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INJECTIVE DIMENSION OF GENERALIZED MATRIX RINGS
By
Kazunori SAKANO

A Morita context <M, N> consists of two rings R and S with identity, two
bimodules zNs and sMg, and two bimodule homomorphisms called the pairings
(—, =):N®s M—R and [—, —]: M ®r N—S satisfying the associativity condi-
tions (n, m)n’ =n[m, n’] and [m, nlm’ =m(n, m’). The images of the pairings are
called the trace ideals of the context and are denoted by rlz and sJs.

Let A be the generalized matrix ring defined by the Morita context <M, N>,

ie.,
v sl
A= ,
M S

where the addition is given by element-wise and the multiplication by
[7’ n”r’ n’] [rr’—i—(n, m’) rn'+ns’]
m sllm’ s’ mr’+sm’ [m, n']+ss’ .

For a right R-module U, id-Ug(fd-Ug) denotes the injective (flat) dimension

of Upg, respectively.
R 0
=
M S

Let
be the generalized matrix ring defined by the trivial context <M, 0>. In a pre-
vious paper [9], we have established a theorem concerning the estimation of the
injective dimension of I’y in terms of those of Rz, Mg and Ss as follows:

THEOREM. Assume that sM is flat. Then we have
max (id-Rg, id-Mpg, id-Ss)<id-I'r £max (id-Rg, id-Mg, id-Ss—1)+1.

The main purpose of this paper is to extend a part of results in the previous
paper [9] to 4 under some additional conditions on the Morita context <M, N>.
In Section 1, we decide a lower bound of id-A, using id-Rp, id-Mpg, id-Ss
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340 Kazunori SAKANO

and id-Ns. In Section 2, we investigate an upper bound of id-4, as well as
a lower bound of id-4, in terms of id-Rg, id-Mpg, id-Ss and id-Ns under the
condition that N=N]J, both sM and N are flat, and the natural maps I ®zr/
—1I? and J ®s J—J? are isomorphisms. The estimation of id-4,4 is as follows:

THEOREM 2.6. If N = NJ, both sM and grN are flat, and the natural maps
I Qg [-1% and | Qs J—J¢ are isomorphisms, then we have

max (id-Rp, id-Mp, id-Ss, id-Ng)
<id-4 s=<max (id-Rg, id-Mp, id-Ss, id-Ns)+1.
In Section 3, we examine the condition for 4 to be a right self-injective ring.

Section 4 is devoted to study id-A, in case of the derived context. Furthermore,
we show that id-Rrp=id-A,, if Mp is finitely generated projective, which is

the extension of the well-known fact that id-[g ]Ig]zid-R, In the final Sec-

tion 5, we exhibit some example when the left-hand side or the right-hand side
equality holds in

Throughout this paper, uniess otherwise specified, 4 denotes the generalized
matrix ring defined by the Morita context <M, N> with pairings (—, —) and
[—, —1, and the trace ideals g/ and sJs. For a right R-module U, id-Ug(fd-Ug)
denotes the injective (flat) dimension of Upg, respectively. Moreover, we set e=

[(1) 8]6/1 and e':[g (1)]6/1.

The author wishes to express his hearty thanks to Professor T. Kato for his
useful suggestions and remarks.

1. General cases.

The following lemma is essentially in [3, p. 346].

LEMMA 1.1. Let Ag, B4 and C, be modules such that Ext}(B, C)=0 (:>0)
and Tor¥(A, B)=0 (¢>0). Then there holds

Ext2 (A, Hom,(B, C)=Ext%(A Kz B, C).
THEOREM 1.2. Assume that fd-sM and fd-gN are finite. Then we have

maXx (max (id-Rg, id-Mg)—fd-gN, max (id-Ss, id-Ng)—fd-gM)
<id-A4.

PROOF. Let L be a right ideal of R. Since
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Hom(R/L Qgred, A)=Homz(R/L, Hom (ed, A))
~Homg(R/L, Ae)
=~Homgz(R/L, RS M)
and Extj(ed, A)=0 (:>0), the resulting spectral sequence is
E2-2=Ext%(Tor¥(R/L, ed), A) T} ExtZ2(R/L, RP M).
Since E?-?=0 for either ¢>id-A4 or p>fd-zN, we have Exti(R/L, R@ M)=0
for n>id-A,44-fd-zkN. Thus we have max(id-Rg, id-Mg)-fd-xkN=<id-4,. In the
similar manner,Ywe also obtain max (id-Ss, id-Ng)—fd-sM=id-A 4, completing the
proof.
2. Trace accessible cases.

We prepare some lemmas needed after.

LEMMA 2.1. Every right ideal of A has the form of [X Y] with Xz a sub-
module of []\5]13 and Ys a submodule of [{Z]S satisfying {[(n,m)]‘[n]ey’ me

sm S

M}E X and {[[n:“n]]‘[n:]ex neNjcY.
PROOF. Let P be a right ideal of A. Put X:{L;]‘[; 8]ep} and Y=
{[2:”[8 Z:IEP}. Then X and Y satisfy the above conditions. The converse

part is obvious.
The following lemmas are well-known.

LEMMA 2.2.

(1) IKer(—, —)=ZKer(—, —)I=0.

(2) JKer[—, —]1=Ker[—, =1/ =0.

LEMMA 2.3. Assume that N = NJ. Then

(1) NJ=IN=N.

2) I=I and J=]°.

Following [10], a right R-module W is called L-accessible for an ideal L of
R if W= WL.

LEMMA 2.4. Assume that N = NJ and that gN are flat. Then the following
are equivalent : '
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(1) The natural maps 1 Qg I—1* and | Qs J—J* are isomorphisms.
(2) The pairings (—, —) and [—, —] are monic.

Proor. (1)=(2). The exact sequences

Y1 (”; —)
N®S MR IR >0

Vs [_’ '—]
0—Ker[—, —]s ———> M @=r N5 > Js 0

0 —> Ker(—, —)r

and

induce the following commutative diagrams with exact rows and columns

IQrKer (—, —) L& IQeNQsM MI@RI —0

J . e ol 8

0—Ker (—, = INI(NQsM) ——> IINQsM) > [2=]
0 0
and
V2®j [—: —]®j

Ker [—, —1Qs] — > MQrNQRs] ——— JQs] —0

laz - 1‘32 5 l?’z (%)
0—> Ker [—, —IN(M®&N)] —> (M@zN)] —————> J*=],

| |

0 0
where a;, 8; and 7; ( =1, 2) are the natural maps, 0, = (—, —)|I(N Qs M), and
0, =[—, —]J|(MQrN)J. Since 7; is an isomorphism by assumption, «; is epic

by the 5-lemma. Since Ima, =IKer(—, —) =0 and Ima, =Ker[—, —]/ =0
by Lemma 2.2, J, and 8, are monic. Since N = IN = NJ by Lemma 23, it is
easy to see that ¢, = (—, —) and 6, = [—, —]. Hence the pairings (—, —) and
[—, —] are monic.

(2)=(1). Since gN is flat, N = IN and (—, —) is monic, it is easily verified
that 7, is an isomorphism in view of the commutative diagram (x). Moreover,

since (—, —) and [—, —] are monic and N = NJ, it is easily checked that S,
is the following comdosition of maps
MRNQ[—, —] ME(—, —)QN

MQ@QrNQsJ e > MQ@rN Q@sM@pN —T——== >

M®RI®RN ’%M®RIN:M®RN.
It follows from the commutative diagram (#*) that 7, is an isomorphism.
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In the remainder of this section, we assume that both <M and N are flat
and that the natural maps I @z [—I? and J Qs J—J? are isomorphisms.

LEMMA 2.5. Assume further that N = NJ. Let [ X, Y,] be a right ideal of A
5[] -t
and put X _{g[ Sleves meM} and Y= {3 e s |=

Sim;
Xy, ii€N} ((=1,2,3). Then
1) Yi-1QsM=X,; as a right R-module and X;-, Qe N=Y; as a right S-
module
@) [Xi-1 00 @red=[X;., Y] and [0V ] Qse’A=[X; Yi.1] as right A-
modules.

Proor. (1) Since sM is flat, and (—, —) is monic by Lemma 2.4, the homo-
morphism Y., ®s M—X, defined by [:](X)mw[(ns’;)] for [’s’]ey‘i_l, me M,

is an isomorphism. Similarly, we can show that X, ; Qr N=Y,.
(2) It is easily seen that [ X;_, Y] and [ X; Y;_,] are right ideals of 4. Since
Xi-1 Qe N=Y,; by (1), the homomorphism [X;-; 0] Qred—[X;-, Y;] defined via

r 0 r n rr’  rm r ¥ on
[ ]@[ ]*—*—-)[ ] for [ }EXi,I: ]ee/l,
m 0 00 mr’ [m, n] m 0 0

is an isomorphism. By the similar manner as above, we obtain [0Y;_,] Qg e’ A4
=[X; Y.

THEOREM 2.6. Assume further that N = NJ. Then we have
max (id-Rg, id-Mp, id-Ss, id-Ng)
<id-4 ,,<max (id-Rg, id-Mp, id-Ss, id-Ng)-+1.

PROOF. Let [X, Y,] be a right ideal of 4 and put X; — {;[“’Sf’mmj)]l[’;"]
jtty J

€Y (s, myeM} and Yi:{z[ Tl M”]ex nieN} (=1,23). Then
EL[me, ny] Ng
we consider the following exact sequence of right /-modules:
0—[X, Y] —[X, Y]—[X, Y 1/[X, Y] —>0. (*)

Since N =N], it is easy to see that Y, = Y, /, from which it follows that Y, =Y,
=Y, Therefore, we have [ X, Y 1/[X: Yo1=[X, Y, l/[ X, Y,]1=[X, Y,1/[ X, Y,].
Moreover, since both zN and sM are flat, and both (—, —) and [—, —] are monic
by Lemma 2.4, we have [X; Y,]=[0Y,]®se’'4 and [X, Y,]/[ X, Y I=[X, Y]/
[X: Yo 1=([X,0]/[X, 0]) Qs ed by Now, we put max (id-Rg, id-Mp,
id-Ss, id-Ng) =t¢. The exact sequence (x) yields the following exact sequence

Ext4™ ([ X, Yo1/[ X, Y], A) — Ext{ ([ X, Y,], A) — Exti? ([X, Yo], A) »
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from which it follows that Ext4™* ([ X, Y,], 4) = 0 together with the fact that
Exti ([ X, Yo1/[X: Y], A)=Ext4* ([ X, Y,1/[X: Y11, A)
=Ext4* ([ X, Y.1/[ X, Y:], 4)
=Ext§? (Xo/ X)) Qred, A)
=Ext&™ (Xo/X;, Hom,(ed, A))

~Ext{ (Xo/ X, Ae) =0
and that »

Exti ([X: Vo], H)=Extf™ ([0 Vo] ®se'4, 4)
=Ext&"* (Y,, Hom,(e’4, A))
=Ext§ (Y, de’) =0

in view of Lemma 1.1. Hence we have t<id-4,<t-+1 together with
1.2.

REMARK. If we assume that M = MI instead of N = NJ in Lemma 2.5 and
Theorem 2.6, we obtain the same results by the symmetry of the Morita con-
text <M, N>.

THEOREM 2.7. Assume further that NJ = N.

(1) If max(id-Rg, id-Mg)<max (id-Ss, id-Ng) =7+#0, then id-A,=: if and
only if Ext{(N, S N)=0.

(2) If max(id-Ss, id-Ng)<max (id-Rg, id-Mg) =:#0 and if Exti(M/JM,
R @ M)+0, then id-A4 =i+1.

(3) Suppose that max (id-Rg, id-Mz) = max (id-Ss, id-Ng) = 7#0.

(i) If Exti(X, RP M)+#0 for some XrS(R @D M)g, then id-A, =i+1.

(ii) If id-Ss>id-Ng and if Exti(M/JM, R)+0, then id-A,4=i+1.

(iii) If id-Ns>id-Ss and if Exti(M/JM, M)+0, then id-A4 =1i+1.

PrROOF. (1) Let [X, Y,] be a right ideal of A4 and put X; = {z[("k”"k)”

n rin r FLoSe
k x = inj j _ . -
[sk]EY“’ mieM} and Y, @[[mj, n,-]] [m,.]EXH’ neN} (=1 2, 3)
Since NJ =N, it is easy to see that Y, = Y,. Moreover, since
Exti([X, Yo]/[X: Vo], A)=Exti([X, Y.1/[ X, V1], 4)
ZEXtZI(EXo Y,1/[X: Yal, A)
=Extf ([ X, 0] QreA)/([X: 0] Rred), A)

=Exth(Xo/ X, Qred, 1)
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~FExth(X,/ X, R M)=0
and
Exti([X,Y,], DH=Extj([0Y,] Qse’4, A)

=Ext§ (Y, SON)

by Lemmas [.1 and .5, we have Ext4([X, Y], A)=Ext} (Y, SD N) from the
following exact sequence

0 =Exti([Xo Y,1/[ X1 Yol, 4) —> Exti([Xo Y], 4) —> Extj([X, Yo], 4)
—> Exti ([ X, Yo1/[X, Yo, 4)=0.

It follows that id-A,4 =71 if and only if Exti([X, Y], A)=Exti (Y, NP S)=0
for every right ideal [ X, Y,] of 4 if and only if Ext}(V, SO N) =0 from the
following exact sequence

Ext{(N, SPAN)=Ext{(SPN, SPAN)—Exti(Y, SBN)
—> Ext§s" (SO N)/Y,, SGN) =0.
(2) The exact sequence of right /4-modules
0 0 0O 0 0O O 0 O
o T e P e W T P Bt
JM T M ] M ] JM ]

yields the following exact sequence

0 0 0 07,70 0
Extﬁ‘l([ ] /1) — > Extﬁ( | / [ J A)
JM ] M JIV LM ]

KN 0 0
— Ext}}( , /1) — Ext}}([ ], /1) .
M T JM ]

Since J = J? by we have [](])VI 3] = []24 })2] Since

ST PO Y R

[}, Yo tJosh 4

=Ext{(M/JM Qred, A)
=Exti(M/JM, RPD M)+ 0

and

0 0
Extﬁ([ ], /l)zExt’jl(]@S e’d, A)
JM ]
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=Ext§(/, S@E&N)=0 (k=i—1,9),

by Lemmas [.1 and 2.5 we have Ext}}([ ](\)/I 3

Hence id-4, = i+1 together with
(3) (i) Let Xg be a submodule of (R M)g such that Exti (X, R B M)+#0

and Y1={2[ 7ol ]][ i ]eX, n;eN}. Since [X ¥,] s a right ideal of A and

7 Ly, nj] m;
Extj((X Y], A)=Exti({(X 0RQRrled, A)
~Exti(X, RO M)+0
by Lemmas [.1 and 2.5, we have id-44=i+1 by
(ii) Let

R N7 R N
h’g‘:Ext}}(A/[ , eA)EBExt}}(/I/[ } e’/l)
JM ] JM ]

R N] R N R N R N
— Extﬁ({ /[ ‘ }, eA)GBExt}([ }/[ ], e’A)
M ] JM ] M ] JM ]

be the induced map by the inclusion map
R N R N R N
h :{ ] / [ } ., 4 / [ ] .
M JM ] JM ]

R N
EXt}}(/I/[jM j]’ eA)EExt}) (S/JRse’ A, ed)

], A)=Exth(M/JM, R ® M) #0.

Since

=Ext{(S/J, N)=0
by Lemma 1.1, we have Im hf;Ext}}([R N}/[ R N}, e’A). Since NJ = N,

M J JM ]
we have J = J? by Therefore, if

sl 3 oo S 4

2 o[ oo

=Exti(M/JM Qred, e)
=Exti(M/JM, R) #0,

then h# is not epic. It follows that Extit! (/1/[]5[ J}[], /1) #0 from the ex-

actness of the following sequence
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weafa/ [ e S ha) =2l 5 )

R N R N7
—>Ext£1+1(/l/[ }, /1)~——>Ext£;“(/1/[ ], /1):0,
M ] JM ]

hence id-A, =i+1 together with
(iii) This can be proved by the similar manner as in (ii).

If we assume that MI = M instead of NJ=N, can be rewrited
as follows:

THEOREM 2.8. Assume further that MI = M.

(1) If max(id-Ss, id-Ns)<max (id-Rg, id-Mg) =i#0, then id-A4=i if and
only if Exti(M, RO M) =0.

(2) If max(id-Rg, id-Mz)<max (id-Ss, id-Ng)=i+#0 and if Ext§(N/IN, S N)
#0, then id-A,4 =7+1.

(8) Suppose that max (id-Ss, id-Ng) = max (id-Rg, id-Mg) = ¢#0.

(i) If Exti(Y, SO N)+0 for some YsS(SAD N)s, then id-A4=i+1.

(ii) If id-Rz>id-Mg and if Ext{(N/IN, S)+0, then id-A,4=i-+1.

(iii) If id-Mz>id-Rz and if Exti(N/IN, N)+0, then id-A, =i+1.

3. Self-injective rings.

In this section, we consider the condition for A to be right self-injective.

Let a: N—Homg(M, R) be a map defined by n—(m—(n, m)) for neN, meM
and ¢ :S—End(Mpz) the canonical map. Then we have the following theorem :

THEOREM 3.1. If

(1) Rg, Mg, N5 and ls(M)s are injective, where N'=Ker a and ls(M)=
{seS|sm=0 for every me M},

(2) a and o are epic,

(3) Homg (N, N B ls(M)) =0

are satisfied, then A, is injective.

PrROOF. Let [X Y] be a right ideal of 4. The exact seqence of right A-

modules
0 N’ R M*
0 ls(M) M End (Mpg)
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where M* = Homp (M, R), induces the following exact sequence
N/

0
Exth(A/[X Y], [
0 ls(M)

]) — Ext}(4/[X Y], A)

R M*
—> Ext,‘,(A/[X Y], [ D

M End (Mp)
Since
0 4
Ext} (A/[XY], [ ])_%Extj(/l/[X Y, Homg (Ade’, N’ B ls(M)))
0 Is(M)
=Exti(A/[XY]I R4 de’, NN Dlg(M)) =0
and

R M*
Ext) (A/[X Y], [

])zExt}C(A/[X Y1Q®y de, Ae) =0,
M End(Mpg)

we have Extj(A4/[X Y], A) =0, that is, 4, is injective.

THEOREM 3.2. If

(1) sM and gN are flat,

(2) The natural maps I QrlI—-I1* and J Qs J—J* are isomorphisms,
3 N=N,

4) s(S/]) is flat,

then the converse of Theorem 3.1 holds.

PrROOF. The exact sequence of right /4-modules

Eie FY o O e PR PN B

yields the following exact sequence

HomA([f ]ZHE ls(];>])-—>H°mA([; ]Z:Hg zs<jz\\[4/)])
_*EX”([: ﬂ/[g JZHE ls<zz\\]4>])'

Since Hom ([Ig ]X], [8 ls(]X/II)]);[g ls(j.\l\]/,[)]e =0 and

e A e T
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R N1 [0 N’
S
0 0 0 Is(M)

R N7 [0 N’
=Ext} (R/I, HomA([ J, [ D =0,
0 0 0 Is(M)

I N}, [0 N ]) —0. Since (—, —) is monic by

we have HomA([O 0 0 Ls(M)
we obtain (3) of by

0 0 0 N’
Homg (N, N’ @ IS(M))zHomS(N, HomA([ J, [ ]))
M S 0 Is(M)

[0 N 0 0 0 N’
N R I
|0 0] M S 0 Is(M)

/I N7 [0 N’
EHOIHA , =0
0 04 LO Is(M)

: 0 0 0 O .
Let v: [M J]C’[M S] and put g = Hom, (v, 4). Then the diagram

HomA([A(/)[ g] , 4)~E— Hom, ([181‘”, A )— Ext}(Coker v, 4)=0

!

2 HomA([jelg] Rred, A)
P lz
SON ————— Homz(M, M)DHomz(M, R)

commutes. Hence ¢ and a are epic. Let K be a right ideal of S. Since s(S/J)

. 0 07. 0 O ..
is flat, S[ M J] is a pure submodule of S[ M S] (see, e.%., [011, Proposition 11.1,

p. 37]). Therefore v induces ng/K@sVIS/K@)s[M J]C;S/K®S [1(\)4 (S)]

Since A, is injective and sM is flat, Sy and N are injective by
Consider the following commutative diagram

00

Hom, (S/KQs MS

]. A)&HomA(S/K@)S[Ae[?], A )= Extl(Coker 5, 4)=0
2 Homjy (S/K, Hom 4( []8[ 8 ]@RGA, /®))
g2

Homg(S/K, SON) ——— Homs(S/ K, Homg(M, M)PHomz(M, R)) —>

— Ext{(S/K, ls(M)DN') —> Exti(S/K, SON)=0,
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where g, = Hom,(®, A) and g, = Homs(S/K, ¢ @ a), from which it follows that
Ext{(S/K, ls(M)@ N’) =0. Hence N5 and ls(M)s are injective. Moreover, Rz
and My are injective by

4. Derived contexts.

In this section, we suppose that <M, N> is the derived context of Mz. Then
we have the following theorem.

