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Recently K. Bongartz and P. Gabriel [2] introduced simply connected algebras

and also proved that these algebras are completely determined by their trees and
their gradings. Also they showed that each tree admits only a finite number of
representation finite gradings.

In this paper, we are concerned with the maximal value $G(n)$ of gradings

through all simply connected algebras with $n$ simple modules for each $n$ . This
is accomplished by determining a maximal length $F(n)$ of the Auslander-Reiten
quivers of these algebras, because we have $G(n+1)=F(n)+1$ in Lemma 1. (For

the definition, see \S 1 or [2].) Further we shall show that in order to estimate
the value $F(n)$ , the following facts are essential.

(i) The Auslander-Reiten quiver of an algebra with the maximal length

$F(n)$ is fully embedded in the Auslander-Reiten quiver of a suitable algebra

whose graded tree admits $G(n+1)$ .
(ii) In the latter quiver, there is a path from a vertex $P(p)$ to $P(t)$ , where

$P(p)$ and $P(t)$ are projective vertices which correspond respectively to vertices
$p$ and $t$ of its graded tree such that a grading at $t$ is $G(n+1)$ and a grading of
$p$ is maximal among gradings of vertices except $t$ .

Finally we have the following result.

$G(2)=1,$ $G(3)=3,$ $G(4)=5,$ $G(5)=7,$ $G(6)=11,$ $G(7)=15,$ $G(8)\leqq 41$ and

$G(n)\leqq\left\{\begin{array}{l}60n-469 (9\leqq n\leqq 32)\\n^{2}-4n+615(n\geqq 33)\end{array}\right.$

$F(2)=2,$ $F(3)=4,$ $F(4)=6,$ $F(5)=10,$ $F(6)=14,$ $F(7)\leqq 40$ and

$F(n)\leqq\left\{\begin{array}{l}60n-410 (8\leqq n\leqq 31)\\n^{2}-2n+611 (n\geqq 32)\end{array}\right.$

It follows from our theorem that an upper bound of the number of
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indecomposable modules over simply connected algebra with $n$ simple module is

$\frac{(n-1)F(n)}{2}+4[\frac{n+2}{3}]$ where $[m]$ means a maximal natural number not exceeding

$m$ . We are sure that our result will help us to know the precise number $G(n)$ .

\S 1. Preliminaries and Notations.

Let $K$ be an algebraically closed field. Here we recall the definitions intro-
duced in [2]. An algebra over $K$ is called simply connected iff it is representa-
tion-finite, connected, basic, finite dimensional with a simply connected Auslander-
Reiten quiver.

In the following, we use freely the results in [2] stated below.
Let $(T, g)$ be a representation-finite graded tree. We consider the algebra

$A^{T}=\bigoplus_{p,q}K(R_{T})(p, q)$ , where $K(R_{T})$ is the mesh category of the Auslander-Reiten

quiver $R_{T}$ of the graded tree $(T, g)$ and $p,$ $q$ run through all projective vertices
in $R_{T}$ .

THEOREM A. (Bongartz, Gabriel [2]) The map $(T, g)\leftrightarrow A^{T}$ yields a bijection
between the isomorphism classes of representation-finite graded trees and isomorphism
classes of simply connected algebras. Further in this case, $K(R_{T})\cong Ind(A^{T})$ and
$ R_{T}\cong\Gamma_{A}\tau$ , here $\Gamma_{A}\tau$ is the Auslander-Reiten qviver of the algebra $A^{T}$ .

According to this theorem, we shall identify $A^{T}$ and $(T, g)$ as follows. For
a connected graded tree $(T, g)$ with a maximal grading at a vertex $x$ having $r$

neighbours $\{x_{i}\}_{lsi\leqq r}$ , we can reconstruct graded trees $(T^{i}, g^{i})s$ for $1\leqq i\leqq r$ by
removing a vertex $x$ as in [2]. Further we define a starting function at $x$ by
$s_{x}^{T}(y)=\dim_{K}K(R_{T})(x, y)$ for each vertex $y$ in $R_{T}$ and also denote by $S_{i}^{T^{i}}$ the
support of the starting functions $s_{x_{i}}^{\tau^{i}}$ in $R_{T^{i}}$ , which is endowed with a partial
order as a full subquiver of $R_{T^{i}}$ .

The partially ordered set is representation-finite in the sense of Nazarova-
Roiter [3] iff it does not contain as a full subposet one of the following five
forms;

$\circ$ $\circ$ $\circ$

$\circ\circ\uparrow$ $\circ^{\uparrow}\circ$

$\circ$

$\circ\circ\circ\circ\uparrow\uparrow\uparrow$

$\circ$ $\circ$

$\circ^{\uparrow}\circ\circ\uparrow$

$\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow\nearrow\uparrow$ $\uparrow$

$\circ$ $\circ$ $\circ$ $\circ$ , $\circ$ $\circ$ $\circ$ , $\circ$ $\circ$ $\circ$ , $\circ$ $\circ$ $\circ$ , $\circ$ $\circ$ $\circ$

[1, 1, 1, 1] [2, 2, 2] [1, 3, 3] [1, 2, 5] $[N, 4]$ .

Next for a graded tree $(T, g)$ , we define a length function $ L^{T}:(R_{T})_{0}\rightarrow$
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$N\cup\{0\}$ by $L^{T}(t)=0ifg(t)=0$ and $L^{T}(t)=L^{T}(s)+1$ if there is an arrow $s\rightarrow t$

in $R_{T}$ .
Related to this, we define the length $L^{T}(R)$ of a full subtranslation quiver

$R$ of $R_{T}$ as the maximal value of $L^{T}(z)$ where $z$ runs over all vertices in $R$ .
We sometimes use the notation $L$ instead of $L^{T}$ if the meaning is clear. Also
we put $F(n)=\max L^{T}(R_{T})$ where $(T, g)$ runs over all representation-finite graded

trees with $n$ vertices.
Then the next theorem is very useful for our classification in \S 3.

THEOREM B. (Bongartz, Gabriel [2]) Let $(T, g)$ be an admissible tree. Then
the following statements are equivalent.

(1) $(T, g)$ is representation-finite.
(2) The following three conditions (a), (b) and (c) are satisfied.

(a) Each $(T^{i}, g^{i})$ is representation-finite.
(b) The value of each $s_{x_{i}}^{\tau^{i}}$ $is\leqq 1$ .
(c) The partially ordered set $S_{x_{1}}^{T^{1}}\perp\cdots\perp S_{x}^{\tau_{r}^{r}}$ is representation-finite in the

sense of Nazarova-Roiter [3].

\S 2. Simply Connected Algebras with Maximal Grading.

In this section, we shall study the Auslander-Reiten quivers of simply con-
nected algebras in order to give an upper bound of the values of gradings. Let
$(T_{n}, g_{n})$ be one of the representation-finite graded trees with $n$ vertices such
that there is a vertex $t$ in $T_{n}$ whose grading $g_{n}(t)$ is maximal among all pos-
sible values of gradings of representation-finite graded trees with $n$ vertices.
We put $G(n)=g_{n}(t)$ .

Then we have the following lemmas. Here a vertex $x$ of a tree $T$ is called
a tip if $x$ has only one neighbour, clearly which is equivalent that $T\backslash \{x\}$ is
connected.

LEMMA 1. $G(n+1)=F(n)+1$ and $F(n+1)\geqq F(n)+2$ .

PROOF. Let $(T, g)$ be a representation-finite graded tree with $n$ vertices
such that there is a vertex $x$ in $R_{T}$ with $L^{T}(t)=F(n)$ . We construct a new
translation quiver $R$ as follows.

$R_{0}=(R_{T})_{0}\cup\{p, \tau^{-1}t\}$ where $\tau$ is a translation,

$R_{1}=(R_{T})_{1}\cup\{t\rightarrow p, p\rightarrow\tau^{-1}t\}$ .

