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SELF-DUAL YANG-MILLS EQUATIONS AND TAUBES’ THEOREM

By

Mitsuhiro IToH

1. Introduction and statement of results.

Let M be a compact connected, oriented Riemannian 4-manifold with a metric
g and G be a compact simply connected, simple Lie group. Let P be a G-
principal bundle over M. The adjoint representation on its algebra g induces an
associated vector bundle §=3r=P X aqg, called the adjoint bundle of P.

A functional is defined over the set £(P) of all connections on P by Ar—>
1/2-glF(A)|2 VTgldx, where F(A)=dA+AAA is curvature of A. A Yang-Mills con-
nection which is a connection giving a critical point of this functional is a solution
of the Yang-Mills equation d4F(A)=—*°d,°*F(A)=0, that is, the Euler-Lagrange
equation of the functional. A connection is said to be self-dual if F(A) satisfies
*F'=F. From Bianchi’s identity every self-dual connection gives automatically a
Yang-Mills connection.

The functional takes the absolute minimum given by the first Pontrjagin
number of bundle P when a connection is self-dual.

A connection A is said to be irreducible if the covariant derivative Fy;
'@ — I'@®A') has trivial kernel and a connection is reducible if it is not
irreducible. A reducible connection reduces the structure group of P to the
holonomy group by holonomy reduction theorem.

A differential operator Da; I'(3QA)) —> I'GRA) is defined by Di=P._°d,,
where P_; A* — A% is the orthogonal projection to the anti-self-dual part.

Since the base space is four dimensional and G satisfies n)(G)=Z, G-principal
bundles P and P’ over M are equivalent if and only if they have the same index
keny(G), given essentially by the first Pontrjagin number of the adjoint bundle §.
Index of an SU(2)-principal bundle P is especially —c:(PXx,C?), where p denotes
the standard representation. For a G-principal bundle P over S* of index 1 each
smooth map ¢; M — S* with degree %k therefore induces a G-principal bundle
¢*P of index k over M.
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On S* with the standard metric an SU(2)-principal bundle of index 1 carries
an irreducible self-dual connection, written in explicit form and called Belavin-
Polyakov-Schwartz-Tyupkin instanton solution ([1J).

The aim of this article is to establish existence theorem of a self-dual con-
nection on a given SU(2)-principal bundle over M.

THEOREM 1.1. Let P be an SU(2)-principal bundle over M of index £=0. If
P admits a self-dual connection A satisfying Ker D,*=0, then an arbitrary SU(2)-
principal bundle of index k41 does also carry a self-dual connection which is
irreducible and satisfies Ker D*=0.

We call a connection to be generic when it is irreducible and satisfies
Ker DA*=O.

Reversing the orientation of M, we obtain

CoroLLARY 1.2. Let P be an SU(2)-principal bundle over M of index £=0.
If P admits an anti-self-dual connection A satisfying Ker D *=0, then there exists
also a generic anti-self-dual connection on an SU{(2)-principal bundle of index £—1.

The condition that Ker D *=0 for a flat (i.e., self-dual) connection on a product
bundle reduces to a topological restriction on M that H:(M)={P_0; 0e H*(M)}
vanishes. Thus the following is immediately obtained.

CorOLLARY 1.3 (Taubes [11]). Let M be a compact connected, oriented
Riemannian 4-manifold satisfying H2(M)=0 (or H%(M)=0). Then for all 2>0 (or
k<0) each SU(2)-principal bundle of index k carries a generic self-dual connection
(or anti-self-dual connection).

The condition Ker D,*=0 for A on a bundle of index k is crucial, because
H?%(M) does not vanish for each compact Kihler surface with canonical orientation
and a Kihler metric, and an SU(2)-principal bundle of index —1 over a 2-dimen-
sional complex projective space does not admit an anti-self-dual connection ([5],[7]
and [10]).

The theorems can be applied to the case of anti-self-dual connections over a
Kihler surface which are tightly related to the stability of holomorphic structures
of a smooth vector bundle.

Over a compact Kihler surface (M, g) with canonical orientation each anti-self-
dual connection A on a G-principal bundle induces a holomorphic structure / on
any associated complex vector bundle E such that the (0, 1)-part V,” of V4 coincides
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with the J-operator with respect to J ([Z],[5). Because the connection A is
Hermitian-Einstein in the sense of Kobayashi ([7]), this holomorphic structure is
g-semistable in the sense of Mumford and Takemoto. Further when A is irreducible,
(E,]J) is g-stable.

Thus we can discuss the existence of irreducible anti-self-dual SU(2)-connection
and the stability of rank two holomorphic vector bundle of ¢,=0.

CoroLLARY 1.4. Let (M,g) be a compact Kihler surface. If a rank two
holomorphic vector bundle of ¢;=0 and c,=k (>0) carries a generic anti-self-dual
connection, then every rank two smooth complex vector bundle of ¢;=0 and ¢,>%
does also, and hence admits a g-stable holomorphic structure.

NoraTION. Denote by A? the vector bundle over M consisting of p-forms.
Let A% and 42 be the subbundles of /2, given by self-dual 2-forms and anti-self-
dual 2-forms. We denote by I'(g®RA?) the space of smooth §-valued p-forms over
M. The metric ¢ and the Killing form define an inner product on §R®A®, the
L.-inner product and Li-norms on 7I"(§RA*) by

1.1) [|(D|]Lk=<SM((D, o) Vg dx)luc.

With respect to the L,-inner product the formal adjoint F¥ and D} are defined.

Let gp be the group of automorphisms of P which descend to the identity map
of M. The quotient space {self-dual connections on P}/@pr is called the moduli
space M of self-dual connections on P.

