# POLYNOMIAL INVARIANTS OF EUCLIDEAN LIE ALGEBRAS

By

### Zenji KOBAYASHI

## 1. Introduction.

Let  $\Delta$  be a root system in the sense of Bourbaki [1] and W be its Weyl group.  $\Delta$  spans an l dimensional real vector space V on which W acts as a finite linear group. By extension of the transpose action, W acts on the symmetric algebra S(V) of the dual space  $V^*$ . There is a well known theorem of Chevalley [2], that is, the ring of W-invariant elements of S(V) is generated by l algebraically independent homogeneous polynomials.

How will the situation change when  $\Delta$  is an infinite root system and W is an infinite group acting in V defined by a generalized Cartan matrix of nonfinite type? With regard to this, there is a work of Moody [4], that the indefinite quadratic form by itself generates the entire ring of invariants, when  $\Delta$ is defined by a generalized Cartan matrix of hyperbolic type.

In this paper, we study the ring of polynomial invariants of the Weyl group of a Euclidean Lie algebra. In this case, V is not isomorphic to  $V^*$  as W-module. So we have to consider both the ring of invariants of S(V) and of  $S(V^*)$ , the symmetric algebra of  $V^*$ .

It becomes clear that the unique invariant vector, called null root, by itself generates the entire ring of invariants of  $S(V^*)$  (*Theorem* 1) while the ring of invariants of S(V) is isomorphic to that of corresponding finite type, which is generated by algebraically independent homogeneous elements (*Theorem* 2). This indicates that the polynomial invariants of Euclidean Lie algebras are critically situated between those of finite types and those of hyperbolic types.

When  $\Delta$  is a root system in the sense of Bourbaki [1], this subject has some relation with classical Harish-Chandra's theorem, which states that the center of the universal enveloping algebra of corresponding finite dimensional complex simple Lie algebra isomorphic to the ring of W-invariants of  $S(V^*)$ . This theorem cannot be extended when  $\Delta$  is an infinite root system. For example, we cannot use a number of propositions with respect to even the Casimir operator in this case. We hope to discuss this case in near feature.

Received October 26, 1983.

#### Zenji Kobayashi

The author expresses his hearty thanks to Professor R.V. Moody for his valuable advice and to Professor E. Abe for his helpful suggestion.

## 2. Preliminary.

A generalized Cartan matrix  $A = (a_{ij})$  is a square matrix of integers satisfying  $a_{ii}=2$ ,  $a_{ij}\leq 0$  if  $i\neq j$ ,  $a_{ij}=0$  if and only if  $a_{ji}=0$ . For any generalized Cartan matrix  $A = (a_{ij})$  of size  $l \times l$  and for any field **F** of characteristic zero,  $\mathfrak{G} = \mathfrak{G}_{\mathbf{F}}(A)$ denotes the Lie algebra over F generated by 3l generators  $e_1, \dots, e_l, h_1, \dots, h_l$  $f_1, \dots, f_i$  with the defining relations  $[h_i, h_j]=0$ ,  $[e_i, f_j]=\delta_{ij}h_i$ ,  $[h, e_j]=a_{ij}e_j$ ,  $[h_i, f_j] = -a_{ij}f_j$  for all *i*, *j*, and  $(ad e_i)^{-a_{ij+1}}e_j = 0$ ,  $(ad f_i)^{-a_{ij+1}}f_j = 0$  for distinct *i*, *j*. We call this algebra  $\mathfrak{G}$  the Kac-Moody Lie algebra over F associated with A. Let  $\Gamma$  be a free Z-module of rank l, and choose a free basis  $\{\alpha_1, \dots, \alpha_l\}$ of  $\Gamma$ . By defining deg $(e_i) = \alpha_i$ , deg $(h_i) = 0$ , deg $(f_i) = -\alpha_i$  for all *i*, we can view  $\mathfrak{G}$  as a  $\Gamma$ -graded Lie algebra  $\mathfrak{G} = \bigoplus_{\alpha \in \Gamma} \mathfrak{G}_{\alpha}$ , where  $\mathfrak{G}_{\alpha}$  is the subspace of  $\mathfrak{G}$  corresponding to  $\alpha$ . Put  $\Delta = \{ \alpha \in \Gamma | \mathfrak{G}_{\alpha} \neq 0 \}$ , called the root system of  $\mathfrak{G}$ . We call  $II = \{\alpha_1, \dots, \alpha_l\}$  a fundamental root system of  $\Delta$ . Let  $w_i$  be a Z-module automorphism of  $\Gamma$  defined by  $w_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i$ , and let W be the subgroup of  $GL(\Gamma)$  generated by  $w_i$  for all i. We call W the Weyl groop of A. Then  $\varDelta$  is W-stable. Set  $\Delta^{re} = \{w(\alpha_i) | w \in W$ , for all  $i\}$  real roots, and  $\Delta^{im} = \Delta - \Delta^{re}$ , imaginary roots.

A generalized Cartan matrix A is called of finite type if  $\mathfrak{G}_{\mathbf{F}}(A)$  is of finite dimension. A generalized Cartan matrix A is called of Euclidean type if A is singular and possesses the property that removal of any row and the corresponding column leaves a Cartan matrix of finite type, in which case  $\mathfrak{G}_{\mathbf{F}}(A)$  is called a Euclidean Lie algebra. Generalized Cartan matrices of Euclidean type are classified (cf. [5]).

A generalized Cartan matrix A is called symmetrizable if there is a positive rational diagonal matrix D such that  $B=(b_{ij})=DA$  is a symmetric matrix. Generalized Cartan matrices of finite type and of Euclidean type are symmetrizable. Usually D is normalized by the properties that  $b_{ij}$  is a half-integer for distinct i, j, and that  $b_{ii}$  is an integer and the greatest common divisor of  $\{b_{ii}|$  for all  $i\}$  is 1 (cf. [3]). Then we can define a symmetric bilinear form on  $\Gamma$  by  $(\alpha_i, \alpha_j)=b_{ij}$ , and we can see easily that this form is W-invariant and  $2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i)=a_{ij}$ .

### 3. Ring of invariants of $S(V^*)$ .

From now on we assume that  $A = (a_{ij})$  is a generalized Cartan matrix of

Euclidean type of size  $(l+1)\times(l+1)$ . According to the classification (cf. [3]), A is expressed as  $\begin{pmatrix} A_0 & * \\ * & 2 \end{pmatrix}$ , where  $A_0$  is of type  $X_l$  (resp.  $B_l$ ,  $C_l$ ,  $F_4$ ,  $G_2$ ,  $B_l$ ) where A is of type  $X_l^{(1)}$  (resp.  $D_{l+1}^{(2)}$ ,  $A_{2l-1}^{(2)}$ ,  $D_4^{(3)}$ ,  $A_2^{(2)}$ ). We call  $A_0$  the corresponding finite type of A. The set  $\mathcal{I}^{im}$  is a free  $\mathbb{Z}$ -module of rank 1 and a nonzero element of  $\mathcal{I}^{im}$  is called a null root. Let  $\nu$  be the generator of  $\mathcal{I}^{im}$  with the coefficient of  $\alpha_{l+1}=1$  and V be the  $\mathbb{R}$ -span of  $\mathcal{I}$ , then we obtain:

THEOREM 1. The ring of W-invariants of the symmetric algebra  $S(V^*)$  of V is generated by  $\nu$ .

PRROF. Let  $V_0$  be the subspace of V generated by  $\alpha_1, \dots, \alpha_l$ . Then  $V = V_0 + \mathbf{R}\nu$  and  $\mathcal{A}_0 = \mathcal{A} \cap V_0$  is the root system of the corresponding finite type of A. The root  $\nu$  is expressed as  $\alpha_{l+1} + \phi$ , where  $\phi$  is the highest long root of  $\mathcal{A}_0$  when A is of type  $X_l^{(1)}$ , highest short root when A is of type  $D_{l+1}^{(2)}, A_{2l-1}^{(2)}, E_6^{(2)}$  and  $D_4^{(3)}$  and  $2 \times$  highest short root when A is of type  $A_2^{(2)}$ . The restriction of (, ) to  $V_0$  is equal to the Killing form on  $\mathfrak{G}_C(A_0)$ . Considering that  $\nu$  is W-invariant and  $2(\alpha_{l+1}, \alpha_j)/(\alpha_{l+1}, \alpha_{l+1}) = a_{l+1j}$ , we deduce  $w_{l+1}(\alpha_j) = w_{\phi}(\alpha_j) - a_{l+1j}\nu$ ,  $w_{l+1}(\nu) = \nu$ , where  $w_{\phi}$  is the reflection with respect to  $\phi$  in  $V_0$  and  $j=1, \dots, l$ . We can see easily that there exists an element w of W such that  $w(\alpha_j) = \alpha_j - a_{l+1j}$ ,  $w(\nu) = \nu$   $(j=1, \dots, l)$ .

Let f be a W-invariant of  $S(V^*)$ , expressed by a polynomial of  $\alpha_1, \dots \alpha_l, \nu$ , then  $f(\alpha_1, \dots, \alpha_l, \nu) = f(\alpha_1 - a_{l+11}\nu, \dots, \alpha_l - a_{l+1}\nu, \nu)$ . Differentiating the both sides with respect to  $\nu$ , we deduce  $\sum_{j=1}^{l} a_{l+1j} (\partial f / \partial \alpha_j)(\alpha_1, \dots, \alpha_l, 0) = 0$ . If  $A \neq A_l^{(1)}$ , using the classification of Euclidean type, we can see easily that there exists a unique j  $(1 \leq j \leq l)$  such that  $a_{l+1j} \neq 0$ . This indicates  $(\partial f / \alpha x_j)(\alpha_1, \dots, \alpha_l, 0) = 0$ . As f is W-invariant, we can prove  $(\partial f / \partial \alpha_j)(\alpha_1, \dots, \alpha_l, 0) = 0$  for all j  $(1 \leq j \leq l)$ . This indicates  $f(\alpha_1, \dots, \alpha_l, 0)$  is constant and  $f \in \mathbb{R}[\nu]$ .

