pmatrix} \mathbf{Q} & 0 & 0 & 0 \\ \mathbf{Q} & \mathbf{Q} & \mathbf{Q} & \mathbf{Q} \\ 0 & 0 & \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} & \mathbf{Q} & \mathbf{Q} \end{pmatrix}, R = \begin{bmatrix} \mathbf{Q} & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}, S = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}, SM_R = \begin{bmatrix} 0 & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}, RN_S = \begin{bmatrix} 0 & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}.$$

We define the pairings $(-,-): N \otimes_S M \to R$ and $[-,-]: M \otimes_R N \to S$ via the multiplication in the ring R. Then the trace ideals are ${}_RI_R = \begin{bmatrix} 0 & 0 \\ Q & Q \end{bmatrix}$ and ${}_SJ_S = \begin{bmatrix} 0 & 0 \\ Q & Q \end{bmatrix}$, and the natural maps $I \otimes_R I \to I^2$ and $J \otimes_S J \to J^2$ are isomorphisms. Moreover, ${}_SM$ and ${}_RN$ are flat and NJ = N. Since $\mathrm{id} \cdot S_S = 2$ (cf. [9, Proposition 7]), we have $\mathrm{max}(\mathrm{id} \cdot R_R, \mathrm{id} \cdot M_R) = 1 < \mathrm{max}(\mathrm{id} \cdot S_S, \mathrm{id} \cdot N_S) = 1$. Furthermore, since $\mathrm{Ext}_S^2(N, S \oplus N) = 0$, we have $\mathrm{id} \cdot \Lambda_A = 2$ by Theorem 2.7(1).

Example 5.2. Let

$$\Lambda = \begin{pmatrix} \mathbf{Z} & 0 & \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Z} & \mathbf{Q} & 0 \\ \mathbf{Z} & 0 & \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} & \mathbf{Q} & \mathbf{Q} \end{pmatrix}, R = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Z} \end{bmatrix}, S = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}, _{S}M_{R} = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}, _{R}N_{S} = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & 0 \end{bmatrix}.$$

We define the pairings $(-,-): N \otimes_S M \to R$ and $[-,-]: M \otimes_R N \to S$ via the multiplication in the ring S. Then the trace ideals are $|_R I_R = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & 0 \end{bmatrix}$ and $_S J_S = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & 0 \end{bmatrix}$, and the natural maps $I \otimes_R I \to I^2$ and $J \otimes_S J \to J^2$ are isomorphisms. Moreover, $_S M$ and $_R N$ are flat and NJ = N. Since $\mathrm{id} R_R = \mathrm{id} S_S = 2$ (cf. [9, Proposition 7]), we have $\mathrm{max}(\mathrm{id} R_R, \mathrm{id} M_R) = \mathrm{max}(\mathrm{id} S_S, \mathrm{id} N_S) = 2$ and $\mathrm{id} S_S \to \mathrm{id} N_S = 1$. Since

$$\operatorname{Ext}_{R}^{2}(M/JM, R) = \operatorname{Ext}_{R}^{2}\left(\begin{bmatrix}\boldsymbol{Z} & 0 \\ \boldsymbol{Q} & \boldsymbol{Q}\end{bmatrix} \middle/ \begin{bmatrix}\boldsymbol{Z} & 0 \\ \boldsymbol{Q} & 0\end{bmatrix}, R\right) \cong \operatorname{Ext}_{R}^{2}([0 \ \boldsymbol{Q}], R) \neq 0,$$

we get id- $\Lambda_{\Lambda} = 3$ by Theorem 2.7(3) (ii).

References

- [1] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., Vol. 13, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- [2] Bass, H., The Morita theorems. Mimeographed notes, 1962.
- [3] Cartan, H. and Eilenberg, S., Homological Algebra. Princeton Univ. Press, Princeton, 1956.
- [4] Fossum, R., Griffith, P. and Reiten, I., Trivial Extensions of Abelian Categories. Lecture Notes in Math., Vol. 456, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [5] Goodearl, K.R., Ring Theory. Marcel Dekker, New York, 1976.
- [6] Kato, T., Duality between colocalization and localization. J. Algebra 55 (1978), 351-374.
- [7] ——— and Ohtake, K., Morita contexts and equivalences. J. Algebra 61 (1979), 360-366.
- [8] Reiten, I., Trivial extensions and Gorenstein rings. Thesis, University of Illinois, Urbana, 1971.
- [9] Sakano, K., Injective dimension of generalized triangular matrix rings. Tsukuba J. Math. 4 (1980), 281-290.
- [10] Sandomierski, F.L., Modules over the endomorphism ring of a finitely generated projective modules. Proc. Amer. Math. Soc. 31 (1972), 27-31.
- [11] Stenström, B., Rings of Quotients, Grund. Math. Wiss. Bd. 217, Springer-Verlag, Berlin-Heidelberg-New York.

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan