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ON THE WEIGHT OF HIGHER ORDER WEIERSTRASS POINTS

By

Masaaki HOMMA and Shoji OHMORI

Introduction. Let $C$ be a complete nonsingular curve of genus $g\geqq 2$ over an
algebraically closed field $k$ of characteristic zero and $D$ a divisor on $C$ with $\dim|D|$

$\geqq 0$ . Then we may define the notion of D-Weierstrass points (see $e$ . $g$ . $[3]$ ).
Let $P$ be a point on $C$ and $l=\dim|D|+1$ . If $\nu$ is a positive integer such that

$\dim L(D-(\nu-1)P)>\dim L(D-\nu P)$ , we call this integer $\nu$ a “ D-gap “ at $P$. There
are exactly $l$ D-gaps and the sequence of D-gaps $\nu_{1}(P),$

$\cdots,$ $\nu_{l}(P)$ at $P,$ $\iota\prime_{1}(P)<\cdots$

$<\nu_{l}(P)$ , is called the D-gap sequence at $P$. The multiplicty of the Wronskian of
$D$ at a point $P$ can be computed as $\sum_{i\approx 1}^{l}(\nu\iota(P)-i)$ . This integer is called the D-
weight at $P$ and denoted by $w_{D}(P)$ . When $w_{D}(P)$ is positive, we call the point $P$

a D-Weierstrass point. It is well known that for the canonical divisor $K$,

$w_{K}(P)\leqq\frac{1}{2}g(g-1)$

and equality occurs if and only if $C$ is hyperelliptic and $P$ is a K-Weierstrass
point. Furthermore, T. Kato [2] showed that if $C$ is nonhyperelliptic, then $w_{K}(P)$

$\leqq k(g)$ , where

$k(g)=\left\{\begin{array}{l}\frac{1}{3}g(g-1) ifg=3,4,6,7,9\\\frac{1}{2}(g^{2}-5g+10)ifg=5,8org\geqq 10,\end{array}\right.$

and this maximum is achieved for every $\zeta 1\geqq 3$ .
Our purpose is to give such good bounds on $w_{D}(P)$ for a divisor $D$ of degree

$>2g-2$ .

THEOREM I. Let $D$ be a divisor of degree $d>2g-2$ on C. Then

$w_{D}(P)\leqq\frac{1}{2}g(g+1)$ .

Furthermore, equality occurs if and only if $C$ is hyperelliptic, $P$ is a K- Weiersrass
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point and $D$ is linearly equivalent to $K+(d-2g+2)P$.

THEOREM II. Let $D$ be a divisor of degree $d>2g-2$ on C. If $C$ is nonhy-

perelliptic, then

$w_{D}(P)\leqq k(g)+g$ .

Furthermor, the maximum is achived for every $g\geqq 3$ and every $d>2g-2$

THEOREM III. Let $P$ be a point on a non/lyperelliptic curve $C$ and $D\prime x$ divisor

of degree $d>2g-2$ on C. If $w_{D}(P)=k(q)+q$ , then $w_{K}(P)=k(g)$ .

In his paper [1], A. Duma posed the conjecture: if $C$ is nonhyperelliptic of
genus $q$ and if $P\in C$ is a K-Weierstrass point, then $w_{qK}(P)\leqq w_{K}(P)+g$ for every
$q\geqq 2$ . Unfortunately, there is a counterexample of this conjecture (see \S 4 below).

However, our theorems show that the conjecture is true for a certain limited case.

Notation. Let $x$ be a function or a differential on $C$. The divisor $\mathfrak{c}|f$ zeros
of $x$ is denoted by $(x)_{0}$ and the divisor of poles of $x$ is denoted by $(x)_{\infty}$ . The
divisor $divx$ means $(x)_{0}-(x)_{\infty}$ . Let $E$ be a divisor on $C$ . We denote by $\angle^{\prime}(E)$ the
the k-vector space of all functions $x$ on $C$ such that $divx+E$ is effective and by
$h^{0}(E)$ the dimension of $\mathcal{L}(E)$ over $k$ . The dimension of the k-space of \v{c}dl holo-
morphic differentials $\omega$ with $(\omega)_{0}\succ E$ is denoted by $h^{1}(E)$ . The degree of $E$ is
denoted by $\deg E$. If two divisors $E$ and $E^{\prime}$ are linearly equivalent, we denote it
by $E\sim E^{\prime}$ . The complete linear system of all effective divisors $E^{\prime}$ with $\not\in^{\urcorner}’\sim E$ is
denoted by $|E|$ .

\S 1. $w_{D}(P)\leqq\frac{1}{2}g(g+1)$

Let $C$ be a complete nonsingular curve of genus $g\geqq 2$ over $k$ and $D$ a divisor
of degree $d>2g-2$ on $C$. The dimension $h^{0}(D)$ of the k-space $\mathcal{L}(D)$ is always

denoted by $l$. Note that $l=d+1-q$ by the Riemann-Roch theorem. $L|_{\vee}^{3}tP\in C$.
We denote by $\nu_{1}(P)<\cdots<\nu\iota(P)$ the D-gap sequence at $P$. Then we have

$\nu_{t}(P)=i$ for $1\leqq i\leqq d-2q+l$

by the Riemann-Roch theorem, and may denote by

$\nu_{i}(P)=d-2g+1+\mu\iota-(d-2g+1)(P)$ for $d-2g+2\leqq i\leqq l$,

where $\mu_{1}(P)<\cdots<\mu_{g}(P)$ are positive integers. Hence we have

$w_{D}(P)=\sum_{i=1}^{g}(\mu_{i}(P)-i)$ .
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THEOREM I. We have

$w_{D}(P)\leqq\frac{1}{2}g(g+1)$ .

Furthermore, equality occurs if and only if $C$ is hyperelliptic, $P$ is a K- Weierstrass
point and $D\sim K+(d-2g+2)P$.

PROOF. By the definition of gap sequence, we have

(1) $h^{0}(D-(d-2g+\mu j)P)=g-j+1$ .
Since

(2) $\deg(D-(d-2g+\mu j)P)=2g-\mu j$

we have $g-j\leqq\frac{1}{2}(2g-\mu j)$ by Clifford’s theorem. Hence $\mu j\leqq 2j$ and therefore we

have

$W_{D(P)=\sum_{j=1}^{g}(\mu j^{-j)\leqq\frac{1}{2}q(g+1)}}$

If equality occurs, then $\mu j=2j$ for $j=1.\cdots,$ $g$ . In particular, putting $j=1$ we have
$\deg(D-(d-2g+2)P)=2g-2$ and $h^{0}(D-(d-2g+2)P)=g$ . This means $D-(d-2g+2)P$
$\sim K$ Putting $j=2$ and appealing to Clifford’s theorem, we have that $C$ is hyperel-
liptic and $|D-(d-2g+4)P|=(g-2)g_{2}^{1}$ , where $q_{2}^{1}$ is the linear system of dimen-
sion 1 and degree 2 on $C$. Hence we have $|2P|=g_{2}^{1}$ , which means that $P$ is a
K-Weierstrass point.

Conversely, it is obvious that if $C$ is hyperelliptic, $D\sim K+(d-2g+2)P$ and $P$

is a K-Weierstrass point, then the D-gap sequence at $P$ is

$\{1, 2, \cdots, d-2g+1, d-2g+3, d-2g+5, \cdots, d+1\}$ .

Hence we have $w_{D}(P)=\frac{1}{2}q(g+1)$ .

\S 2. Nonhyperelliptic case (1)

From now on, we assume that $C$ is nonhyperelliptic. The following theorem,

which is essentially due to H. H. Martens [4], plays an important role in our es-
timate of a bound on $w_{D}(P)$ .

THEOREM 2.1 (Martens). Assume that $C$ is nonhyperelliptic of genus $g\geqq 4$ .
Let $E$ be a divisor of degree $e$ with $0\leqq e\leqq 2g-1$ . If $E*O$ nor $K$, then

$2(h^{0}(E)-1)\leqq e-1$ .
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Furthermore, equality holds if and only if one of the following occurs:
(i) $e=1$ and $E\sim Q$ , where $Q$ is a point;
(ii) $C$ is trigonal, $e=3$ and $|E|=g_{3}^{\mathfrak{l}}$ , where $g_{3}^{1}$ is a linear system of $d_{1}\cdot|mension$

1 and degree 3;
(iii) $C$ is plane quintic, $e=5$ and $E$ is a line section;
(vi) $C$ is trigonal, $e=2g-5$ and $|K-E|=g_{3}^{1}$ ;
(v) $e=2g-3$ and $K-E\sim Q$ , where $Q$ is a point;
(vi) $e=2g-1$ .

PROOF. The first assertion follows from Clifford’s theorem. The “ if” part of
the second assertion is obvious and the “ only if “ part is an immediate consequence
of the following lemma. (Note that if $2(h^{0}(E)-1)=e-1$ , then $2(h^{0}(K-E)-1)=$

$\deg(K-E)-1.)$

LEMMA 2.2. Let $E$ be a divisor of degree $e$ on a nonhyperelliptic curve of
genus $g\geqq 4$ . If $2(h^{0}(E)-1)=e-1$ and $0\leqq e\leqq g-1$ , then $h^{0}(E)\leqq 2$ except that the case
(iii) in Theorem 2.1 occurs.

For the proof, see [4], 2.5.1.

THEOREM II. Let $D$ be a divisor of degree $d>2q-2$ on a nonhyperelliptic curve
$C$ of genus $\sigma$ . Then we have

$w_{D}(P)\leqq k(g)+g$

for any $P\in C$, where $k(g)$ is Kato’s bound on $w_{K}(P)$ .

PROOF. We prove this by several steps.

Step 1. First we estimate $\mu_{i}\prime s$ by applying Clifford’s theorem to (1) and (2).

Since $C$ is nonhyperelliptic, we have:
$\mu_{1}\leqq 2$ and equality occurs if and only if $D\sim K+(d-2g+2)P$ ;
$\mu i\leqq 2i-1$ if $i=2,$ $\cdots,$ $g-1$ ;
$\mu_{g}\leqq 2g$ and equality occurs if and only if $D\sim dP$.

Step 2. If $\mu_{1}=2$ , then the K-gap sequence at $P$ coincides with $\mu_{1}-1,$ $\rho_{2}-1,$ $\cdots$ ,
$\mu_{g}-1$ . Indeed, if $\mu_{1}=2$ , then $D-(d-2g+2)P\sim K$ by Step 1. Hence we have

$h^{0}(K-(\mu_{i}-2)P)=h^{0}(D-(d-2g+\mu_{i})P)>h^{0}(D-(d-2g+\mu_{i}+1)P)=h^{0}(K-(\rho!_{i}-1)P)$ .
This means that $\mu_{1}-1,$ $\cdots,$ $\mu_{g}-1$ is the K-gap sequence at $P$.

This fact implies that

$w_{D}(P)=w_{K}(P)+g$ if $\mu_{1}(P)=2$ .
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In particular, our inequality holds if $\mu_{1}(P)=2$ . So we may assume that $\mu_{1}(P)=1$ .

Step 3. Assume that $g=3$ . Using Step 1, we have

$w_{D}(P)=\sum_{i=1}^{3}(\mu_{i}-i)\leqq(3-2)+(6-3)=4$ if $\mu_{1}=1$ .

On the other hand, $k(3)+3=5$ . Therefore our theorem holds when $g=3$ .
Next assume that $g=4$ . Then we have $w_{D}(P)\leqq 7$ if $\mu_{1}=1$ . On the other hand,

$k(4)+4=8$ . Thus our theorem holds when $g=4$ .

Slep 4. From now on, we assume that $g\geqq 5$ . By virtue of Martens’ theorem,
the $\mu_{i}\prime s$ can be estimated as follows:

$\mu_{2}\leqq 3$ and equality occurs if and only if there is a point $Q$ such that $K-D+$
$(d-2g+3)P\sim Q$ ;

$\mu_{3}\leqq 5$ and equalitv occurs if and only if $C$ is trigonal and $|K-D+(d-2g+5)P|=g_{s}^{1}$ ;
$\mu_{4}\leqq 7$ and equality occurs if and only if $C$ is plane quintic $(g=6)$ and $D-(d-5)P$

is linearly equivalent to a line section;
$\mu_{i}\leqq 2i-2$ for $i=5,$ $\cdots,$ $g-2$ if $g\geqq 7$ ;
$\mu_{g-i}\leqq 2(g-1)-1$ and equality occurs if and only if $C$ is trigonal and $|D-(d-3)P|=$

$g_{3}^{1}$ ;
$\mu_{g}\leqq 2g$ and equality occurs if and only if $D\sim dP$.

Step 5. In this step we prove the following lemma.

LEMMA 2.3. If $\mu_{1}=1$ , then at least one of the following holds $\mu\$<5$ or $\mu_{q-1}$

$<2(g-1)-1$ or $\mu_{g}<2g$ .

PROOF. Suppose that $\mu_{3}=5,$ $\mu_{g-1}=2(g-1)-1$ and $\mu_{g}=2g$ . Then, by Step 4 we
have that $|K-D+(d-2g+5)P|=g_{3}^{1},$ $|D-(d-3)P|=g_{3}^{1}$ and $D\sim dP$. Since $g\geqq 5,$ $g_{3}^{1}$ is
unique. Hence $K-D+(d-2g+5)P\sim D-(d-3)P$ and $D-(d-2g+2)P\sim K$ This
implies $\mu_{1}=2$ , which is a contradiction.

Step 6. Assume that $g=6$ . If $\mu_{1}=1$ , then at least one of the inequalities
$\mu_{8}<5,$ $\mu_{5}<9,$ $\mu_{6}<12$ holds by Lemma 2.3.
Hence

$w_{D}(P)\leqq(3-2)+(5-3)+(7-4)+(9-5)+(12-6)-1=15<16=k(6)+6$ .
Therefore the theorem holds when $g=6$ .

Step 7. We will establish the theorem in this step. Let $g=5$ or $g\geqq 7$ . Using
Step 4 and Lemma 2.3, we have
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$w_{D}(P)\leqq(3-2)+(5-3)+\sum_{i=4}^{q-2}(i-2)+(g-2)+g-1=\frac{1}{2}(g^{2}-3g+10)$ ,

if $\mu_{1}=1$ . On the other hand,

$k(g)+q=|_{\frac{1}{2}(g^{2}-3g+10)}^{21}33$

if $g=5,8$ or $g\geqq 10$

if $g=7$

if $g=9$

Note that if $g=7$ , then

$\frac{1}{2}(g^{2}-3g+10)=19<k(7)+7$

and that if $g=9$ , then

$\frac{1}{2}(q^{2}-3g+10)=32<k(9)+9$

Therefore the inequality $w_{D}(P)\leqq k(q)+g$ holds for all $g\geqq 3$ . This complete the
proof.

REMARK 2.4. For every fixed couple $(g, d)$ with $d>2g-2\geqq 4$ , there is a triple

$(C, D, P)$ such that $C$ is of genus $g,$ $D$ is of degree $d$ and that $w_{D}(P)=--k(g)+g$ .
Indeed, Kato [2] showed that there is a couple $(C, P)$ such that $C$ is of genus $g$ and
$w_{K}(P)=k(g)$ . Letting $D=K+(d-2g+2)P,$ $(C, D, P)$ has the required properties.

\S 3. Nonhyperelliptic case (2)

Let $E$ be a divisor on $C$ and let $P\in C$ . We denote by $\Re(E;P)$ the set of pos-

itive integers which are not E-gap at $P$. Note that $\Re(K;P)$ is a semigroup. We
need the following lemmas, but their proofs are not difficult.

LEMMA 3.1. The semigroup $\Re(K;P)$ acts on $\Re(E;P)$ by a natural way, $i.e.$ ,

if $m\in\Re(K;P)$ and $n\in\Re(E;P)$ , then $m+n\in 7l(E;P)$ .

LEMMA 3.2. Let $E$ be a divisor on $C$ with $h^{1}(E)>0$ . If a point $P\in C$ is not a
base point of $|K-E|$ , then any E-gap is also a K-gap.

The aim of this section is to prove the following theorem.

THEOREM III. Let $C$ be a nonhyperelliptic curve of genus $g$ and $D$ a divisor

of degree $d>2g-2$ on C. Let $P\in C$ . If $w_{D}(P)=k(g)+g$ , then $w_{K}(P)=k(g)$ .

PROOF. Note that $w_{D}(P)=w_{K}(P)+g$ if $\mu_{1}(P)=2$ , which was shown in Step 2
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of the proof of Theorem II. Hence the assertion holds when $\mu_{1}(P)=2$ .
First we will show that $w_{D}(P)=k(g)+g$ implies $\mu_{1}(P)=2$ except for the case

$g=5$ . If $g=3,4,6,7$ or 9, this was shown in the proof of Theorem II (see Step 3,

Step 6 and Step 7). So we assume that $g=8$ or $g\geqq 10$ . By virtue of Step 7, in
the inequalities $w_{D}(P)\leqq k(g)+g$ and $\mu_{1}(P)\geqq 1$ , equality may occur in the three
cases:

Case 1. $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=5,$ $\mu_{i}=2_{i}-2$ $(i=4,\cdots, g-2)$ ,

$\mu_{g-1}=2g-3,$ $\mu_{g}=2g-1$ ;
Case 2. $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=5,$ $\mu i=2i-2$ $(i=4,\cdots, g-2)$ ,

$\mu_{g-1}=2g-4,$ $\mu_{g}=2g$ ;

Case 3. $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=4,$ $\mu_{i}=2i-2$ $(i=4, \cdots, g-2)$ ,

$\mu_{g-1}=2g-3,$ $\mu_{g}=2g$ .
In every case, since $\mu_{2}=3$ , there is a point $Q$ such that $D-(d-2g+3)P\sim K-Q$

(see Step 4). Note that $Q\neq P$. In fact, if $Q=P$, then $D-(d-2g+2)P\sim K$, which
implies $\mu_{1}=2$ . Since $K-Q\sim D-(d-2g+3)P$ and $Q\neq P$, the $(K-Q)$ -gap sequence
at $P$ coincides with $\mu_{2}-2,$ $\cdots,$ $\mu_{g}-2$ . Hence there is a positive integer $\alpha$ such that
the set of all K-gaps at $P$ coincides with $\{\mu_{2}-2, \cdots, \mu_{g}-2\}\cup\{\alpha\}$ by Lemma 3.2.
Using the above list, we can write down the $(K-Q)$ -gap sequence at $P$ according

to each case:

Case 1. $1,3,4,6,$ $\cdots,$ $2g-8,2g-5,2g-3$ ;

Case 2. 1, 3,4, 6, $\cdots$ , $2g-8,2g-6,2g-2$ ;

Case 3. 1,2,4, $6,\cdots,$ $2g-8,2g-5,2g-2$ .
Note that since $C$ is nonhyperelliptic, $\alpha=2$ when either Case 1 or Case 2 occurs.
Suppose that Case 1 occurs. Since $2g-7$ is a non-K-gap at $P$ and 2 is a non-
$(K-Q)$ -gap at $P,$ $2g-5(=2g-7+2)$ must be a $non-(K-Q)$ -gap at $P$ by Lemma 3.1,

which is a contradiction. Next, suppose that Case 2 occurs. Since 5 is a non-K-
gap at $P$ and $2g-7$ is a $non-(K-Q)$ -gap at $P,$ $2g-2(=5+2g-7)$ must be a non-
$(K-Q)$ -gap at $P$, which is a contradiction. Finally, suppose that Case 3 occurs.
In this case, either 3 or 5 is a non-K-gap at $P$ and 3 and 5 are $non-(K-Q)$-gaps
at $P$. Hence 8 $(=3+5)$ must be a $non\cdot(K-Q)$ -gap at $P$, which is a contradiction.
Therefore equality $w_{D}(P)=k(g)+g$ can not be compatible with $\mu_{1}(P)=1$ when $g\neq 5$.

Now, we will show the theorem when $g=5$ . By an argument similar to the
previous case, in the inequalities $w_{D}(P)\leqq k(5)+5$ and $\mu_{1}(P)\geqq 1$ , equality may occur
in the following three cases:

Case $i$ . $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=5,$ $\mu_{4}=7,$ $\mu_{5}=9$ ;
Case $ii$ . $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=5,$ $\mu_{4}=6,$ $\mu_{5}=10$ ;

Case $iii$ . $\mu_{1}=1,$ $\mu_{2}=3,$ $\mu_{3}=4,$ $\mu_{4}=7,$ $\mu_{5}=10$ .
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In every case there is a point $Q\neq P$ such that the $(K-Q)$ -gap sequence at $P$

is $\mu_{2}-2,$ $\cdots,$ $\mu_{5}-2$ and there is an integer $\alpha$ such that the set of all K-gaps at $P$ is

$\{\mu_{2}-2, \mu_{3}-2, \mu_{4} 2, \mu_{5}-2\}U\{a\}$ .

Therefore, we have
(i) If Case $i$ occurs, then the K-gap sequence at $P$ coincides with 1, 2, 3, 5, 7.
(ii) If Case $ii$ occurs, then it coincides with 1, 2, 3, 4, 8.
(iii) If Case $iii$ occurs, then it coincides with one of the following:

(iii. 1) 1, 2, 3, 5, 8;
(iii. 2) 1, 2, 4, 5, 8;
(iii. 3) 1, 2, 5, 6, 8;
(iii. 4) 1, 2, 5, 7, 8;
(iii. 5) 1, 2, 5, 8, 9.

Suppose that Case $ii$ occurs. Since 6 is a non-K-gap at $P$ and 2 is a $non\cdot(K-Q)-$

gap at $P,$ $8(=6+2)$ must be a $non-(K-Q)$-gap at $P$, which is a contradiction.
Hence Case $ii$ can not occur. Since the set of all $non- K\cdot gaps$ forms a sernigroup,

the cases (iii. 1), (iii. 3), (iii. 4) and (iii. 5) cannot occur. If (iii. 2) occurs, then
$w_{K}(P)=k(5)$ , and then the theorem holds. We will show that Case $ii$ oes not
occur. Since $h^{0}(K-Q-2P)=3$ , we have $|Q+2P|=g_{3}^{1}$ . On the other hand $|4P|=g_{4}^{1}$ .
Hence, we have $|2Q+4P|=g_{6}^{3}$ , which is a contradiction.

The proof of Theorem III shows also the following corollary.

COROLLARY 3.3. Let notation and assumption be as in Theorem III. Further-
more, assume that $g\neq 5$ . Then $w_{D}(P)=k(g)+g$ if and only if $D\sim K+(d-2g+2)P$

and $w_{K}(P)=k(g)$ .

\S 4. Examples

First we will show that the conclusion of corollary 3.4 does not hold if $g=5$ .

EXAMPLE 4.1. (see [11, Beispiel 2.2). Let $C$ be the normalization of the plane

curve $C^{\prime}$ defined by

$y^{8}=x^{2}(x^{6}-1)$ .

It is easy to check that the normalization $C\rightarrow^{\pi}C^{\prime}$ is one to one as set theoretic
and $C$ is of genus 5. Let $P_{0}=\pi^{-1}((0:0:1))$ and let $P_{\infty}=\pi^{-1}((0:1:0))$ . Tllen the
K-gap sequence at $P_{0}$ is

1, 2, 4, 5, 8,
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and the $(K-P_{\infty})$ -gap sequence at $P_{0}$ is
1, 2, 5, 8.

Letting

$D=K-P_{\infty}+(d-7)P_{0}$ ,

the D-gap sequence at $P_{0}$ is

1, 2, $\cdots,$ $d-9,$ $d-8,$ $d-6,$ $d-5,$ $d-2,$ $d+1$ .
Hence $\mu_{1}(P_{0})=1$ and $w_{D}(P_{0})=10(=k(5)+5)$ .

The next is a counterexample of Duma’s conjecture.

EXAMPLE 4.2. Let C’ be a plane curve defined by

$y^{5}=x(x-\lambda_{1})^{2}(x-\lambda_{2})^{2}(x-\lambda_{3})^{2}$ ,

where $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ are mutually distinct nonzero scalars.

Let $C\rightarrow^{\pi}$ C’ be the normalization. Then $\pi$ is one to one and $C$ is of genus 6. Letting

$P_{i}=\pi^{-1}((\lambda_{i} : 0:1))(i=1,2,3)$

$P_{0}=\pi^{-1}((0:0:1))$

$P_{\infty}=\pi^{-1}((0:1:0))$ ,

we have
$divx=5P_{0}-5P_{\infty}$

$divy=P_{0}+2P_{1}+2P_{2}+2P_{3}-7P_{\infty}$

$divdx=4P_{0}+4P_{1}+4P_{2}+4P_{3}-6P_{\infty}$ .

Hence we have

$div\frac{dx}{y}=3P_{0}+2P_{1}+2P_{2}+2P_{3}+P_{\infty}$

$div\frac{dx}{y^{2}}=2P_{0}+8P_{\infty}$

$div\frac{x}{y^{2}}dx=7P_{0}+3P_{\infty}$

$div(x-\lambda_{1})(x-\lambda_{2})(x-\lambda_{3})/y^{2}dx=P_{0}+3P_{1}+3P_{2}+3P_{3}$

$div(x-\lambda_{1})(x-\lambda_{2})(x-\lambda_{3})/y^{3}dx=P_{1}+P_{2}+P_{3}+7P_{\infty}$

$divx(x-\lambda_{1})(x-\lambda_{2})(x-\lambda_{3})/y^{4}dx=5P_{0}+P_{1}+P_{2}+P_{3}+2P_{\infty}$ .

Hence the K-gap sequence at $P_{0}$ is

1, 2, 3, 4, 6, 8,

and 13 integers $1,2,$ $\cdots,$ $9,10,11,13,15$ are $2K$-gaps at $P_{0}$ . Now,

$divx^{2}/y(x-\lambda_{1})(x-\lambda_{2})(x-\lambda_{3})(dx)^{2}=17P_{0}+P_{1}+P_{2}+P_{3}$ ,

$div\frac{x^{3}}{y^{4}}(dx)^{2}=19P_{0}+P_{\infty}$ ,
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hence the $2K$-gap sequence at $P_{0}$ is
1, 2, $\cdots,$ $9,10,11,13,15,18,20$ .

Therefore we have

$w_{K}(P_{0})+g=9<12=w_{2K}(P_{0})$ .
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the proof of Theorem III has simplified been by his suggestion.
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