If  $A = A_l^{(1)}$   $(l \ge 3)$ , we can easily see

$$(\partial f/\partial \alpha_1)(\alpha_1, \cdots, \alpha_l, 0) + (\partial f/\partial \alpha_l)(\alpha_1, \cdots, \alpha_l, 0) = 0$$

when A is expressed as



As f is W-invariant, we can prove

#### Zenji KOBAYASHI

$$-(\partial f/\partial \alpha_1)(\alpha_1, \cdots, \alpha_l, 0) + (\partial f/\partial \alpha_l)(\alpha_1, \cdots, \alpha_l, 0) = 0$$

This indicates  $(\partial f/\partial \alpha_1)(\alpha_1, \dots, \alpha_l, 0)=0$  and  $f(\alpha_1, \dots, \alpha_l, 0)$  is constant.

If  $A = A_2^{(1)}$ , we can deduce

$$(\partial f/\partial \alpha_1)(\alpha_1, \alpha_2, 0) + (\partial f/\partial \alpha_2)(\alpha_1, \alpha_2, 0) = 0,$$
  
$$-(\partial f/\partial \alpha_1((\alpha_1, \alpha_2, 0) + (\partial f/\partial (\alpha_1 + \alpha_2))(\alpha_1, \alpha_2, 0) = 0)$$
  
$$(\partial f/\partial (\alpha_1 + \alpha_2))(\alpha_1, \alpha_2, 0) - (\partial f/\partial \alpha_2)(\alpha_1, \alpha_2, 0) = 0.$$

G. E. D.

This indicates  $(\partial f/\partial \alpha_1)(\alpha_1, \alpha_2, 0) = (\partial f/\partial \alpha_2)(\alpha_1, \alpha_2, 0) = 0.$ 

#### 4. Ring of invariants of S(V).

Let  $W_0$  be the subgroup of W generated by  $w_1, \dots, w_l$ , then  $W_0$  acts on  $V_0$ as the Weyl group of  $\varDelta_0$ . This induces the decomposition of V as  $W_0$ -module,  $V=V_0+\mathbf{R}\nu$  and  $S(V_0)$  can be considered as a subalgebra of S(V) by using the inclusion from  $V_0^*$  to  $V^*$  with respect to this decomposition. Then we obtain:

THEOREM 2. The ring of W-invariants of S(V) is equal to the ring of  $W_0$ -invariants of  $S(V_0)$ . Consequently the ring of  $W_0$ -invariants of S(V) is generated by l algebraically independent homogeneous polynomials.

PROOF. Let  $\{\alpha_1^*, \dots, \alpha_l^*, \nu^*\}$  be the dual basis of  $\{\alpha_1, \dots, \alpha_l, \nu\}$ . Easy calculations show that  $w_{l+1}(\alpha_j^*) = w_{\phi}(\alpha_j^*)$   $(j=1, \dots, l)$ ,  $w_{l+1}(\nu^*) = \nu^* - \sum_{j=1}^l a_{l+1j} \alpha_j^*$ . It is clear that  $S(V)^{W_0}$ , the ring of  $W_0$ -invariants of  $S(V_0)$ , is a subalgebra of the ring of W-invariants of S(V) and the ring of  $W_0$ -invariants of S(V) is  $S(V_0)^{W_0}[\nu^*]$ , the polynomial ring of the commutative algebra  $S(V_0)^{W_0}$  with the indeterminate  $\nu^*$ .

Clearly the ring of W-invariants of S(V) is a subalgebra of the ring of  $W_0$ invariants of S(V). Let f be any element of the ring of W-invariants of S(V). Then f can be expressed by a polynomial of  $\nu^*$  with coefficients in  $S(V_0)^{W_0}$  and satisfying the equation  $f(\nu^*)=f\left(\nu^*-\sum_{j=1}^l a_{l+1j}\alpha_j^*\right)$ , where  $\sum_{j=1}^l a_{l+1j}\alpha_j^*$  is non-zero from the classification. Then the following lemma completes the proof of the theorem. Q. E. D.

LEMMA. Let R be a commutative algebra over a field of characteristic zero and f(X) be any element of R[X]. If f(X) satisfies the equation f(X)=f(X+c)where c is not a zero divisor of R, then deg f=0.

and

## References

- [1] Bourbaki, N., "Groupes et algèbres de Lie", Chaps. 4, 5, and 6, Hermann, Paris, 1968.
- [2] Chhvalley, C., Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782.
- [3] Kac, V.G., Infinite root systems, representations of graphs, and invariant theory, Invent. Math., 56 (1980), 57-92.
- [4] Moody, R., Polynomial invariants of isometry groups of indefinite quadratic lattices, Tôhoku Math. J., 30 (1978), 525-535.
- [5] —, Euclidean Lie algebras, Cand. J. Math., 21 (1969), 1432-1454.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan