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POLYNOMIAL INVARIANTS OF EUCLIDEAN LIE ALGEBRAS

By

Zenji KOBAYASHI

1. Introduction.

Let $\Delta$ be a root system in the sense of Bourbaki [1] and $W$ be its Weyl

group. $\Delta$ spans an $l$ dimensional real vector space $V$ on which $W$ acts as a
finite linear group. By extension of the transpose action, $W$ acts on the sym-

metric algebra $S(V)$ of the dual space $V^{*}$ . There is a well known theorem of

Chevalley [2], that is, the ring of W-invariant elements of $S(V)$ is generated by

1 algebraically independent homogeneous polynomials.

How will the situation change when $\Delta$ is an infinite root system and $W$ is

an infinite group acting in $V$ defined by a generalized Cartan matrix of non-
finite type? With regard to this, there is a work of Moody [4], that the in-

definite quadratic form by itself generates the entire ring of invariants, when $\Delta$

is defined by a generalized Cartan matrix of hyperbolic type.

In this paper, we study the ring of polynomial invariants of the Weyl group

of a Euclidean Lie algebra. In this case, $V$ is not isomorphic to $V^{*}$ as W-module.

So we have to consider both the ring of invariants of $S(V)$ and of $S(V^{*})$ , the

symmetric algebra of $V^{*}$ .
It becomes clear that the unique invariant vector, called null root, by itself

generates the entire ring of invariants of $S(V^{*})$ (Theorem 1) while the ring of

invariants of $S(V)$ is isomorphic to that of corresponding finite type, which is

generated by algebraically independent homogeneous elements (Theorem 2). This

indicates that the polynomial invariants of Euclidean Lie algebras are critically

situated between those of finite types and those of hyperbolic types.

When $\Delta$ is a root system in the sense of Bourbaki [1], this subject has some
relation with classical Harish-Chandra’s theorem, which states that the center of

the universal enveloping algebra of corresponding finite dimensional complex

simple Lie algebra isomorphic to the ring of W-invariants of $S(V^{*})$ . This theorem

cannot be extended when $\Delta$ is an infinite root system. For example, we cannot

use a number of propositions with respect to even the Casimir operator in this

case. We hope to discuss this case in near feature.
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2. Preliminary.

A generalized Cartan matrix $A=(a_{lj})$ is a square matrix of integers satisfy-
ing $a_{it}=2,$ $a_{ij}\leqq 0$ if $i\neq j,$ $a_{ij}=0$ if and only if $a_{ji}=0$ . For any generalized Cartan
matrix $A=(a_{ij})$ of size $l\times l$ and for any field $F$ of characteristic zero, $\mathfrak{G}=\mathfrak{G}_{F}(A)$

denotes the Lie algebra over $F$ generated by $3l$ generators $e_{1},$
$\cdots$ , $e_{l},$ $h_{1},$

$\cdots,$
$h_{l}$ ,

$f_{1},$
$\cdots,$

$f_{l}$ with the defining relations $[h_{i}, h_{j}]=0,$ $[e_{i}, f_{j}]=\delta_{ij}h_{i},$ $[h, e_{j}]=a_{ij}e_{j}$,
$[h_{i}, f_{j}]=-a_{ij}f_{j}$ for all $i,$ $j$ , and $(ade_{i})^{-a+1}ije_{j}=0,$ $(adf_{i})^{-a+1}ijf_{j}=0$ for distinct
$i,$ $j$. We call this algebra $\mathfrak{G}$ the Kac-Moody Lie algebra over $F$ associated with
$A$ . Let $\Gamma$ be a free Z-module of rank $l$, and choose a free basis $\{\alpha_{1}, \cdots, \alpha_{l}\}$

of $\Gamma$ By defining $\deg(e_{i})=\alpha_{i},$ $\deg(h_{i})=0,$ $\deg(f_{i})=-\alpha_{i}$ for all $i$, we can view
$\mathfrak{G}$ as a $\Gamma$-graded Lie algebra $\mathfrak{G}=\bigoplus_{\alpha\in\Gamma}\mathfrak{G}_{\alpha}$ , where $\mathfrak{G}_{\alpha}$ is the subspace of $\mathfrak{G}$ cor-

responding to $\alpha$ . Put $\Delta=$ } $\alpha\in\Gamma|\mathfrak{G}_{\alpha}\neq 0$ }, called the root system of $\mathfrak{G}$ . We call
$\Pi=\{\alpha_{1}, \cdots, \alpha_{l}\}$ a fundamental root system of $\Delta$ . Let $w_{i}$ be a Z-module auto-
morphism of $\Gamma$ defined by $w_{i}(\alpha_{j})=\alpha_{j}-a_{ij}\alpha_{i}$ , and let $W$ be the subgroup of
$GL(\Gamma)$ generated by $w_{i}$ for all $i$ . We call $W$ the $We\gamma l$ groop of $A$ . Then $\Delta$ is
W-stable. Set $\Delta^{re}=$ { $w(\alpha_{i})|w\in W$, for all $i$ } real roots, and $\Delta^{im}=\Delta-\Delta^{re}$ , imag-
inary roots.

A generalized Cartan matrix $A$ is called of finite type if $\mathfrak{G}_{F}(A)$ is of finite
dimension. A generalized Cartan matrix $A$ is called of Euclidean type if $A$ is
singular and possesses the property that removal of any row and the correspond-
ing column leaves a Cartan matrix of finite type, in which case $\mathfrak{G}_{F}(A)$ is called
$a$ Euclidean Lie algebra. Generalized Cartan matrices of Euclidean type are
classified (cf. [5]).

A generalized Cartan matrix $A$ is called symmetrizable if there is a positive
rational diagonal matrix $D$ such that $B=(b_{ij})=DA$ is a symmetric matrix.
Generalized Cartan matrices of finite type and of Euclidean type are symmetr-
izable. Usually $D$ is normalized by the properties that $b_{ij}$ is a half-integer for
distinct $i,$ $j$ , and that $b_{ii}$ is an integer and the greatest common divisor of
{ $b_{ii}|$ for all $i$} is 1 (cf. [3]). Then we can define a symmetric bilinear form on

$\Gamma$ by $(\alpha_{i}, \alpha_{j})=b_{ij}$ , and we can see easily that this form is W-invariant and
$2(\alpha_{i}, \alpha_{j})/(\alpha_{i}, \alpha_{i})=a_{ij}$ .

3. Ring of invariants of $S(V^{*})$ .
From now on we assume that $A=(a_{ij})$ is a generalized Cartan matrix of
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Euclidean type of size $(l+1)\times(l+1)$ . According to the classification (cf. [3]),

$A$ is expressed as ( $2*$ ), where $A_{0}$ is of type $X_{l}$ (resp. $B_{l},$ $C_{l},$ $F_{4},$ $G_{2},$ $B_{l}$ )

where $A$ is of type $X_{l^{(1)}}$ (resp. $D_{l+1}^{(2)},$ $A_{2l-1}^{(2)},$ $E_{6}^{(2)},$ $D_{4^{(3)}},$ $A_{2^{(2)}}$ ). We call $A_{0}$ the cor-
responding finite type of $A$ . The set $\Delta^{im}$ is a free Z-module of rank 1 and a
nonzero element of $\Delta^{im}$ is called a null root. Let $\nu$ be the generator of $\Delta^{im}$ with
the coefficient of $\alpha_{l+1}=1$ and $V$ be the R-span of $\Delta$ , then we obtain:

THEOREM 1. The ring of W-invariants of the symmetric algebra $S(V^{*})$ of $V$

is generated by $\nu$ .

PRROF. Let $V_{0}$ be the subspace of $V$ generated by $\alpha_{1},$ $\cdots,$ $\alpha_{l}$ . Then $V=$

$ V_{0}+R\nu$ and $\Delta_{0}=\Delta\cap V_{0}$ is the root system of the corresponding finite type of $A$ .
The root $\nu$ is expressed as $\alpha_{l+1}+\phi$ , where $\phi$ is the highest long root of $\Delta_{0}$

when $A$ is of type $X_{l^{(1)}}$ , highest short root when $A$ is of type $D_{l+1}^{(2)},$ $A_{2l-1}^{(2)},$ $E_{6^{(2)}}$

and $D_{4^{(3)}}$ and 2Xhighest short root when $A$ is of type $A_{2^{(2)}}$ . The restriction of
$(, )$ to $V_{0}$ is equal to the Killing form on $\mathfrak{G}_{C}(A_{0})$ . Considering that $\nu$ is W-
invariant and $2(\alpha_{l+1}, \alpha_{j})/(\alpha_{l+1}, \alpha_{l+1})=a_{l+1j}$ , we deduce $ w_{l+1}(\alpha_{j})=w_{\phi}(\alpha_{j})-a_{l+1j}\nu$,

$ w_{l+1}(\nu)=\nu$ , where $w_{\phi}$ is the reflection with respect to $\phi$ in $V_{0}$ and $j=1,$ $\cdots,$
$l$ .

We can see easily that there exists an element $w$ of $W$ such that $w(\alpha_{j})=\alpha_{j}-$

$a_{l+1j},$ $w(\nu)=\nu(j=1, \cdots, 1)$ .
Let $f$ be a W-invariant of $S(V^{*})$ , expressed by a polynomial of $\alpha_{1},$ $\cdots\alpha_{l},$ $\nu$,

then $f(\alpha_{1}, \cdots, \alpha_{l}, \nu)=f(\alpha_{1}-a_{l+11}\nu, \cdots , \alpha_{l}-a_{l+1}\nu, \nu)$ . Differentiating the both sides

with respect to $\nu$ , we deduce $\sum_{j=1}^{l}a_{l+1j}(\partial f/\partial\alpha_{j})(\alpha_{1}, \cdots, \alpha_{l}, 0)=0$ . If $A\neq A_{l^{(1)}}$ , using

the classification of Euclidean type, we can see easily that there exists a unique
$j(1\leqq j\leqq l)$ such that $a_{l+1j}\neq 0$ . This indicates $(\partial f/\alpha x_{j})(\alpha_{1}, \cdots , \alpha_{l}, 0)=0$ . As $f$ is
W-invariant, we can prove $(\partial f/\partial\alpha_{j})(\alpha_{1}, \cdots, \alpha_{l}, 0)=0$ for all $j(1\leqq j\leqq l)$ . This in-
dicates $f(\alpha_{1}, \cdots, \alpha_{l}, 0)$ is constant and $f\in R[\nu]$ .

If $A=A_{l}^{(1)}(l\geqq 3)$ , we can easily see

$(\partial f/\partial\alpha_{1})(\alpha_{1}, \cdots, \alpha_{l}, 0)+(\partial f/\partial\alpha_{l})(\alpha_{1}, \cdots, \alpha_{l}, 0)=0$

when $A$ is expressed as

$\left(\begin{array}{lll}2-1 & & -1\\2-1 & & .\\ & \ddots & 2-1\\-1 & & 2-1\end{array}\right)$

As $f$ is W-invariant, we can prove
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$-(\partial f/\partial\alpha_{1})(\alpha_{1}, \cdots, \alpha_{l}, 0)+(\partial f/\partial\alpha_{l})(\alpha_{1}, \cdots, \alpha_{l}, 0)=0$ .

This indicates $(\partial f/\partial\alpha_{1})(\alpha_{1}, \cdots , \alpha_{l}, 0)=0$ and $f(\alpha_{1}, \cdots, \alpha_{l}, 0)$ is constant.

If $A=A_{2^{(1)}}$ , we can deduce

$(\partial f/\partial\alpha_{1})(\alpha_{1}, \alpha_{2},0)+(\partial f/\partial\alpha_{2})(\alpha_{1}, \alpha_{2},0)=0$ ,

$-(\partial f/\partial\alpha_{1}((\alpha_{1}, \alpha_{2},0)+(\partial f/\partial(\alpha_{1}+\alpha_{2}))(\alpha_{1}, \alpha_{2},0)=0$

and
$(\partial f/\partial(\alpha_{1}+\alpha_{2}))(\alpha_{1}, \alpha_{2},0)-(\partial f/\partial\alpha_{2})(\alpha_{1}, \alpha_{2},0)=0$ .

This indicates $(\partial f/\partial\alpha_{1})(\alpha_{1}, \alpha_{2},0)=(\partial f/\partial\alpha_{2})(\alpha_{1}, \alpha_{2},0)=0$ . G.E.D.

4. Ring of invariants of $S(V)$ .
Let $W_{0}$ be the subgroup of $W$ generated by $w_{1},$ $\cdots,$ $w_{l}$ , then $W_{0}$ acts on $V_{0}$

as the Weyl group of $\Delta_{0}$ . This induces the decomposition of $V$ as $W_{0}$-module,

$ V=V_{0}+R\nu$ and $S(V_{0})$ can be considered as a subalgebra of $S(V)$ by using the
inclusion from $V_{0}^{*}$ to $V^{*}$ with respect to this decomposition. Then we obtain:

THEOREM 2. The ring of W-invariants of $S(V)$ is equal to the ring of $W_{0^{-}}$

invariants of $S(V_{0})$ . Consequently the ring of $W_{0}$-invariants of $S(V)$ is generated
by $l$ algebraically independent homogeneous polynomials.

PROOF. Let $\{\alpha_{1}^{*}, \cdots , \alpha_{l}^{*}, \nu^{*}\}$ be the dual basis of $\{\alpha_{1}, \cdots, \alpha_{l}, \nu\}$ . Easy cal-

culations show that $w_{l+1}(\alpha_{j}^{*})=w_{\phi}(\alpha_{j}^{*})(j=1, \cdots, 1)$ , $w_{l+1}(\nu^{*})=\nu^{*}-\sum_{j=1}^{l}a_{l+1j}\alpha_{j}^{*}$ . It

is clear that $S(V)^{W_{0}}$ , the ring of $W_{0}$-invariants of $S(V_{0})$ , is a subalgebra of the
ring of W-invariants of $S(V)$ and the ring of $W_{0}$-invariants of $S(V)$ is $S(V_{0})^{W_{0}}[\nu^{*}]$ ,

the polynomial ring of the commutative algebra $S(V_{0})^{W_{0}}$ with the indeterminate $\nu^{*}$ .
Clearly the ring of W-invariants of $S(V)$ is a subalgebra of the ring of $W_{0^{-}}$

invariants of $S(V)$ . Let $f$ be any element of the ring of W-invariants of $S(V)$ .
Then $f$ can be expressed by a polynomial of $\nu^{*}$ with coefficients in $S(V_{0})^{W_{0}}$ and

satisfying the equation $f(\nu^{*})=f(\nu^{*}-\sum_{j=1}^{l}a_{l+1j}\alpha_{j}^{*})$ , where $\sum_{j=1}^{l}$ $a$ $l+1j\alpha^{*}j$ is non-zero
from the classification. Then the following lemma completes the proof of the
theorem. Q. E. D.

LEMMA. Let $R$ be a commutative algebra over a field of characteristic zero
and $f(X)$ be any element of $R[X]$ . If $f(X)$ satisfies the equation $f(X)=f(X+c$

where $c$ is not a zero divisor of $R$, then $degf=0$ .
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