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ON COMPLEX TORI WITH MANY ENDOMORPHISMS

By

Atsushi SHIMIZU

The endomorphism ring of a complex torus 7 of dimension n is a free
module of rank=<2n? as a Z-module. When T is an abelian variety it is well-
known that if the rank is equal to 2n? T is isogenous to the direct sum of n
copies of an elliptic curve with complex multiplication. We will prove a similar
result in a more general form, that is, let T and 7T’ be two complex tori of
dimension n and n’ respectively, and if the Z-module of all homomorphisms of
T into T’ is of rank 2nn’/, then T and 7T’ are isogenous to the direct sums of
n and n’ copies of an elliptic curve (Theorem 1-3). Next let T be a complex
torus of dimension 2 and put End®(7)=End(T)®,Q. Then using the types of
End®(T) we will classify all 7's with a non-trivial endomorphism ring. The
result is given in the last part of §4. A complex torus T of dimension 2 which
is not simple is an abelian variety, if and only if T is isogenous to the direct
sum of two elliptic curves. On the other hand a simple torus T of dimension 2
such that End(7) is not isomorphic to Z is an abelian variety if and only if
End?(T) contains some real quadratic field over Q. This is proved in §5.

NOTATIONS. We denote by Z, @, R and C, respectively, the ring of rational
integers, the field of rational numbers, real numbers and complex numbers. For
a ring R, M(nxXm, R) denotes the R-module composed of all matrices with =
rows and m columns with coefficients in R. When n=m, it is the R-algebra of
all square matrices of size n. We simply denote it by M(n, R). The group of
all invertible elements of M(n, R) is denoted by GL(n, R).

Let T and T’ be two complex tori. We denote by Hom(7, T’) the set of
all homomorphisms of 7T into 7’ and put End(T)=Hom(T, T). We put
Hom%(T, T)=Hom(T, T)QQ and End®(T)=End(T)QQ. End%T) is naturally
considered as an algebra over Q. T and T’ are called isogenous and denoted
by T~T’ if they are of the same dimension and there exists a homomorphism
A of the one onto the other; such a 2 is called an isogeny. “~” is an equiva-
lence relation. If 7, and T} are complex tori which are isogenous 7" and 7"
respectively, then Hom®(T,, T?) is isomorphic to Hom%T, T’) and End%(T,) is
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isomorphic to End?(7") as a Q-algebra.

Let G be a lattice subgroup of C™ and (g, -, g.,) its base. Then the
matrix G=(g,, -, ) EMmX2n, C) is called the period matrix of the complex
torus C"/G. We shall often denoted by C"/G the complex torus C*/G.

§1. Complex tori with endomorphism rings of the maximal rank.

Let T and T’ be two complex tori of dimension n and n’ respectively.

THEOREM 1-1. Hom(T, T”) is a free abelian group whose rank is at most

2nn’.

Proor. We put T=FE /G and T'=E’/G’, where E, E’ are complex linear
spaces and G, G’ are respectively their lattice subgroups. Take a C-base
(g1, =+, gn) Of E which is also a part of a Z-base of G and let H, the subgroup
of G generated by gy, -+, gn. If 4 is an element of Hom(7T, T'), A naturally
induces a linear map L; of £ to E’. Then making correspond to A the homo-
morphism of H, into ¢’ which maps (g, =+, ga) to (Li(g1), ---, Li(gn), we get
an injective homomorphism of Hom(7, T’) into Hom(H,, G’). Since Hom(H,, G')
is a free abelian group of rank 2nn’, Hom(7, T’) which is isomorphic to a sub-
group of Hom(H,, G’) is a free abelian group whose rank is at most 2nn’. (q.e.d.)

Let T and T’ be the direct sums of » and »’ complex tori 74, ---, T and
T:, ---, T, respectively. Then, Hom(7, T’) is isomorphic to the direct sum of
all Hom(T;, T:)s (¢=1,2, ---,r and /=1, 2, ---, #"). If T=T’, they are iso-
morphic as rings, where for two elements (4;:), (giir) of 16? Hom(T;, T;) (Ais

and g, are elements of Hom(T;, Ty).), we define the product of them by
(Xhaihjirepip) € @Hom(Ti, T.). Especially when T,=T,= .- =T, End(T) is

isomorphic to M(r, End(T))).

Let C be an elliptic curve with complex multiplication, that is, complex
torus of dimension 1 with an endomorphism ring of rank 2, and let 7 and 7T’
be complex tori which are isogenous to the direct sums of n and n’ copies of C
respectively. Then the rank of Hom(T, T’) is clearly 2nn’. We shall prove the
converse is true.

THEOREM 1-2. Let T and T’ be complex tori of dimension n and n’ respec-
twely. If the rank of Hom(T, T') is 2nn’, T and T’ are respectively isogenous
to the direct sums of n and n’ copices of an elliptic curve C with complex multi-
plication.
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PrROOF. Notation being as in the proof of Theorem 1-1; choose a proper
C-base of E and a proper Z-base of G, and we may assume that the period
matrix of 7' is (1,, T) where 1, is the unit matrix of size n and T is an element
of M(n, C) such that the imaginary part of T is a regular matrix. Similarly we
may assume that the period matrix of 7" is (1,., T’) for some matrix T’ of size
n’ which satisfies the same condition.

Now considering Hom(T, T’) to be a subgroup of Hom(H;, G’), since they
are of the same rank, there exists an integer A such that A(Hom(H;, G'))C
Hom(7, T’). In other words, for any S& M(2n’ Xn, Z) there exist we M(n’Xn, C)
and Q= M@2n’xX2n, Z) such that

wl,=1, THAS and o(l, T)=1. T)2.

A B
C D

o

O>’ there exists .Q:(

For any acM(n'xn, Z), putting s:( ) (A, B, C, De

M(n'Xn, Z)) such that
Aa(l,, T)=U,, TR=A+T'C, B+T'D),

and especially AaT=B-+T’D. If we denote by Im 7T and Re 7T the imaginary
part of T and the real part of T respectively, we have i) la(Im T)=(Im T")D
and ii) la(Re T)=B-+Re T’")D. Therefore for any element a of M(n'Xn, Z)
we have

i) ImT) *Aa)Im TYeMn' Xn, Z)
ii) (Aa)ReT)—Re T/)Im T/)(Aa)Im T)esMn’'Xn, Z).

Put (Im T')~'=(8pr), @=(ar), Im T=(a,,), and i’) implies
13 3 8pananc2

for any p, ¢ (p=1, ---, n’, ¢g=1, ---, n). If we put a to be the matrix whose
(r, s)-component is 1 and the others are all 0, we have 283,.a,,Z for any p, g,
r, s. Especially putting p=r=1, we have A8,,a,,Z for any s, g. Therefore
there exist a real number ¢, which is independent of s, ¢ and integers a¥ (s, ¢
=1, 2, ---, n) such that a,,=a,a¥. Put T,=(a¥)sM(n, Z), and we have Im T=
a,T,, where a,#0 and det T,#0. Similarly there exist ¥’=R and T.eM(n’, Z)
such that (Im 7/)"'=p’T;. Putting aj=>b""(det T({)"! and Ti=(det T;)T;™!, we
have Im 7T’/=a,T; where a is a real number T is an element of M(n’, Z). Now
we have T=Re T++/—14a,T,. Considering the isogeny whose rational repre-

sentation is (10" TO_I), we can see that T is isogenous to C"/(1,, (Re T)T71'+
1
v/ —1a;1,). So we may assume that Im T=a,1,. And similarly we may assume
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that Im T/=ajl,.. Put pg=a,ai"'4, and we have by ii’)
(Aa)Re T)—pRe TYacsM(n’Xn, Z)

for any a. If we put Re T=(c,,), Re T'=(d,,) and a=(a,;), we have
A ‘i ApsCoq— U nzl dprar€Z

for p=1, ---, n, s=1, ---, n’. Again putting @ to be the matrix whose (r, ¢)-
component is 1 and the others are all 0, we have A) Ac,=Z, if s#¢q, B) pdpr €2,
if p#r, and C) A¢css—pd.,Z, for any p, ¢, , s. Therefore we have A(cs))—pdyls
eMn, Z) and p(dy,)—Acnln €Mn’, Z). Put Ty=A(csq)—pd1l, and c=pd,;, and

we have Re T=2"(cl,+T,). So putting z=2"'¢c++—1 a,, we have T=z1,+2"1T,.

. . . . . (1, —27'T
Consider the isogeny whose rational representation is ( O" 1 2), and we can
n

see that T is isogenous to C"/(1,, z1,) which is clearly isogenous to the direct
sum of n copies of C=C/(1, z). Similarly T’ is isogenous to the direct sum of
n’ copies of some complex torus C’ of dimension 1. Since Hom(T, T) is iso-
morphic to the direct sum of nn’ copies of Hom(C, C’), the rank of Hom(C, C’)
is 2, hence C is an elliptic curve with complex multiplication which is isomorphic
to C’. (q.e.d.)

§2. Period matrices of complex tori with many endomorphisms.

Let T be a complex torus whose End?9(T") contains a division sub-algebra D
which contains Q properly. Let Z be the center of D and K one of the maxi-
mal commutative subfields of D and denote the dimensions of the vector spaces
D, K and Z over Q by d, e and f respectively. Then we have d/f=(e/f)? in
other words df=e? On the other hand, considering a rational representation of
D, the linear space @*" can be regarded as a D-module. Since D is a division
algebra, a D-module is always free, hence denoting by » the rank of the module
over D, we have rd=2n. Now the following theorem has been proved.

THEOREM 2-1. Let D be a division algebra contained in End*(T). If we
donote by d, e and f, respectively, the dimensions over Q of D, one of the maxi-
mal subfield of D and the center of D, we have

i) df=e®

ii) fleld|2n (where a|b means a divides b.)

COROLLARY 2-2. Let n be a positive odd integer which is square-free, and T
a complex torus of dimension n. Then any division algebra which is contained in
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End¥T) is commutative.

PROOF. Notations being as in Theorem 2-1, (e/f)*=d/f divides 2n. Hence
e/f=1, that is, D is commutative. (q.e.d.)

Next we shall inquire into the period matrix of T.

THEOREM 2-3. Let T=E /G be a complex torus of dimension n such that
End¥T) contains a division algebra D which contains Q properly. Take any
element ¢ of D which is not contained in Q. Choosing an adequate C-base of

C-vector space E, the analytic representation of ¢ is a diagonal matrix

()
0 a,

where a; is the image of ¢ by an isomorphism of Q(¢) into C (i=1, 2, ---, n).
And put h=[Q(¢): Q], s=2n/h and

l a, at--al??
O=| : : D leMmXxh, C).

1 a, a%t---al?

gu O a1 0O st 0
G<gﬁ>:(< )@(g )@(*"’ )(l))
0 gin 0 gaen O 8sn

where gi; (=1, -, s, j=1, ---, n) are somd given complex numbers. Then there

And put

exists ns complex numbers gi; such that T is isogenous to the complex torus

T(g:;) whose period matrix is G(gs;).

PROOF. Let w be an analytic representation of ¢ and £ a rational represen-
tation. Since the minimal polynomial f of £ is also the minimal polynomial of
¢ when Q(¢) is regarded as an algebraic field over Q, f is irreducible. Clearly
f(w)=0, so that the minimal polynomial of @ has no multiple root. Here choosing

an adequate C-base of FE,
a, O
o= .
0 a,

where a,, ---, a, are roots of the algebraic equation f(x)=0. On the other hand
the characteristic polynomial F of £ is s-th power of f. Therefore if we con-
sider 2 to be a linear transformation on @Q2?", there exists an element P of
GL(2n, QQN\M(2n, Z) such that
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0 ceeeennee 0 —aq
1. —a,
where Ay=Ap= - =A=| - o e€GL(h, Q),

0 0 1 —a,,

and f(x)=x"4an_,x" '+ --- +a,. Considering the isogeny whose rational rep-

resentation is P, we may assume that the analytic representation w of ¢ is a
a, 0 A,

diagonal matrix ) and the rational representation 2 of ¢ is ) Then
0 a,

let G be the period matrix, and we have wG=G£. We only have tos compare

each component of wG with the corresponding component of G£2 to complete the
proof. (q.e.d.)

Conversely suppose complex numbers {g;;} are given. Is G(g;;) the period

. . 0\/G G
matrix of some complex torus ? Since (6) 6)(5):(C)Q’ a,, -+, a, have to

satisfy the following condition (%#);
(#) the image of ¢ by any isomorphism of Q(¢) into C appears just s times in
a,, -, An, @, -+, &, (Where @ means the complex conjugate of a).

THEOREM 2-4. We assume a,, -+, a, satisfy the condition (8). Then if g;;
(i=1, ---, s, j=1, ---, n) are generally given, G(g;;) is the period matrix of some
complex torus. (That is, the subset in C°™ composed of all {gi;} such that G(gi;)
is a period matrix is open dense in C*".)

Proor. Let X;; (=1, ---, s, j=1, ---n) be ns variables, and we only have
G(Xy))

to prove that det( )=0 is a non-trivial equation. Let ¢,, - -, Pn be the

G(Xi;)
images of ¢ by all the isomorphisms of @Q(¢) into C, and put
(l P ")
i ¢n ¢;§—1 )
Then we have
. X*D .- XXO| | X% - X%
det M): H ST T det @)
Xl x40 - Xho| X5 X

where X% (, j=1, 2, ---, s) are diagonal matrices such that all X;; and all )?ij
appear once and only once in their diagonal components. Since det @+0, we
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only have to prove the following lemma to complete the proof.

LEMMA 2-5. Let f(xy, **, Xm, Y1, ***» Ym) be a polynomial of 2m wvariables
X1,y Xmy Y 0, Ym With coefficients in C. If f(zy, ~zZm, Z1, =+, Zn)=0 for
any m complex numbers zy, -+, Zm, then f=0 as a polynomial.

PRrROOF. It is easily seen that we may assume m=1. Put f(x, y)=F,(x)y?
4o LFy(x). If f(z, 2)=0, z is a root of the algebraic equation Fy,(z)y?+ --- +
F,(z)=0 with an unknown y. If p>0, Z is locally a holomorphic function of z
on an open subset in C. That is a contradiction. Therefore p=0. Then it is
clear that f=0 since F,(z)=0 for any z. (q.e.d.)

§3. Invariant subtori.

Let 7T be a complex torus and 7' its subtorus. We call T invariant through-
out this paper if the image of 7" by any endomorphism of T is contained in 7.
Of course T itself and {0} are invariant subtori. We call each of them a trivial
invariant subtorus.

THEOREM 3-1. If a complex torus T has no non-trivial invariant subtorus.
Then T is isogenous to the direct sum of some copies of a simple torus. (A com-
plex torus is called simple if it has no subtorus but itself and {0}.)

PROOF. Let 7'’ be a simple subtorus which is not {0}. The set A=
{(AT")|2€End(T)} is a finite set. In fact, since any A(T") is simple, if A=
{4, (T, +, 2.(T"} be a subset of A (A,(T")#2,(T") if i#j), To=A(T")+ - +
An(T") is isogenous to the direct sum A,(T")@® --- PAn(T’) which is isogenous to
the direct sum of m copies of T’. So A is a finite set. Put A’=/ especially,
and T,=2A,(T")+ --- +2,(T’) is an invariant subtorus which is not {0}. There-
fore T,=T, that is, T is isogenous to the direct sum of m copies of a simple
subtorus 7’. (qg.e.d.)

THEOREM 3-2. Let T’ be an invariant svbtorus of a complex torus T. Then
we have

i) rankzEnd(T)<rank;End(T/T’)+rank;Hom(T, T’)

ii) rankzEnd(T)<rankzEnd(7’)+rank;Hom(7T/T’, T).

PrROOF. We define an homomorphism @ : End(T)—End(7’) by the natural
restriction. It is clear that the kernel of @ can be considered to be a subset of
Hom(T/T’, T), so ii) is proved. Considering similarly the natural homomorphism
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@’ :End(T)—End(T/T’), we have i). (qg.e.d.)

COROLLARY 3-3. Let T be a complex torus of dimension n. If rankzEnd(T)
>2n*—2n+-2, there exists an integer m>1 such that T is isogenous to the direct
sum of m copies of a simple torus.

PROOF. Let T be an invariant subtorus and £ its dimension. By ii) we have
2n*—2n+2<rankzEnd(T) <rankzEnd(T’) +rank;Hom(T/T’, T) < 2k24+2(n—k)n.
So we have k=0 or n. On the other hand if 7 is simple, rank;End(7)<2n.
Therefore T is isogenous to the direct sum of m copies of a simple torus for
some m>1. (q.e.d.)

We will use the corollary to prove the following proposition which is a
special case of Theorem 1-2

PROPOSITION. Let T be complex torus of dimension n. If the rank of End(T)
s 2n?, T 1s isogenous to the direct sum of n copies of an elliptic curve C with
complex multiplication.

PROOF. We may assume n>1. Then since rankzEnd(T)=2n2>2n*—2n—2,
T is isogenous to the direct sum of some copies of a simple torus 7. Let r
be the dimension of 7, and rank;End(T)=rank;M(n/r, End(T’)), therefore 2n?
=n/r)*2r)=2n%/r. So r=1 and rankzEnd(7T’)=2. (q.e.d.)

REMARK. Let T and T, be two complex tori and 7"/ and T their subtori
respectively. We call the pair (T, T{) I-pair if the image of 7’ by any homo-
morphism of T into T, is contained in T'{. If T and T, have no non-trivial
I-pair, T, is isogenous to the direct sum of copies of a simple torus. And we
have equations which are similar to i) and ii) in Theorem 3-2. Therefore if
Hom(7, T,) is of the maximal rank, 7T, is isogenous to the direct sum of copies
of an elliptic curve. Considering dual tori, we can see that 7 is also isogenous
to the direct sum of copies of an elliptic curve. Thus Theorem 1-2 itself can
be proved.

Now let T be a complex torus such that a division algebra D is contained
in End%(T) as a subalgebra. If T’ is a non-trivial invariant subtorus, @ and @’
in the proof of Theorem 3-2 induce the following @-algebra homomorphisms ;

@° : End¥(T)—End%T’)
@’? : EndUT)-End«T/T’).
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@9 is injective on D. In fact, if not, there exists an element of D such that
@$)=0 then ¢(T")=1{0}. But such a ¢ cannot be an isogeny. Similarly @’ is
injective on D, too. Hence we may consider D a subalgebra of End%(7T’) and
End¥(T/T’).

THEOREM 3-3. Let T be a complex torus of dimension n. If End?%(T) con-
tains a division algebra of dimension 2n as a Q-vector space, T is isogenous to the
direct sum of some copies of a simple torus.

PRroOOF. If T has a non-trivial invariant subtorus 7/, End®(T’) contains a
division algebra of dimension 2n. But this is impossible. Hence T has no non-
trivial invariant subtorus, so that, by theorem 3-1, T is isogenous to the direct
sum of some copies of a simple torus. (q.e.d.)

§4. Complex tori of dimension 2.

Throughout this section 7' will denote a complex torus of dimension 2. In
this section we will study the structure of End?(T).

(1) The case that T is simple.

If T is simple any endomorphism is an isogeny, so End?9(7) is a division
algebra. Let K be one of the maximal commutative subfields of End%(7") and d
its degree over @, and d divides 4, so d=1, 2 or 4. If d=1, End%(T)=Q.

a) The case of d=4.

In this case End%(7T)=K is isomorphic to a quartic field Q[ X]/(f(X)) over
Q@ where f(X) is an irreducible polynomial of degree 4. By Theorem 2-3, there
exist complex numbers &, & such that {§, & C, & is the set of all roots of the
equation f(X)=0 and 7 is isogenous to
1 ¢ ¢ C3)

1 & & &/

Conversely let f(X) be an irreducible polynomial of degree 4 and {, § two com-
plex numbers such that {Z, & C, &} is the set of all roots of the equation f(X)=O0.
Then T’(, &) is a complex torus such that End?(7’({, &) contains a division
algebra Q(&) of dimension 4. If T’(C, &) is not simple, by Theorems 3-3, T'(, &)
is isogenous to the direct sum of two copies of an eliptic curve C=C/(1, z). In
other words there exist weGL(2, C) and 2=GL(4, @) such that

G : & @0l 5 1 o) 2

Let F be the minimal Galois extension of @ containing Q({), G* its Galois group

T'¢ &=C*(
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a, B, az and fBz are all contained in Q) and 7, d, yz and dz are in Q(§) and
moreover a’=y, (az)’=yrz, B’=0, (Bz)’=0z. So z is contained in both @({) and
Q&), and z°=z. We put K'=Q(z), then Q({) is a quadratic extension of K’ and
¢ is the conjugate of £ over K’. Therefore Q({)=Q(¢) and Q()=Q(£). By the
way there exist only four distinct elements in all {# (p=G*), and there exist at
most two elements p of G* such that £*={. In fact if {*={, £°=¢, so £° must
be £ or £ Hence the order of G* is 4 or 8. Making &, & C, & correspond to
1, 2, 3, 4 respectively we consider G* to be a subgroup of the symmetric group
S.. Then G*=V,={id, (12)(34), (13)(23), (14)(23)} or G*=V,J(12)V,= {id, (12),
(12)(34), (34), (13)(24), (1423), (1324), (14)(23)} where “/d” means the unit element
of the group.

Conversely if G* is one of those subgroups, putting z={--§, it is easily seen
that 7T7(, &) is not simple.

b) The case of d=2.

In this case K is isomorphic to a quadratic field Q(v/m) where m is a
square-free integer. By Theorem 2-3 7 is isogenous to

VA B SV B

for some complex numbers a, b, ¢, d. Since T is simple, abcd+#0, so we may
assume a=c=1. But (i jnm—ls $%3> cannot be a period matrix of a simple

torus. Hence T is isogenous to a complex torus

1 ~m b bvm
Tums b, =C/(| "0 0 g
where b, d are complex numbers such that b, d&eR if m>0 and b+d if m<O0.

Conversely if such m, b, d are given, (i _:;% 5 —(%:71 is certainly a period

matrix of some complex torus T,(m; b, d).

LEMMA 4-1. T.m; b, d) defined above is not simple if and only if the fol-
lowing condition 1*) is satisfied.
i*) There exist rational numbers x, y and an element z of Q(~/m) with are not
all zero and satisfy

(t) 2xbd+zb+z°d+2y=0 (where z° means the conjugate of z).

(1) N(z/2)+xyeNQ'm)) (where N(z)=zz° for z€Q(~/m)).

PROOF. Let x, v, z,, 25, by, bs, bs, by are given rational numbers such that
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(x, ¥, 21, 22)7(0, 0, 0, 0) and (b, b, bs, bs)#(0, 0, 0, 0) and consider simultaneous
equations with unknowns X,, X,, X;, X,,

J X :b3X4""‘b4X3

(1) y=b;X,—b, X,
1 21:b1X4_b2X3—b4X1+b3X2
22:b1X3—-mb2X4—'b3X1+mb4X2 »

that is,
0 0 ‘_b4 bg X1 X

—b, by O 0 || X ¥
—by by —bs by || Xs z;
—by; mby, by —mby \ X, 2
Put z=z,++m 'z,. If x, y, z satisfy (f) and (1) has a solution X;=a; (=1, 2,

3,4), T:0m;b,d) is not simple. In fact let £2 be an element of GL(4, @) such

that
a, bl

a, b,
2= *

as b3
a, by

and o an element of GL(2, C) such that

{79

where a=b,—byv/m +bsd—bsdv'm, B=b;+bsnv/m+bsb+bbv/m. Then we have
by (1) and (f)
1 m b bvmy, 0 0 x =
w(l —'m d—ddh?)gm(* % % *)
Conversely if T,(m; b, d) is not simple, there exist such an w and an 2. There-
fore there exist x, vy, z which satisfy (f) and b,, b,, bs, by such that (1) has a
solution.
On the other hand (1) has a solution if and only if

0 0 —b, b x 0 0 —bs, b
- bz bl 0 O y - b2 bl O 0

rank =rank
_b4 bg '—bg b1 V41 "‘b4 b3 _bz b1

—ba nlb,; b1 '—mbg Z9 "—ba mb4 b1 _mbz



308 Atsushi SHIMIZU

It is easily seen that this equation is equivalent to the following equation (2);

(2) x(bf—mb3)-+ y(b§—mb3) +25(b1bs— bsbs) —21(b1bs—mbsb)=0.
Put e=b,++mb, and yp=bs++mb,, and (2) implies
(3) ee’x+nn’y—(enz+e’nz°)/2=0.

There exist ¢ and y» which are not both zero and satisfy (3) if and only if (1)
is satisfied. In fact, put v=2yn—ze, and (3) implies

(N(z/2)—xp)ee=wv7 /4= N(Q(Vm)) .

Hence the proof is completed.

Let R be a commutative ring and a, 3 elements of R. We denote by (a, B)r
the quatenion over R which is generated as a R-module by {1, e,, ¢,, es} where
1 is the unit and ei=a, e}=f, e;e.=—e,e,=0¢s.

We will call a complex torus of dimension 2 which is isogenous to T,(m ; b, d)
such that there exist x, ¥, z which satisfy (¥) but there exist no x, y, z which
satisfy both () and (1) of a quatenion type. By the above lemma a complex
torus of a quatenion type is simple.

THEOKEM 4-2. Let T be a simple complex torus of dimension 2. End(T) is
a non-commutative ring of rank 4 if and only if T is of a quatenion type. In
this case, T is isogenous to Ty(m; b, d) such that bd=q is a rational number and
End%(T) is isomorphic to (m, q)q.

PrROOF. First assume that T is of a quatenion type. Then we may assume
that T=T,(m; b, d) and there exist x, y, z such that 2xbd+2zb+2z°d+2y=0. Since
(TT) is not satisfied, xy#0 and we may assume x=1. If we put '=bp—2z°, d’'=
d—z and ¢=zz°—y<Q, then b’d’=q and T=T,(m; b, d) is isogenous to T,(m;
b’, d’) by an isogeny the rational representation of which is

1 0 ’_"21 mzs

01 2z, —2z
M

00 1 O

00 0 1

where z=z,+2z,/m and M is an integer which is large enough to make coeffi-
cients integral. It can be easily seen that End?(T,(m;b’, d’)) is a quatenion
generated as a @-module by four elements whose analytic representations are

o ’ b’
(o (5 —vi) @ o) Cuma™s):
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That implies the “if” part of the theorem, so we next prove the “only if” part
of the theorem. If End(7) is a non-commutative ring of rank 4, 7T is clearly
isogenous to T,(m;b, d) for some complex numbers b, d, and we may assume
that T=T,(m; b, d). We denote by ¢ the endomorphism whose analytic repre-

. 0 . s .
sentation is ( \/—). Let ¢ be an endomorphism which is not commutative
m

m
0 —

. Suy . . . .
with ¢ and <v t) its analytic representation. Since

vmo 0 \ssuyyvVm 0 Nt oysuy 0 —2u
( 0 —\/E)(v t/\ 0 —\/ﬁ) _(v t>*(——211 0/’
There exists an endomorphism ¢’ whose rational representation is (2, 16) for

some u’, v’. Since End(7') is not commutative, the degree of ¢’ over Q is 2, so
there exist rational numbers a,, a, such that ¢"*+a,¢"+a,=0. Hence

u;;), u(’)v’)+a1<z())’ 16/)—|-a2=

That implies a,=0 and u’v’ is a rational number. Let £2=(£;;) be the rational

representation of ¢’, and
‘Qll ‘Q12 ‘Q13 914

HI VRISV S A
R4y L 24 Q4
Put a,=80,,++/mQ2,; and a,=0;-++/mQ2,, and u'=a,+ba, and v'=aj+da3

where a; and @, are not both zero. Since u/v’ is a rational number, putting
r=a,a3/2, y=(a,a?—u'v")/2 and z=a,a}, the equation (1) is satisfied. In fact

0=(a;+bas)al+dad)—u'v' =a,albd +aalb+asa,d+a,ai—u’v’. (q.e.d.)

(2) The case that T is not simple nor isogenous to the direct sum of two

elliptic curves.
If T has a subtorus of dimension 1, we may assume the period matrix of

T is
G513

for some complex numbers z,, z,, w.

1z, 0w
0012
sum of two elliptic curves if and only if w=q,+q12:+qs22--qs2:22 for some rational

LEMMA 4-3. The complex torus T=C?/ ( ) is isogenous to the direct
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numbers q,, q1, G2, qs.

1z, 0w
0 01 22> b
). Conversely if T is isogenous to the direct sum

PROOF. If w=gq,+¢:2:+¢.2.+¢qs212,, it is easy to transform (
12,00
001z 2 b
*of elliptic curves, there exist an element w:(c d) of GL(2, C) and an element

some isogeny into (

£2=(a;;) of GL(4, Q) and complex numbers x, y such that
1 zz 0 wy (/1 x 0 0
“’(o 0 1 z _<0 01 y)g’
that is,

<a az, b aw+bzz)_(an+a21x Q12+ Q22X Q13+ Qg% au—l-aux)

¢ ¢cz; d cwtdz, - Q31 Fa4uY G2t QY Gt 0sY Ayt G4Y

Eliminating x from the equation of the first line, we have
(@11032—21012)W=(A2201 4024 11) T (A24811—A12021)21 (A1 2025— U320, 5)25
(21815 023011)2:25 .

Considering the second line, if necessary, we may assume a=a,,+a,,x+0. Since
z, is not a rational number, a=a,,+a,;x and az,=a,,+a,,x are linearly independ-
ent over @, hence a,,a;,—a.,a,,#0. Therefore w is a linear combination of 1,
z1, 23, 2:2;. With coefficients in Q. (qg.e.d.)

LEMMA 4-4. Let T be a complex torus which is not simple nor isogenous to
the direct sum of two elliptic curves. Then T has the unique subtorus T’ of
dimension 1, which is invariant. If End%T)#Q, T’ is isogenous to the factor
torus T/T’'. Therefore T is isogenous to a complex torus of the following type;

z 0 w

1
Tuz; w)=C(; & | °

PROOF. Of course T has a subtorus 7’ of dimension 1. If there exists
another subtorus T” of dimension 1, 7 is isogenous to 7T/APT”. Hence T’ is
the unique subtorus of dimension 1. Now assume that End?(7)#@Q. If there
exists an endomorphism ¢ such that ¢(7)=T’, T’ is contained in the kernel of
¢, so ¢ induces an isogeny of T'/T’ to T’. If there does not exist such a ¢,
End?(T) is division algebra. We have seen in §3 that End%(T') is considered to
be a subalgebra of End?(7T’) and of End%(T/T’). Since End¥T)#Q, we have
End%7")=End¥T)=End%T/T’). So T’ is isogenous to T/T’. (q.e.d.)

Now to study the endomorphism ring of T,(z; w) we prepare a lemma.



On complex tori with many endomorphisms 311

LEMMA 4-5. Let T=E/G be a complex torus of dimension n and T’ an
invariant subtorus of dimension r. If (1, T') and (1; T”) are the period matrices
of T' and T/T’ respectively where r+s=n, then we can choose a C-base of E
and a Z-base of G such that the period matrix is of the following type;

<1T 0 7T/ = > . »

0 1, 0 T7/° ,
Then the analytic representation » and the rational representation 2 of any
element of End9(7T) are matrices of the following types;

]<——r—>|<——s—f->]<—7'->l<—5——)l

T

* % < * '

!

D <—5—>|— T

T 0 * 0 % S

* £ v l
0= E3 Q= 1.

T * % * % e

0 * |8 1

- f

S

4

PrROOF. Putting T=E/G, T'=E’/G' (ECE’), E’ is invariant by the linear
extension of any endomorphism. The lemma follows immediately.

We now pass on to the consideration on a complex torus

10zw)

T=Tyz; w=C(; | ¢ ,

and End¥%T,). Let
a;; Q2 by bie

‘a B As; Qs by Do
0= and 2=
Yy 0 €11 €12 dy die

Co1 Coz d21 d22
be the analytic representation and the rational representation of an endomorphism
of T,. 7=ay=bsy=C¢s=ds;=0 by lemma 4-5. Since

o105 =610 e

we have
i) 01122""*‘((111—‘5111)2—[711:0’
i)  C202%4-(a2a—d20)2—b3e=0
i)  {(@11—dee) (11 C20)2 w=b12 - (d1a—12)2—C122%
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a) The case of [Q(z): Q]=3.
Then i) and ii) imply that a;,=d,;, @:.=dss, c,,=b,,=cy=b.,=0, and hence
iii) implies
(@11—dan)w=b131(d1s—15)z2— 152"
If a,,#d;., T, is isogenous to the direct sum of two elliptic curves. There-

fore a;,=d,, and b,,=c,;,=0, d,»=a,,. Hence the rational representation of
End¥T,) is

a b 0 0
0 a 00 l

a, be=q@ ).
00 ab J
0 0 0 a

The dimension of End?(T,) over Q is 2, and the analytic representation of a

base is
10 0 1
(o 1 G o
End%(T,) is isomorphic to Q[ X]/(X?).
b) The case of [Q(z):Q]=2.
Then we may assume that z=+/m where m is a square-free integer. i) and
ii) imply a,;=di, mci=b11, G2=dys, MCyy=byy. If (@11—d20)+(C11FCo0)2#0, w is
an element of Q(z) and hence T, is isogenous to the direct sum of two elliptic
curves. Therefore (a,;—ds,)+(c1;+¢22)z=0. This equation implies a,;=d,.,

c11+c22=0 and b,,=1mc,y, dis=a,,. It follows that the rational representation of
End¥(T,) is

a b mec d
0 a 0 —mec

a b c d=qQ ;.
¢c d a b J
0 —c O a

The dimension of End?9(7) over @ is 4 and the analytic representation of a
base is
l— 1 0)} 1:(«/ﬁ W, 0 1 e 0 \/n_>.
0 1 0 —vm 0 0 0 0
There are the following equation among those four elements ;

el,=e;, el,=e,, ei=ml,, e}=0, eeo=—coe,=0;.
Hence End%(T') is isomorphic to (m, 0)e.
(3) The case that T is isogenous to the direct sum of two elliptic curves.
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There is no difficulty in this case. We may assume that T=T'PT” for
some elliptic curves T’/ and 7”. If T’ is isogenous to T”, End¥(T)=
M2, End%(T")). And if T is not isogenous to 7”7, End(T)=End%T’)PEnd(T"”).

Now we will summarize the facts we have seen in this section. Let m, m’
be integers which are square-free and z, z” complex numbers which are not
contained in R nor any quadratic field over @. Consider complex tori of the
following types.

I)

1¢¢& C3>
1 & &8
where {, & are algebraic numbers of degree 4 over @ such that {{, &, Z & is
the set of all conjugates of { over @. Moreover if we consider the Galois group
G* of F=Q(, & C, & to be a subgroup of S, by the correspondence l<—{,
2 g, 3« 4<«—>& G is not V, nor V,LU(12)V,.

7'¢, &=C*/(

1) (complex tori of quatenion types)

Vm b bvVm

vVm d —dvm.

where b, d are complex numbers which are not contained in Q(v/m), and bd=¢q
is a rational number which is not contained in N(Q(~/m)). And there is no
element a of Q(+/m) but zero such that eb-+a’d is a rational number. Moreover
if m>0, b, d are not real number, and if m<0, b#d.

Tyom; b, dy=C*/(] _

II) Simple complex tori of the following type

vVm b bvm
vm d —dvm

which are not isogenous to any complex torus of the type (I) nor the type (II).
If m>0, b, d are not contained in R, and if m<0, b+d.

T\(m; b, d):CZ/(i B

V)
_ 1 v/m 0
Tuvm s w=C(; ¥ | )
where m<0, and w is not contained in Q(+~/m).
V)

o= § )

where w is not contained in Q+Qz+Qz>

Vi) Ti(vVm, vVm)=C/1 vVm)BC/(1 vV'm)
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where m <0.

I) To/m, Vm)=C /(1 Vm)BC/1 ~/m’)
where m, m’ <0 and m=m’.

VII) Ti(vVm, 2)=C /(1 ~Vm)PC/(1 2)
where m<0. | »

IX) Ty(z, 2)=C/(1 2DC/{1 z).

X) Ty(z, 2)=C/(1 2BC/A 2’)

where z’ e Q(z).

Then a complex torus T of dimension 2 is isogenous to a complex torus of
one of the above types if and only if End%(7T) is isomorphic to a Q-algebra of
the following corresponding type.

1) Algebraic fields Q) of degree 4 over Q.

II) Quatenions (1, q)q such that ¢ is not contained in N(Q(~/m)).
M) Quadratic fields Q(+/m).

IV) Quatenions (1, 0)q.

V) Q[X]/(X?.

VI) M2, Q(~/m)) where m<O0.

VI) Q(Wm)BQ(V/m’) where m, m’<0, m#=m'.

VI) Q(v/m)EBQ where m<0.

X) M2, Q).

X) QDQ.

§5. Abelian varietis of dimension 2.

A complex torus T is called an abelian variety if 7' can be embedded in
some projective space, in other words, if there exists an ample Riemann form
on 7. A complex torus of dimension 2 of the type VI), Vi), V), IX) or X) is
an abelian variety. And a complex torus of the type IV) or V) is not an abelian
variety. Then we will study complex tori of types 1), II) and II), that is,
simple tori.

Let T=FE/G be a complex torus of dimension n where E is C-vector space
and G is its lattice subgroup. Fix bases of E and G, and let G be the period

matrix of 7 with respect to those bases. Put (C (-f):(g)—l where Ce

M@2nxn, C). There exists a one-to-one correspondence between the set of
hermitian forms on 7 (namely the set of hermitian forms H on E X E such
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that H(g, g’) is integral for any g, g’G) and the set of skew-symmetric
matrices M of degree 2n with coefficients in Z which satisfy

(1) *CMC=0.

In this correspondence an ample Riemann form on 7 corresponds to an M which
satisfies (1) and

(2) A/—1!CMC>0 (namely ~/—1‘CMC is positive definite.)
T is an abelian variety if and only if there exists a skew-symmetric matrix M
: : . (—T — (A B
which satisfies (1) and (2). If G=(1, T), C=( L YT—=T) Put M=(, 1
where A, B, DeM(n, Z) and ‘A=—A, ‘D=—D. Then (1), (2) imply respec-
tively

(1’) 'TAT—'TB+'BT+D=0,
') ~/=1(¢TAT—'TB+*BT-+D)>0.
When (1’) is satisfied, (2’) is equivalent to the following condition;

") ~/—1¢TA+*B(T—T)>0.

- (% BY 4_(0 x g_(P ¢ (0 ¥ /
When n=2, put T—(T ) A=(__ %) B=( ?) and D—(_y ), and (1)
implies ' ‘
) x(ad—rB)—(ga-+sy)+(pf+rd)+y=0

and (2”) implies

VI G o>

which is equivalent to the following two conditions;

a) ~v—=1l{p@—a)+qF—r)+x(af—ar}>0,

b) (—D{(p—x7)(s+xp)—(r+xa)g—xd)} {(@—a)G—0)—F—7)(—p)} >0.
When i) is satisfied b) is equivalent to the following ;

¢) {—xy+(ps—rg} {(@—a)d—0)—F—7)(B—p)} <O.

Now let T be a simple torus of dimension 2 with non-trivial endomorphisms.
First we prove that if 7 is an abelian variety End%(T) contains some quadratic
field over Q. In fact, if it does not, T is isogenous to a complex torus of the

type

o} § 9
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where the Galois group G* of Q(C, &, £, &) over Q is isomorphic to the alterna-
tive group A, or the symmetric group S,. T is isogenous to

1 0 =4 —5C(£+C))
0 1 &+{ &+480+C%°

If T is an abelian variety, so is T’, hence there exist integers x, y, p, g, 7, s
which are not all zero and satisfy i), that is,

0=x(L%")— {g(—E0)+ s+ + {p(—ELC+EN+r(E*+6C+LD +y
=(x8* = p&+r)+(—p&*+g€ +r{— )+ (rE*—sé+y) .

But if G*=A, or S,, this is impossible. Therefore if 7" is an abelian variety,
End?(T) contains a quadratic field Q(+/m). Then T is isogenous to a complex

T’:C%/(

torus
1 /m b b\/ﬁ)
1 —vV/m d —dv/m.

for some complex numbers b, d. Since this is isomorphism to

T.m; b, d):CZ/(

10umv>

TI:CZ/(O 1 v u

where u=(b+d)/2 and v=(b—d)/2+/m, T is an abelian variety if and only if

there exist integers x, v, p, ¢, , s which satisfy the following i’), a’) and c¢’).
i) bdx+zb+z°d+y=0 (where z=2z,42z,/v'm, z,=(r—q)/2 and z=(pm—s)/2.)
a’) v —1{pu—a)+qv—>o)+xuv—va)} >0

(b—b)(d—d) if m>0)

) {—xy+(ps—rq} F(b, d)<0 (Where F, d):{(b—a)(d—E) if m<0

LEMMA 5-1. If m>O0, there exist x, y, p, q, , s which satisfy i’) and a’), ¢’).
Therefore T is an abelian variety.

PROOF. Put x=y=0, r=¢q, s=mp, and i’) is of course satisfied and a’), c’)
imply

a”) vV—1{(p+q/vVm)b—b)+(p—q/vm)d—d)} >0

¢”)  (mp*—g*)(b—b)(d—d)<O0.

Put X=(p+q/vVm)vV—1(b—b), Y=(p—q/vVm)v/—1(d—d), and a”), c¢”) imply
X+Y>0and XY>0. We only have to take p, ¢ which make X and Y positive.
(q.e.d.)

LEMMA 5-2. If m<0 and T is not of a quatenion type, T is not an abelian
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variety.

PROOF. Since T is not quatenion type, x, ¥, z which satisfy i’) are all zero,
so x=y=0, mp=s, r=q. Then if m<0, c¢’) implies

(mp*—q%)(b—d)(d—b)=—(mp*—q¢® |b—d|2<0.

But since m <0, this is impossible. Hence T cannot be an abelian variety. (q.e.d.)

Now we assume that T is of a quatenion type. There exist an integer g,
which is not contained in N(Q(+/m)) such that 7T is isogenous to

Vm b bvVm

~vm d —d~v/m.

where bd=q,. If m>0 or ¢,>0, T” is an abelian variety by Lemma 5-1. So
we assume m<0 and ¢,<0. If there exists an element z of Q(~/m) such that
zb-+z°d is a rational number r,, putting x=0, y=—r,, the condition i*) of Lemma
4-1 is satisfied. Therefore since bd=gq, is a rational number, there exists no z
but zero which satisfies i’) with some x, y. Hence if T/ is an abelian variety,
y=—x, r=q, s=pm and

e

—(x*qo+mp*—q?) | b—d |2<O0.

But this is impossible. Therefore we have proved the following lemma.

LEMMA 5-3. Let T be a complex torus of a quatenion type such that End®(T')
=(m, q)gq. If m>0o0r ¢>0, T is an abelian variety. If m<0 and ¢<0, T is not

abelian variety.
And the following theorem has been proved.

THEOREM 5-4. Let T be a simple complex torus of dimension 2 with non-
trivial endomorphisms. Then T is an abelian variety if and only if End%(T)
contains a real quadratic field over Q as a sub-Q-algebra.

REMARK. Let p(T) be the rank of the additive group of all hermitian forms
on T, which is equal to the Picard number of 7. When T is a simple torus of
dimension 2 such that End(7T)+ Z, we have seen above that if End?(7T) contains
no quadratic field over @, p(7)=0, if End*(T) contains a quadratic field but T
is not of a quatenion type, po(T)=2, and if T is of a quatenion type, p(7T)=3.
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