The tree $T^{\prime}$ of $R$ is the tree linked one vertex corresponding to $p$ with $T$ at a
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vertex corresponding to the $\tau$-orbit of $t$ by a path. Further

$g^{\prime}(z)=\left\{\begin{array}{l}g(z) if z\in T,\\F(n)+1 if z=p,\end{array}\right.$

is a grading of $T^{\prime}$ . Then $(T^{\prime}, g^{\prime})$ is a representation-finite graded tree with
$R_{T^{\prime}}=R$ . Hence $F(n+1)\geqq L(R_{T^{\prime}})=L(R_{T})+2=F(n)+2$ . Next we must show that
$g^{\prime}(p)=G(n+1)$ . Let $(T^{*}, g^{*})$ be any representation-finite graded tree with $n+1$

vertices and let $z$ be a vertex in $T^{*}$ whose grading is maximal. Consider a
connected component $T_{1}^{*}$ of $T^{*}\backslash \{z\}$ which contains a vertex whose grading is
0. By Theorem $B$ , $(T_{1}^{*}, g^{*}|T_{1}^{*})$ is representation-finite, hence $L(R_{T_{1}^{*}})\leqq F(n)$ .
Also $g^{*}(z)\leqq L(R_{\tau_{1}^{*}})+1\leqq F(n)+1$ , then $g^{\prime}(p)=G(n+1)$ .

LEMMA 2. For the graded tree $(T_{n+1}, g_{n+1}),$ $t$ is a tip of $T_{n+1}$ .

PROOF. Assume the contrary $t$ has at least two neighbours. Let $\tau*$ be a
connected component of $\tau_{n+1}\backslash \{t\}$ which contains a vertex whose grading is $0$ .
Since $(T^{*}, g|T^{*})$ is representation-finite and $|T^{*}|\leqq n-1$ , we can construct two

representation-finite graded trees $(T_{1}^{*}, g_{1}^{*})$ and $(T_{2}^{*}, g_{2}^{*})$ in the following way;

$T_{1}^{*}=T^{*}\cup\{t\}$ $g_{1}^{*}=g^{*}|T_{1}^{*}$

$T_{2}^{*}=T_{1}^{*}\cup\{p\}$ $g_{2}^{*}|T_{1}^{*}=g_{1}^{*}$ and $g_{2}^{*}(p)=L(R_{T_{1}^{*}})+1$ .

Hence $G(n+1)\geqq g^{*}(p)>L(R_{T_{1}^{*}})\geqq g_{1}^{*}(t)=g^{*}(t)=G(n+1)$ , which is a contradiction.

We put $T_{n}^{*}=T_{n+1}\backslash \{t\}$ and $g_{n}^{*}=g_{n+1}|T_{n}^{*}$ , then $T_{n}^{*}$ is connected tree from

Lemma 2 and $(T_{n}^{*}, g_{n}^{*})$ is a representation-finite graded tree.
In the following, $P(t)$ denotes an indecomposable projective module corre-

sponding to a vertex $t$ in a tree and $B_{n}$ denotes an algebra $A^{T_{n}^{*}}$ .

LEMMA 3. rad $P(t)$ is simple injective as $B_{n}$-module.

PROOF. Let $L$ be a length function with respect to $(T_{n}^{*}, g_{n}^{*})$ . By Lemma 2,

rad $P(t)$ is indecomposable, hence the canonical inclusion map rad $P(t)\rightarrow P(t)$ is a
irreducible map and $L(radP(t))+1=L(P(t))$ . On the other hand, $g_{n+1}(t)=G(t)=$

$F(n)+1$ , thus $L(radP(t))=F(n)$ . This means there is no irreducible map start-

ing from rad $P(t)$ in $R_{T_{n}^{*}}$ , so rad $P(t)$ is a simple injective $B_{n}$-module.

LEMMA 4. Assume $p\in T_{n}^{*}$ is a vertex with a maximal grading in $(T_{n}^{*}, g_{n}^{*})$ .
Then there exists a path from $P(p)$ to $P(t)$ in $P_{\tau_{n+1}}$ .

PROOF. Assume there are no paths stated above. We consider a full sub-

translation quiver $R$ (it may be non-connected) of $R_{T_{n}^{*}\backslash \{p\}}$ consisting of vertices
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which are not successors of $P(p)$ . So we put $R^{1}$ a connected component of $R$

which contains rad $P(t)$ , further $q$ a neighbour of $p$ in $T_{n}^{*}$ such that $P(q)$ belongs
to $R^{1}$ . For length functions $L_{1}$ and $L$ with respect to $R^{1}$ and $R$ respectively,
$L-L_{1}$ has the constant value a for every vertex in $R^{1}$ , where a is equal to the
value of a minimal grading of projective vertices in $R^{1}$ . We remark that

$F(n)=G(n+1)-1=L$ (rad $P(t)$ ) $=L_{1}(radP(t))+a$ .
If $a=0$ or $R$ has at least three connected component, then as constructed in

Lemma 1, there is a simply connected algebra whose maximal grading is larger
than $F(n+1)$ .

So we may assume $a>0$ and $R$ has two connected component. Let $R^{2}$ be
another connected component of $R$ which contains a vertex with zero grading
and $M$ a neighbour of $P(p)$ such that $M$ is contained in $R^{2}$ . We remark $L(R^{2})$

$\geqq a$ , since $L(R^{2})\geqq L(M)=g_{n}^{*}(p)-1\geqq L(P(q))=L_{1}(P(q))+a\geqq a$ .
Now we consider the following trees and their gradings.

$T_{n}^{*}\backslash \{p\}=T_{1}\cup T_{2}$ (disjoint union of connected trees),

We may assume that $q$ is a vertex of $T_{1}$ . Under this assumption, we define

$g_{1}=g_{n}^{*}-a|T_{1}$ (a grading of $T_{1}$),

$g_{2}=g_{n}^{*}|T_{2}$ (a grading of $T_{2}$).

We can check the facts that $(T_{1}, g_{1})$ and $(T_{2}, g_{2})$ are representation-finite
graded trees and $R^{1}$ and $R^{2}$ are full subtranslation quivers of $R_{T_{1}}$ and $R_{T_{2}}$

respectively. Choose a simple injective module $S_{2}$ in $R_{T_{2}}$ and $S_{1}=P(z_{1})$ a simple
projective module in $R_{T_{1}}$ , here $z_{1}$ is a vertex of $T_{1}$ such that $g_{n}^{*}(z_{1})=a$ . Then
we can define a representation-finite translation quiver $Q$ with $n-1$ vertices as
follows.

$Q_{0}=(R_{T_{1}})_{0}\cup\{P\}\cup(R_{T_{2}})_{0}$ (set of vertices),

$Q_{1}=(R_{T_{1}})_{1}\cup(R_{T_{2}})_{1}\cup\{S_{2}\rightarrow P, P\rightarrow S_{1}\}$ (set of arrows),

$\tau^{-1}S_{2}=S_{1}$ (new translation).

We put $L^{Q}$ a length function with respect to $Q$ , then we have $L^{Q}(radP(t))$

$=L_{1}$ (rad $P(t)$ ) $+2+L^{Q}(S_{2})=L_{1}$ (rad $P(t)$ ) $+2+L_{2}(S_{2})\geqq L_{1}$ (rad $P(t)$ ) $+2+a=F(n)+2$,
this is a contradiction.

The following corollary is useful to calculate an upper bound of $G(n+1)-G(n)$ .
COROLLARY 5. Assume $T_{1}$ is a connected component of $T_{n}^{*}\backslash \{p\}$ such that $R_{T_{1}}$

has maximal length among the translation quivers corresponding to other connected
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components of $T_{n}^{*}\backslash \{p\}$ . We put $m=n-|T_{1}|-1$ , then it holds that
(1) $ F(n)=\max$ {$L(M)|M$ is a successar of $P(p)$ in $R_{T_{n}^{*}}.$ }.

(2) $F(n-1)\geqq L_{1}(R_{\tau_{1}})+2m$ .

PROOF. The first statement follows immediately from Lemma 4. Since $|T_{1}|$

$=n-m-1$ , $F(n-m-1)\geqq L_{1}(R_{T_{1}})$ and $F(n-1)\geqq F(n-m-1)+2m$ by Lemma 1.
Hence the second inequality holds.

Here we remark, by the above fact, it holds that

$G(n+1)-g_{n}^{*}(p)=F(n)-L(radP(p))$

and
$G(n)-g_{n}^{*}(p)=F(n-1)-L(radP(p))\geqq L_{1}(R_{T_{1}})-L_{1}(radP(p))+2m$ ,

hence

$G(n+1)-G(n)\leqq\{F(n)-L(radP(p))\}-\{L_{1}(R_{T_{1}})-L_{1}(radP(p))\}-2m$ .

Now we must define some quiver which we need to estimate the value
$F(n)-L(radP(p))=\max\{L(M)\}$ stated in Corollary 5.

We denote $r(radP(p))$ and $r^{*}(radP(p))$ full subtranslation quivers of $R_{\tau_{n}^{*}\backslash Ip\}}$

and $R_{T_{n}^{*}}$ consisting of successors of some indecomposable direct summand of
rad $P(p)$ . Further we put $s(radP(p))$ a full subtranslation quiver of $r(radP(p))$

consisting of vertices $m$ in $r(radP(p))$ such that $\tau m\not\in r(radP(p))$ . This is a
union of some connected sections. We define $s^{*}(radP(p))$ by a section in
$r^{*}(radP(p))$ linked the sections in $s(radP(p))$ at $p$ . Next, for a section $s$ in
a quiver $R_{T}$ , we define a quiver $S(s)$ associated with a vector to each vertex.

Let $x_{1},$ $\cdots,$ $x_{n}$ be vertices in $s$ . Inductively we define $S(s)$ and it’s vector
$d(x)\in Q^{n}$ for each vertex $x$ in $S(s)$ , here $Q$ is the rational field.

First $d(x_{i})=(\delta_{i.j}),$ ( $1\leqq i,$ $j\leqq n$ , and $\delta$ is the Kronecker $\delta$ ).

here $a_{1},$ $\cdots,$ $a_{m}$ are all

arrows which start from $x$ . $\tau^{-1}x$ is defined in the case that a vector
$-(\sum_{i=1}^{m}d(y_{i})-d(x))$ doesn’t appear in vectors already defined and also we put
$d(\tau^{-1}x)=\Sigma_{l1}^{m_{=}}d(y_{i})-d(x)$ .

The following lemmas follow easily from definitions.

LEMMA 6. $r(rad(P(p))$ and $r^{*}(radP(p))$ are embeded into $S(s(radP(p)))$ and
$S(s^{*}(radP(p)))$ respectively as full subtranslation quivers.
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LEMMA 7. In the same notations of the above remark, it holds that $F(n)-$

$L(radP(p))\leqq the$ length of $S(s^{*}(radP(p)))$ .

[REMARK] From lemma 7, in order to calculate the value $F(n)-L(radP(p))$ ,

we need only to get a quiver $S(s)$ whose length is maximal for a possible section
$s=s(radP(p))$ . So, we classify the possible $r(radP(p))$ and study $S(s^{*}(radP(p))$ ,
also we shall get an upper bound of $G(n+1)-G(n)$ for each case that $R_{\tau_{n+1}}$ has
a subtranslation quiver classified there in next section.

