ON THE WEIGHT OF HIGHER ORDER WEIERSTRASS POINTS

By

Masaaki HOMMA and Shoji OHMORI

Introduction. Let C be a complete nonsingular curve of genus $g \geq 2$ over an algebraically closed field k of characteristic zero and D a divisor on C with $\dim|D|$ \geq 0. Then we may define the notion of D-Weierstrass points (see e.g. [3]).

Let P be a point on C and $l=\dim|D|+1$. If ν is a positive integer such that $\dim L(D-(\nu-1)P)$ \geq dim $L(D-\nu P)$, we call this integer ν a " D -gap" at P. There are exactly *l* D-gaps and the sequence of D-gaps $\nu_{1}(P), \dots, \nu_{l}(P)$ at $P, \nu_{1}(P)$ < \dots $\lt \nu_{l}(P)$, is called the D-gap sequence at P. The multiplicty of the Wronskian of D at a point P can be computed as $\sum_{i}(\nu_i(P)-i)$. This integer is called the Dweight at P and denoted by $w_{D}(P)$. When $w_{D}(P)$ is positive, we call the point P a D-Weierstrass point. It is well known that for the canonical divisor K ,

$$
w_{\rm K}(P){\leq}\frac{1}{2}g(g-1)
$$

and equality occurs if and only if C is hyperelliptic and P is a K-Weierstrass point. Furthermore, T. Kato [\[2\]](#page-9-0) showed that if C is nonhyperelliptic, then $w_{K}(P)$ $\leq k(q)$, where

$$
k(g) = \begin{cases} \frac{1}{3}g(g-1) & \text{if } g = 3, 4, 6, 7, 9 \\ \frac{1}{2}(g^2 - 5g + 10) & \text{if } g = 5, 8 \text{ or } g \ge 10, \end{cases}
$$

and this maximum is achieved for every $g{\geq} 3$.

Our purpose is to give such good bounds on $w_{D}(P)$ for a divisor D of degree $>2g-2$.

THEOREM I. Let D be a divisor of degree $d > 2g-2$ on C. Then

$$
w_D(P) \leq \frac{1}{2}g(g+1).
$$

Furthermore, equality occurs if and only if C is hyperelliptic, P is a K-Weiersrass

Received September 21, 1983.

point and D is linearly equivalent to $K+(d-2g+2)P$.

THEOREM II. Let D be a divisor of degree $d>2g-2$ on C. If C is nonhyperelliptic, then

$$
w_D(P) \leq k(g) + g.
$$

Furthermor, the maximum is achived for every $q\geq 3$ and every $d>2q-2$

THEOREM III. Let P be a point on a nonlyperelliptic curve C and D a divisor of degree $d>2g-2$ on C. If $w_{D}(P)=k(g)+g$, then $w_{K}(P)=k(g)$.

In his paper $[1]$, A. Duma posed the conjecture: if C is nonhyperelliptic of genus g and if $P\in C$ is a K-Weierstrass point, then $w_{qK}(P)\leq w_{K}(P)+g$ for every $q{\geq} 2$. Unfortunately, there is a counterexample of this conjecture (see §4 below). However, our theorems show that the conjecture is true for a certain limited case.

Notation. Let x be a function or a differential on C . The divisor of zeros of x is denoted by $(x)_{0}$ and the divisor of poles of x is denoted by $(x)_{\infty}$. The divisor div x means $(x)_{0}-(x)_{\infty}$. Let E be a divisor on C. We denote by $\mathcal{L}(E)$ the the k-vector space of all functions x on C such that $div x+E$ is effective and by $h^{0}(E)$ the dimension of $\mathcal{L}(E)$ over k. The dimension of the k-space of all holomorphic differentials ω with $(\omega)_{0}\rangle E$ is denoted by $h^{1}(E)$. The degree of E is denoted by $\deg E$. If two divisors E and E['] are linearly equivalent, we denote it by $E{\sim}E^{\prime}$. The complete linear system of all effective divisors E^{\prime} with $E^{\prime}{\sim}E$ is denoted by $|E|.$

$$
\$\ 1. \quad w_D(P) \leq \frac{1}{2}g(g+1)
$$

Let C be a complete nonsingular curve of genus $g\geq 2$ over k and D a divisor of degree $d > 2g-2$ on C. The dimension $h^{0}(D)$ of the k-space $\mathcal{L}(D)$ is always denoted by *l*. Note that $l = d + 1 - g$ by the Riemann-Roch theorem. Let P ϵ C. We denote by $\nu_{1}(P) < \cdots < \nu_{l}(P)$ the D-gap sequence at P. Then we have

$$
\nu_i(P)=i
$$
 for $1 \leq i \leq d-2g+1$

by the Riemann-Roch theorem, and may denote by

$$
\nu_i(P) = d - 2g + 1 + \mu_{i - (d - 2g + 1)}(P)
$$
 for $d - 2g + 2 \le i \le l$,

where $\mu_{1}(P)$ < \cdots < $\mu_{g}(P)$ are positive integers. Hence we have

$$
w_D(P) = \sum_{i=1}^g (\mu_i(P) - i).
$$

THEOREM I. We have

$$
w_D(P) \leq \frac{1}{2}g(g+1).
$$

Furthermore, equality occurs if and only if C is hyperelliptic, P is a K-Weierstrass point and $D \sim K+(d-2g+2)P$.

PROOF. By the definition of gap sequence, we have

(1)
$$
h^0(D-(d-2g+\mu_j)P)=g-j+1.
$$

Since

(2) $\deg(D-(d-2g+\mu_i)P)=2g-\mu_i$

we have $g-j\leq\frac{1}{2}(2g-\mu_j)$ by Clifford's theorem. Hence $\mu_j\leq 2j$ and therefore we have

$$
w_D(P) = \sum_{j=1}^g (\mu_j - j) \le \frac{1}{2}g(g+1)
$$

If equality occurs, then $\mu_i=2j$ for $j=1,\cdots, g$. In particular, putting $j=1$ we have $\deg(D-(d-2g+2)P)=2g-2$ and $h^{o}(D-(d-2g+2)P)=g$. This means $D-(d-2g+2)P$ \sim K. Putting $j=2$ and appealing to Clifford's theorem, we have that C is hyperelliptic and $|D-(d-2g+4)P|= (g-2)g_{2}^{1}$, where g_{2}^{1} is the linear system of dimension 1 and degree 2 on C. Hence we have $|2P|=g_{2}^{1}$, which means that P is a K-Weierstrass point.

Conversely, it is obvious that if C is hyperelliptic, $D\sim K+(d-2g+2)P$ and P is a K-Weierstrass point, then the D-gap sequence at P is

$$
\{1, 2, \cdots, d-2g+1, d-2g+3, d-2g+5, \cdots, d+1\}.
$$

Hence we have $w_{D}(P) = \frac{1}{2}g(g+1)$.

$\S 2$. Nonhyperelliptic case (1)

From now on, we assume that C is nonhyperelliptic. The following theorem, which is essentially due to H.H. Martens [\[4\],](#page-9-2) plays an important role in our estimate of a bound on $w_{D}(P)$.

THEOREM 2.1 (Martens). Assume that C is nonhyperelliptic of genus $g \geq 4$. Let E be a divisor of degree e with $0 \leq e \leq 2g-1$. If $E \sim 0$ nor K, then

$$
2(h^0(E)-1)\leq e-1.
$$

Furthermore, equality holds if and only if one of the following occurs:

- (i) $e=1$ and $E\sim Q$, where Q is a point;
- (ii) C is trigonal, $e=3$ and $|E|=g_{3}^{\prime}$, where g_{3}^{\prime} is a linear system of dimension ¹ and degree 3;
- (iii) C is plane quintic, $e=5$ and E is a line section;
- (vi) C is trigonal, $e=2g-5$ and $|K-E|=g_{3}^{1}$;
- (v) $e=2g-3$ and $K-E\sim Q$, where Q is a point;
- (vi) $e=2g-1$.

PROOF. The first assertion follows from Clifford's theorem. The "if" part of the second assertion is obvious and the " only if " part is an immediate consequence of the following lemma. (Note that if $2(h^{0}(E)-1)=e-1$, then $2(h^{0}(K-E)-1)=$ $\deg(K-E)-1.$

LEMMA 2.2. Let E be a divisor of degree e on a nonhyperelliptic curve of genus $g \geq 4$. If $2(h^{o}(E)-1)=e-1$ and $0\leq e\leq g-1$, then $h^{o}(E)\leq 2$ except that the case (iii) in [Theorem](#page-2-0) 2.1 occurs.

For the proof, see $[4]$, 2.5.1.

THEOREM II. Let D be a divisor of degree $d>2g-2$ on a nonhyperelliptic curve C of genus g . Then we have

$$
w_D(P) \leq k(g) + g
$$

for any P $\in \mathcal{C}$, where $k(q)$ is Kato's bound on $w_{K}(P)$.

PROOF. We prove this by several steps.

Step 1. First we estimate μ_{i} 's by applying Clifford's theorem to (1) and (2). Since C is nonhyperelliptic, we have:

 $\mu_{1}\leq 2$ and equality occurs if and only if $D\sim K+(d-2g+2)P$; $\mu_i \leq 2i-1$ if $i=2, \dots, g-1$;

 $\mu_{g} \leq 2g$ and equality occurs if and only if $D\sim dP$.

Step 2. If $\mu_{1}=2$, then the K-gap sequence at P coincides with $\mu_{1}-1, \mu_{2}-1, \cdots$, $\mu_{g}-1$. Indeed, if $\mu_{1}=2$, then $D-(d-2g+2)P\sim K$ by Step 1. Hence we have

 $h^{0}(K-(\mu_{i}-2)P)=h^{0}(D-(d-2g+\mu_{i})P)>h^{0}(D-(d-2g+\mu_{i}+1)P)=h^{0}(K-(\mu_{i}-1)P).$ This means that $\mu_{1}-1, \dots, \mu_{g}-1$ is the K-gap sequence at P.

This fact implies that

$$
w_D(P) = w_K(P) + g
$$
 if $\mu_1(P) = 2$.

In particular, our inequality holds if $\mu_{1}(P)=2$. So we may assume that $\mu_{1}(P)=1$.

Step 3. Assume that $g=3$. Using Step 1, we have

$$
w_D(P) = \sum_{i=1}^{3} (\mu_i - i) \leq (3-2) + (6-3) = 4 \text{ if } \mu_1 = 1.
$$

On the other hand, $k(3)+3=5$. Therefore our theorem holds when $g=3$.

Next assume that $g=4.$ Then we have $w_{D}(P) {\leq} 7$ if $\mu_{1}=1.$ On the other hand, $k(4)+4=8$. Thus our theorem holds when $q=4$.

Step 4. From now on, we assume that $g \geq 5$. By virtue of Martens' theorem, the μ_{i} 's can be estimated as follows:

 $\mu_{2} \leq 3$ and equality occurs if and only if there is a point Q such that $K-D+$ $(d-2g+3)P\sim Q$;

 $\mu_{3} \leq 5$ and equality occurs if and only if C is trigonal and $|K-D+(d-2g+5)P|=g_{3}^{1}$; $\mu_{4} \leq 7$ and equality occurs if and only if C is plane quintic (g=6) and $D-(d-5)P$ is linearly equivalent to a line section;

 $\mu_{i} \leq 2i-2$ for $i=5, \cdots, g-2$ if $g\geq 7$;

 $\mu_{g-1}\leq 2(g-1)-1$ and equality occurs if and only if C is trigonal and $|D-(d-3)P|=$ g_{3}^{1} ;

 $\mu_{g}\leq 2g$ and equality occurs if and only if $D\sim dP$.

Step 5. In this step we prove the following lemma.

LEMMA 2.3. If $\mu_{1}=1$, then at least one of the following holds $\mu_{3} < 5$ or μ_{q-1} $<\!\!2(g-1)-1$ or $\mu_{g}\!<\!2g$.

Proof. Suppose that $\mu_{3}=5$, $\mu_{g-1}=2(g-1)-1$ and $\mu_{g}=2g$. Then, by Step 4 we have that $|K-D+(d-2g+5)P|=g_{3}^{1}, |D-(d-3)P|=g_{3}^{1}$ and $D\sim dP$. Since $g\geq 5, g_{3}^{1}$ is unique. Hence $K-D+(d-2g+5)P\sim D-(d-3)P$ and $D-(d-2g+2)P\sim K$. This implies $\mu_{1}=2$, which is a contradiction.

Step 6. Assume that $g=6$. If $\mu_{1}=1$, then at least one of the inequalities μ_{8} < 5, μ_{5} < 9, μ_{6} < 12 holds by [Lemma](#page-4-0) 2.3. Hence

$$
w_D(P) \leq (3-2) + (5-3) + (7-4) + (9-5) + (12-6) - 1 = 15 < 16 = k(6) + 6.
$$

Therefore the theorem holds when $q=6$.

Step 7. We will establish the theorem in this step. Let $g=5$ or $g\geq 7$. Using Step 4 and [Lemma](#page-4-0) 2.3, we have

$$
w_D(P) \le (3-2) + (5-3) + \sum_{i=4}^{g-2} (i-2) + (g-2) + g - 1 = \frac{1}{2}(g^2 - 3g + 10),
$$

if $\mu_{1}=1$. On the other hand,

$$
k(g) + g = \begin{cases} 21 & \text{if } g = 7 \\ 33 & \text{if } g = 9 \\ \frac{1}{2}(g^2 - 3g + 10) & \text{if } g = 5, 8 \text{ or } g \ge 10 \end{cases}
$$

Note that if $g=7$, then

$$
\frac{1}{2}(g^2 - 3g + 10) = 19 < k(7) + 7
$$

and that if $g=9$, then

$$
\frac{1}{2}(g^2-3g+10)=32
$$

Therefore the inequality $w_{D}(P) \leq k(q)+q$ holds for all $q\geq 3$. This complete the proof.

REMARK 2.4. For every fixed couple (g, d) with $d>2g-2\geq 4$, there is a triple (C, D, P) such that C is of genus g, D is of degree d and that $w_{D}(P)=k(g)+g$. Indeed, Kato [\[2\]](#page-9-0) showed that there is a couple (C, P) such that C is of genus g and $w_{K}(P)=k(q)$. Letting $D=K+(d-2g+2)P$, (C, D, P) has the required properties.

$\S 3.$ Nonhyperelliptic case (2)

Let E be a divisor on C and let P ϵC . We denote by $\mathcal{D}(E;P)$ the set of positive integers which are not E-gap at P. Note that $\mathfrak{N}(K;\,P)$ is a semigroup. We need the following lemmas, but their proofs are not difficult.

LEMMA 3.1. The semigroup $\mathfrak{N}(K;P)$ acts on $\mathfrak{N}(E;P)$ by a natural way, i.e., if $m\in\mathfrak{N}(K;P)$ and $n\in\mathfrak{N}(E;P)$, then $m+n\in\mathfrak{N}(E;P)$.

LEMMA 3.2. Let E be a divisor on C with $h^{1}(E) > 0$. If a point $P \in C$ is not a base point of $|K-E|$, then any E-gap is also a K-gap.

The aim of this section is to prove the following theorem.

THEOREM III. Let C be a nonhyperelliptic curve of genus g and D a divisor of degree $d > 2g-2$ on C. Let $P \in C$. If $w_{D}(P) = k(g) + g$, then $w_{K}(P) = k(g)$.

PROOF. Note that $w_{D}(P)=w_{K}(P)+g$ if $\mu_{1}(P)=2$, which was shown in Step 2

of the proof of Theorem II. Hence the assertion holds when $\mu_{1}(P)=2$.

First we will show that $w_{D}(P)=k(g)+g$ implies $\mu_{1}(P)=2$ except for the case $g=5.$ If $g=3,4,6,7$ or 9, this was shown in the proof of Theorem II (see Step 3, Step 6 and Step 7). So we assume that $g=8$ or $g\geq 10$. By virtue of Step 7, in the inequalities $w_{D}(P) \leq k(g)+g$ and $\mu_{1}(P)\geq 1$, equality may occur in the three cases:

Case 1.
$$
\mu_1=1
$$
, $\mu_2=3$, $\mu_3=5$, $\mu_i=2_i-2$ $(i=4,\dots,g-2)$,
\n $\mu_{g-1}=2g-3$, $\mu_g=2g-1$;
\nCase 2. $\mu_1=1$, $\mu_2=3$, $\mu_3=5$, $\mu_i=2i-2$ $(i=4,\dots,g-2)$,
\n $\mu_{g-1}=2g-4$, $\mu_g=2g$;
\nCase 3. $\mu_1=1$, $\mu_2=3$, $\mu_3=4$, $\mu_i=2i-2$ $(i=4,\dots,g-2)$,
\n $\mu_{g-1}=2g-3$, $\mu_g=2g$.

In every case, since $\mu_{2}=3$, there is a point Q such that $D-(d-2g+3)P\sim K-Q$ (see Step 4). Note that $Q \neq P$. In fact, if $Q=P$, then $D-(d-2g+2)P\sim K$, which implies $\mu_{1}=2$. Since $K-Q\sim D-(d-2g+3)P$ and $Q\neq P$, the $(K-Q)$ -gap sequence at P coincides with $\mu_{2}-2, \dots, \mu_{g}-2$. Hence there is a positive integer α such that the set of all K-gaps at P coincides with $\{\mu_{2}-2, \cdots, \mu_{g}-2\}\cup\{\alpha\}$ by [Lemma](#page-5-0) 3.2. Using the above list, we can write down the $(K-Q)$ -gap sequence at P according to each case:

Case 1. 1, 3, 4, 6, \cdots , 2g-8, 2g-5, 2g-3; *Case 2.* 1, 3, 4, $6, \dots, 2g-8, 2g-6, 2g-2$; Case 3. 1, 2, 4, $6, \dots$, $2g-8$, $2g-5$, $2g-2$.

Note that since C is nonhyperelliptic, $\alpha=2$ when either Case 1 or Case 2 occurs. Suppose that *Case 1* occurs. Since $2g-7$ is a non-K-gap at P and 2 is a non- $(K-Q)$ -gap at P, $2g-5 (=2g-7+2)$ must be a non- $(K-Q)$ -gap at P by [Lemma](#page-5-1) 3.1, which is a contradiction. Next, suppose that *Case 2* occurs. Since 5 is a non-Kgap at P and $2g-7$ is a non- $(K-Q)$ -gap at P, $2g-2 (=5+2g-7)$ must be a non- $(K-Q)$ -gap at P, which is a contradiction. Finally, suppose that *Case 3* occurs. In this case, either 3 or 5 is a non-K-gap at P and 3 and 5 are non- $(K-Q)$ -gaps at P. Hence 8 (=3+5) must be a non- $(K-Q)$ -gap at P, which is a contradiction. Therefore equality $w_{D}(P) = k(q) + g$ can not be compatible with $\mu_{1}(P)=1$ when $g\neq 5$.

Now, we will show the theorem when $g=5$. By an argument similar to the previous case, in the inequalities $w_{D}(P) \leq k(5)+5$ and $\mu_{1}(P) \geq 1$, equality may occur in the following three cases:

 $\emph{Case} \quad i. \quad \mu_{1} \!=\! 1, \, \mu_{2} \!=\! 3, \, \mu_{3} \!=\! 5, \, \mu_{4} \!=\! 7, \, \mu_{5} \!=\! 9 \, ;$ $\emph{Case ii.} \quad \mu_{1} \!=\! 1, \, \mu_{2} \!=\! 3, \, \mu_{3} \!=\! 5, \, \mu_{4} \!=\! 6, \, \mu_{5} \!=\! 10 \, ;$ $\it Case\,\,ii i. \quad \mu_{1}=1, \, \mu_{2}=3, \, \mu_{3}=4, \, \mu_{4}=7, \, \mu_{5}=10.$

In every case there is a point $Q \neq P$ such that the $(K-Q)$ -gap sequence at P is $\mu_{2}-2, \dots, \mu_{5}-2$ and there is an integer α such that the set of all K-gaps at P is

$$
{\mu_2-2,\mu_3-2,\mu_4-2,\mu_5-2}\cup{\alpha}.
$$

Therefore, we have

(i) If Case i occurs, then the K-gap sequence at P coincides with 1, 2, 3, 5, 7.

(ii) If Case ii occurs, then it coincides with $1, 2, 3, 4, 8$.

(iii) If *Case iii* occurs, then it coincides with one of the following:

 $(iii. 1)$ 1, 2, 3, 5, 8; $(iii. 2)$ 1, 2, 4, 5, 8; (iii. 3) 1, 2, 5, 6, 8; $(iii. 4)$ 1, 2, 5, 7, 8; $(iii. 5)$ 1, 2, 5, 8, 9.

Suppose that *Case ii* occurs. Since 6 is a non-K-gap at P and 2 is a non- $(K-Q)$ gap at P, 8 (=6+2) must be a non- $(K-Q)$ -gap at P, which is a contradiction. Hence Case ii can not occur. Since the set of all $\text{non-} K\text{-gaps}$ forms a sernigroup, the cases (iii. 1), (iii. 3), (iii. 4) and (iii. 5) cannot occur. If (iii. 2) occurs, then $w_{K}(P)=k(5)$, and then the theorem holds. We will show that *Case i* does not occur. Since $h^{0}(K-Q-2P)=3$, we have $|Q+2P|=g_{3}^{1}$. On the other hand $|4P|=g_{4}^{1}$. Hence, we have $|2Q+4P|=g_{6}^{3}$, which is a contradiction.

The proof of Theorem III shows also the following corollary.

COROLLARY 3.3. Let notation and assumption be as in Theorem III. Furthermore, assume that $g\neq 5$. Then $w_{D}(P)=k(g)+g$ if and only if $D\sim K+(d-2g+2)P$ and $w_{K}(P)=k(q)$.

\S 4. Examples

First we will show that the conclusion of corollary 3.4 does not hold if $g=5$.

EXAMPLE 4.1. (see [1], Beispiel 2.2). Let C be the normalization of the plane curve C^{\prime} defined by

$$
y^3 = x^2(x^5 - 1).
$$

It is easy to check that the normalization $C\rightarrow{\pi}C^{\prime}$ is one to one as set theoretic and C is of genus 5. Let $P_{0}=\pi^{-1}((0:0:1))$ and let $P_{\infty}=\pi^{-1}((0:1:0))$. Then the K-gap sequence at P_{0} is

$$
1, 2, 4, 5, 8,
$$

and the $(K-P_{\infty})$ -gap sequence at P_{0} is

1, 2, 5, 8.

Letting

$$
D = K - P_{\infty} + (d - 7)P_0,
$$

the D-gap sequence at P_{0} is

$$
1, 2, \dots, d-9, d-8, d-6, d-5, d-2, d+1.
$$

Hence $\mu_{1}(P_{0})=1$ and $w_{D}(P_{0})=10$ (=k(5)+5).

The next is a counterexample of Duma's conjecture.

EXAMPLE 4.2. Let C' be a plane curve defined by

 $y^{3}=x(x-\lambda_{1})^{2}(x-\lambda_{2})^{2}(x-\lambda_{3})^{2},$

where λ_{1} , λ_{2} , λ_{3} are mutually distinct nonzero scalars.

Let $C\rightarrow{\pi} C'$ be the normalization. Then π is one to one and C is of genus 6. Letting

$$
P_i = \pi^{-1}((\lambda_i: 0: 1)) \ (i=1, 2, 3)
$$

\n
$$
P_0 = \pi^{-1}((0: 0: 1))
$$

\n
$$
P_{\infty} = \pi^{-1}((0: 1: 0)),
$$

we have

div
$$
x=5P_0-5P_\infty
$$

div $y=P_0+2P_1+2P_2+2P_3-7P_\infty$
div $dx=4P_0+4P_1+4P_2+4P_3-6P_\infty$.

Hence we have

$$
\begin{aligned}\n\text{div } \frac{dx}{y} &= 3P_0 + 2P_1 + 2P_2 + 2P_3 + P_\infty \\
\text{div } \frac{dx}{y^2} &= 2P_0 + 8P_\infty \\
\text{div } \frac{x}{y^2} dx &= 7P_0 + 3P_\infty \\
\text{div } (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)/y^2 dx &= P_0 + 3P_1 + 3P_2 + 3P_3 \\
\text{div } (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)/y^3 dx &= P_1 + P_2 + P_3 + 7P_\infty \\
\text{div } x(x - \lambda_1)(x - \lambda_2)(x - \lambda_3)/y^4 dx &= 5P_0 + P_1 + P_2 + P_3 + 2P_\infty.\n\end{aligned}
$$

Hence the K-gap sequence at P_{0} is

1, 2, 3, 4, 6, 8,

and 13 integers $1, 2, \dots, 9, 10, 11, 13, 15$ are $2K$ -gaps at P_{0} . Now,

$$
\text{div } x^2/y(x - \lambda_1)(x - \lambda_2)(x - \lambda_3)(dx)^2 = 17P_0 + P_1 + P_2 + P_3,
$$

$$
\text{div } \frac{x^3}{y^4}(dx)^2 = 19P_0 + P_\infty,
$$

hence the 2K-gap sequence at P_{0} is

 $1, 2, \dots, 9, 10, 11, 13, 15, 18, 20.$

Therefore we have

$$
w_K(P_0) + g = 9 < 12 = w_{2K}(P_0).
$$

Acknowledgement. We thank the referee for valuable comments. Especially, the proof of Theorem III has simplified been by his suggestion.

References

- [1] Duma, A., Holomorphe Differentiale höherer Ordnung auf kompakten Riemannschen Flachen, Schriftenreihe der Univ. Munster, 2. Serie, Heft 14 (1978).
- [2] Kato, T., Non-hyperelliptic Weierstrass points of maximal weight, Math. Ann. ²³⁹ (1979), 141-147.
- [3] Laksov, D., Weiersrass points on curves, Astérisque 87/88 (1981), 221-247.
- [4] Martens, H. H., Varieties of special divisors on a curve, J. Reine Angew. Math. 233 (1968), 89-100.

M. Homma Department of Mathematics Ryukyu University Okinawa 903-01, Japan

S. Ohmori Institute of Mathematics University of Tsukuba Ibaraki 305, Japan