THEOREM 4.1. If Exth(M, RE M)=0 (>0), then id-A,= max(id-Rpg,
id-Mg). Furthermore, assuming that sM 1s flat, then max(id-Sg, id-Ns)=
max (id-Rg, id-Mpg).

PRrROOF. If both My and R are injective, then A=Hompy(Ade, Ae) is right
self-injective, for 44e is flat. Suppose that max (id-Rg, id-Mg) =7x0. Then
there exists a right ideal L of R such that Exti(R/L, R@ M)+0. Now, let
[X Y] be a right ideal of A. Since 4A4e is flat and Extk(Ae, Ae) =0 ((>0), we
have

Exti' (A/[X Y], A)=Exti{*'(A/[X Y], Homg(de, Ae))
=ExtF (A/[XYI1R®, Ae, Ae) =0

L LN L LN
Ext}}(/l/[M S ], A)EExt};(A/[M S ]@A Ae, Ae)

~Exti(R/L, R P M)+0

by Lemma 1.1. Hence id-4,=1:. Let V be a right S-module. Since M is
flat and Exth(M, RSP M) =0 ((>0), we have

and

Extit (V, S) = Ext§ (V, Homg (M, M))=ExtE'(V Qs M, M) =0
and
Extit(V, N) = Ext§ (V, Homgz (M, R)=Exti'(V Qs M, R) =0

by Lemma 1.1 Hence max(id-Ss, id-Ng)<:. Let
0—>RO®M—>Ey—>E, —> - —> E, —>0

be an injective resolution of (R M)r. Then
0 — Homz(M, R ® M) —> Homg(M, E;) —> --- —> Homz (M, E,) —> 0

is an injective resolution of Homz(M, RP M)s = (ND S)s, for ¢M is flat and
Extk(M, R® M) =0 (/>0). Thus max(id-Ss, id-Ns) = 7.

COROLLARY 4.2. If Mg is finitely generated projective, then id-A,=id-Rkg.
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Proor. This directly follows from [Theorem 4.1l

5. Examples.

The following Examples are given to show the possibility that the equalities
in both sides of hold. In this section, Z denotes the ring of ra-
tional integers and @ the field of rational numbers.

ExaMPLE 5.1. Let

Q 0 0 O
Q QQ Q Q0 Z 0 0 0 0 0
R O R P T A 2 o
0 0ZO QQ QQ Q Q QQ
Q QQQ
We define the pairings (—, —): NQs M—R and [—, —]: M@z N—S via the

multiplication in the ring K. Then the trace ideals are glp = [22 g] and s /s

= [2) 8], and the natural maps I QzI—I? and J&®s J—J? are isomorphisms.

Moreover, sM and gN are flat and NJ = N. Since id-Ss=2 (cf. [9, Proposi-
tion 7]), we have max (id-Rg, id-Mz) = 1<max (id-Ss, id-Ns) = 1. Furthermore,
since Ext3(N, S@® N) =0, we have id-4, = 2 by [Theorem 2.7(1).

ExXAMPLE 5.2. Let

Z 0 Z 0
Q ZQ 0 Z 0 Z 0 Z 0 Z 0
A: )R: yS: ,SMR: :|:RIVS: .
Z 0 Z 0 Q Z QQ QQ Q0
QQQQ
We define the pairings (—, —): NQ®s M—R and [—, —]: M Qr N—S via the
multiplication in the ring S. Then the trace ideals are |plz = [g 8] and /s

Z 0
- [Q 0]’ and the natural maps I @z [—I* and J®s J—J* are isomorphisms.
Moreover, sM and rN are flat and NJ= N. Since id-Rr = id-Ss =2 (cf. [9,
Proposition 7]), we have max(id-Rpg, id-Mz) = max (id-Ss, id-Ns) =2 and id-S«¢
>id-Ng = 1. Since

Z 01 [Z 0
Ext}(M/JM, R) = Ext%([ ]/[ ] R)zExt;%([O Q1, R)=0,
QQ Q0

we get id-4, =3 by [Theorem 2.7(3) (ii).
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