\S 3. The Classification of $r(radP(p))$ and an Upper Bound of $G(n+1)-$

$G(n)$ .
As stated before, in this section, we classify $s(radP(p))$ and $r(radP(p))$

such that the support of the starting function $s_{radP(p)}$ is of finite type as a
partially ordered set and the value of the function is not exceeding 1. Also we
give an upper bound of $G(n+1)-G(n)$ when $R_{T_{n+1}}$ has $r(radP(p))$ in each case.

rad $P(p)$ has at most three direct summands, otherwise a partially ordered
set [1, 1, 1, 1] appears in $S_{x_{1}}^{T^{1}}\perp\cdots\perp S_{x_{T}}^{\tau^{r}}$ .

I. Suppose rad $P(p)$ is indecomposable.
We put $a_{0}=radP(p)$ . The slice $s(a_{0})$ is one of the following four forms.

The case (i)
$a_{0}-a_{1}-\cdots-a_{k}$ $0\leqq k$ ,

The case (ii)
$d_{1}-\cdots-d_{s}$

$\Lambda$

$a_{0}-\cdots-a_{\downarrow^{k}}-c_{1^{-\cdots-}}c_{i}$
$1\leqq j\leqq i\leqq s,$ $0\leqq k$ ,

$b_{1}-\cdots-b_{j}$

The case (iii)
$d_{1}-\cdots-d_{t}$

A
$c_{1}-\cdot\backslash \cdot-c_{i}-e_{1}-\cdots\rightarrow e_{s}$ $1\leqq s\leqq t,$ $1\leqq i,$ $j,$ $0\leqq k$ ,
A

$a_{0}-\cdots-a$ $k^{-b_{1}-\cdots-b_{J}}$

Then case (iv)
$c_{1}\rightarrow\cdots-c_{i}$

A
$a_{0}\rightarrow\cdots\rightarrow a_{k}\rightarrow b_{1}\rightarrow\cdots\rightarrow b_{j}$ $1\leqq j\leqq i,$ $0\leqq k$ .

To avoid the lengthy explanation, the reason of the fact (for example, it is
injective or non-injective, etc.) will be shown shortly in parenthesis except that
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we need to explain particularly.
The case (i). In this case, $r(a_{0})$ is as follows. Hence if $(T_{n}^{*}, g_{n}^{*})$ has this

slice $s(a_{0})$ , then $G(n+1)-G(n)\leqq 2$ .

$\nearrow a_{k}$. . $\cdot$ .
$\ldots.$ .

’.
$\nearrow a^{\prime}$

$R$ .
$a_{0}\nearrow^{a_{1}}$. .

. . . . . . . . . . . . . .
Then $r^{*}(a_{0})$ is as follows.

$’(a_{1},0)\nearrow^{\prime}\searrow\prime^{\prime}\nearrow\prime^{\prime}(a_{k},.0).-.--.-----’\nearrow^{\sim}.(\overline{a}_{k}.’.1.)^{\wedge}R^{-(0,.1.)}$

.$(a_{0},0)--------(a_{I}, 1)\nearrow$ .
$\sim(a_{0},1)\nearrow$ . .. . . . . . . . . . . . .

The case (ii). In this case, $a_{k}$ is injective. 0therwise $s_{a_{0}}(\tau^{-1}a_{k})=2$ . Also
$j=1$ and $i=1$ or 2, otherwise it appears

$c_{3}d_{8}$

$b_{2}c_{2}d_{2}$ $\uparrow$ $\uparrow$

$[\uparrow \uparrow \uparrow]=[2,2,2]$ and $[b_{1}c_{2}d_{2}]=[1,3,3]$ .
$b_{1}c_{1}d_{1}$ $\uparrow$ $\uparrow$

$c_{1}d_{1}$

If $i=1$ , then $r(a_{0})$ and $r^{*}(a_{0})$ are as follows. Hence $G(n+1)-G(n)\leqq n$ .

$’\nu^{d_{s}}$ . .
$ d_{1}^{\mathscr{J}:^{-}}\cdot$ . $R_{2}$ .

$d_{b_{1}^{1}}^{c}$

. . . . . . . . . . . . . . . . . . .

$a_{k}$

$\prime^{\prime^{\prime^{\prime}}}\nearrow$

.
$R_{1}$ . . .

$a_{0}$ . . .

If $i=2$ , then $s=2,3$ or 4, otherwise it appears [1, 2, 5]. By looking over
the quiver $S(r^{*}(rad(a_{0})))$ same as before, if $R_{T_{n+1}}$ has one of these quivers, then

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}10 (n=7)\\13 (n=8)\\26 (n\geqq 9)\end{array}\right.$
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$\vee\epsilon--c_{\overline{O_{\hat{o}}}}^{\nearrow\vee^{\wedge}}e^{\hat{r}_{1}}\ddagger\check{3^{\wedge}}\vee Q$
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The case (iii). Let $r$ and $m$ be maximal numbers through all these numbers
$r^{\prime}$ and $m^{\prime}$ respectively such that $\tau^{-r^{\prime}}a_{k+1-r^{\prime}}$ and $\tau^{-m^{\prime}}c_{i+1-m^{\prime}}$ exist. In this case,
$j=1$ or $s=1$ , otherwise [2, 2, 2] appears. If $j\geqq 2$ and $s=1$ , then $t=2,3$ or 4
and $a_{k}$ is injective since otherwise it appears [1, 2, 5] and [1, 1, 1, 1]. Further
if $a_{k}$ is non-injective, then $c_{1}$ is injective or $r=1$ . If $a_{k}$ and $c_{1}$ are non-injec-
tive, then some $c_{v}$ is injective, otherwise $s_{a_{0}}(\tau^{-1}c_{i})=2$ . In any way, we can find
a minimal number $v$ such that $c_{v}$ is injective if $a_{k}$ is non-injective. Hence we
have the following classification list in this case.

lf $R_{T_{n+1}}$ has one of the cases from (1) to (9) as $r(rada_{0})$ , then we get

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}14 (n=7)\\28 (n=8)\\30 (9\leqq n\leqq 17)\\2n-5 (n\geqq 18).\end{array}\right.$

$(^{*}1)$ In this case, $s=1,0\leqq m\leqq 3$ and $t\leqq 4$ by [2,2,2], [1,2,5] and
[1, 2, 5] respectively. Assume $m=0$ . If $t=2$, then $1\leqq r\leqq 3$ by [1, 2, 5] and if
$t=3$ or 4, then $r=1$ by [1, 3, 3]. We have following four cases. (1) $m=0$ ,

$r=landt=2,3$ or 4. (2) $m=0,$ $r=2$ or3 and $t=2$ . (3) $m=1,$ $t=2$ and $r=1$

or 2 by [2, 2, 2] and $[N, 4]$ . (4) $m=2$ or 3, $t=2$ and $r=1$ by [1, 3, 3].
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In this case, we get

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}10 (n=7)\\16 (n=8)\\28 (n\geqq 9).\end{array}\right.$

$(^{*}2)$ The following two cases are possible; (1) $c_{i}$ is injective, $v=2$ or 3 by

[1, 2, 5]: (2) $c_{i}$ is non-injective, $v=2,$ $m=1$ by $[N, 4]$ and [1, 3, 3].

In these cases, we get

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}16 (n=8)\\30 (n\geqq 9).\end{array}\right.$

$(^{*}3)$ In this case, we have six cases by the same method as above and we
get

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}14 (n=7)\\28 (n=8)\\36 (9\leqq n\leqq 35)\\n+1 (n\geqq 36).\end{array}\right.$

The case (iv). This case is most complicated. But we can classify and cal-

culate by similar method discussed above. So we shall only give the result.

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}15 (n=7)\\27 (n=8)\\60 (n\geqq 9).\end{array}\right.$

II. Suppose that rad $P(p)=a_{0}\oplus b_{0}$ . Then $s(radP(p))$ has the following form.

$d_{\uparrow^{1}}-\cdots-d_{t}$

$a_{0^{-\cdots-}}a_{i}-e_{1^{-\cdots-}}e_{s}$ $b_{0}-\cdots-b_{j}$

$0\leqq i,$ $j,$ $s,$
$t$ and $s\leqq t$ .

Clearly it is impossible that the case $t=s=0$ occurs by calculating vectors
in $S(s^{*}(radP(p))$ . So assume $s\geqq 1$ , then $s=1$ or $j=0$, otherwise it appears
[2, 2, 2]. Furthermore if $s\geqq 2$ and $j=0$, then $s=2$ by [1, 3, 3]. We shall left
the concrete classification to the readers. We get in these cases

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}9 (n=7)\\23 (n=8)\\36 (9\leqq n\leqq 35)\\n+1 (n\geqq 36).\end{array}\right.$

III. In the case rad $P(p)=a_{0}\oplus b_{0}\oplus c_{0}$ . Then $s(radP(p))$ has the form below,

otherwise it appears [1, 1, 1, 1].

$a_{0^{-}}\cdots\rightarrow a_{t}$ $b_{0}\rightarrow\cdots-b_{j}$ $c_{0^{-\cdots-}}c_{k}$

$0\leqq k\leqq j\leqq i$ .
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Here it must be $k=0$ , otherwise it appears [2, 2, 2]. Further $j=0$ or 1 by

[1, 3, 3]. So there are only two cases. (1) $j=0$ and (2) $j=1,$ $i\leqq 3$ by [1, 2, 5].

Hence we get

$G(n+1)-G(n)\leqq\left\{\begin{array}{l}5 (n=5)\\11 (n=6)\\20 (7\leqq n\leqq 22)\\n-2 (n\geqq 23).\end{array}\right.$

This completes the classifications and the calculation of the possible values
of $G(n+1)-G(n)$ .

From the above values, we get a result stated in the introduction.

THEOREM 8. Let $n$ be a natural number and let $G(n)$ and $F(n)$ maximal
numbers of all the values of gradings and lengthes of Auslander-Reiten quivers of
simply connected algebras with $n$ sinple modules respectively. Then it holds that

$G(2)=1,$ $G(3)=3,$ $G(4)=5,$ $G(5)=7,$ $G(6)=11,$ $G(7)=15,$ $G(8)\leqq 41$ and

$G(n)\leqq\left\{\begin{array}{l}60n-469 (9\leqq n\leqq 32)\\n^{2}-4n+615 (n\geqq 33).\end{array}\right.$

Also for $F(n)=G(n+1)-1$ , we have

$F(2)=2,$ $F(3)=4,$ $F(4)=6,$ $F(5)=10,$ $F(6)=14,$ $F(7)\leqq 40$ and

$F(n)\leqq\left\{\begin{array}{l}60n-410 (8\leqq n\leqq 31)\\n^{2}-2n+611 (n\geqq 32).\end{array}\right.$

[REMARK] The graded trees which gives $F(5)$ and $F(6)$ are as following.

$F(5)=10$ $F(6)=14$

1 7

$1-0_{1}^{1}-51$

.
1 6 1

$1-0_{1}^{1}1-1-2$

$1-0^{1}-0^{1}-2$ , $0-1-2^{1}-3-4$ ,

For the number of indecomposable modules over simply connected algebras,
we get the following corollary. (cf. [1])

COROLLARY 9. The number of indecomposable modules over a simply con-
nected algebra with $n$ simple modules for a natural number $n$ is smaller than
$\frac{(n-1)F(n)}{2}+4[\frac{n+2}{3}]$ . Here $[m]$ means a maximal natural number not ex-

ceeding $m$ .



On maximal gradings of simply connected algebras 331

PROOF. The number of vertices whose grading is $0$ is smaller than $2[\frac{n+2}{3}]$ .
By duality, the number of injective module whose length is maximal is smaller

than $2[\frac{n+2}{3}]$ . So we get the above inequality.
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