The remaining part of this article is devoted to verification of [Theorem 1.1.
We use for this in principle the idea of Taubes given in except several parts.
To make these parts complete we need quite different methods. Along the follow-
ing course we show the theorem. For a given SU(2)-principal bundle P of index
k(=0) over M we construct a smooth map ¢* with degree £+1 from M to S*,
parametrized with 2 and glue well a self-dual connection A on P and BPST-
solution over S* to obtain bundle P* of index £+1 and also connection A* on P?,
parametrized with 2>0 (Definitions 4.1 and H4.2).

If we let 2 be sufficiently small so that A* becomes “almost” self-dual, that
is, the Li-norms of the anti-self-dual part of F(A*) are small (Proposition 4.3), and
the first eigenvalue p(A*) of the elliptic operator D4D 4 has a positive lower bound
(Proposition 4.4), then we can apply to A*[Theorem 2.1, an existence theorem obtained
by an iterated method due to Taubes. We state in section 2 reliably the quantities
¢(A) and o(A) appeared in [Theorem 2.1 which must be estimated to establish an
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existence theorem.

To show p(A*)>0 we utilize the basic properties of the BPST-solution that
the solution is of Hodge gauge and of exponential gauge in the sense of Uhlenbeck,
and also it is rotational invariant (Proposition 3.1) together with Sturm’s type
comparison theorem related to first zero points of the ordinary differential equations
associated to F4*V ¢—vp=0 (Proposition 5.1). A lower bound estimation of u(A%)
may cause difficulty in the case of general structure group G.

A self-dual connection A’ on P? obtained by the above procedure must be
irreducible when so is the given A. If A is not assumed irreducible, then we can
not necessarily conclude that A’ is irreducible. However the structure of the
moduli space around a reducible self-dual connection can be precisely investigated
(Lemmas and 6.59). In fact the moduli space is a product of the subset of
reducible connections which has a form of a b,(M) dimensional open ball and the
subset of irreducible ones, written as a cone over a certain complex projective
space P,(C). Therefore an SU(2)-principal bundle of index £+1 admits a generic
self-dual connection.

2. The self-dual equation.

Let P—— M be a G-principal bundle over a compact connected, oriented
Riemannian 4-manifold M with a compact simple Lie group G. Let A, be a fixed
smooth connection on P. Since the set £(P) of all connections is an affine space,
any connection A can be written uniquely as

2.1) A=Ao+a

with ael'(@R4'). If A has self-dual curvature, then

(2.2) P_F(Ay)+Dsja+ata=0
where
2.3) agb=1/2P_(aNb+bAa).

Conversely, if ael'(GRA') satisfies [2.2), then A=A,+a is a self-dual connec-
tion. Thus in order to find a self-dual connection on P it suffices to obtain A,e&£(P)

such that has a solution.
Set a=D*u for uel'(@R4%). Then reduces to
2.4) Da,Da*u+D*uDy*u=—P_F(A,).

This equation is properly elliptic, but non-linear.
For Ae&(P) we denote by u(A) the first eigenvalue of DaDs*. Define {(A)
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and 6(A) for A with p(A4)>0 by
(2.5) 8(A)= p(A) 1+ (A + | P-F (Al 22,
2.6)  H(A)=|P-F (A2, +EUAIP-F (A2 (L +IF (Al 2, + L ANP-F(A)Iz,}.

THeEOREM 2.1. There exists a constant ¢>0 which depends only on the
Riemannian structure such that if A,e&(P) satisfies d(Ao)(Ao)<e, then there is a
solution @ in I"(d®A") to (2.2). Moreover there exists a constant ¢>0, which is
independent of A,e&(P) and P such that

2.7) 1V agall 3+ llall 2= c*a( Ao
DEerFINITION 2.2. For u,vel'(§RA?), p=1,2, we define

(2.8) <, V> a= <, 0> p,+ <Vagtt, Vao>1,,

||| = <oe, 26> 2.

The Hilbert spaces =% (A,) and K =(Ao) are defined by the completions
of I'(g®A%) and I'(RA") respectively, with respect to the norm ||.||x.

For a fixed connection A, we consider the equation
(2.9 DaDafu=q,
qel'(@®4z). A solution » of (2.9) is formally a critical point of the functional

(2.10) Swl=1/4<Vayut, Vajuu> 1,+~V2/4- <u, P_F(Ao)(%)> 1,
+1/6 <w, su>r,—12<u, W_(4)> ,— <u,q>1,,

where s and W_ denote the scalar curvature and the anti-self-dual part of the
Weyl conformal curvature W.

Sq(#] is finite for #eI"(d®A42) and for such # we have
(211) Sq[u]=1/2<D.4:,"u, DA;"u>L2—- <gq, u>L2.

Now we shall show the following.

LemMma 2.3. There is a constant z;>0 which depends only on the Riemannian

structure of M with the following property; if ©(A4,)>0, then for all xe.4 and
q€L4/3a

(2.12) Sqlu]=[2,5(A0)] ¥ || 52— [2:8(A0) 111Gl 2,5

Proor. It suffices to show (2.12) for uel'(®42). From (2.10) and 2.11)
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we obtain the estimates
(2.13) Slul= p(Aonllul|i— <q, > L2,

(2.14) S)=1/4117 4yl 22— 8/ P_F (Ao)l|,lloel| |l z,
—c(M)||ul|l2— <q, u> L,.

In [2.14) we have used Holder’s inequality. The constant c¢(M)>0 depends only
on the Riemannian structure of M.

Since ||l|%=]|lul|2+|F4,%ll2, we get for an arbitrary constant c>0

(2.15) Sqlw]=1/4||ulli—1/411ul| L]
—8(cl|P-F (Aol illell;+1/cll2e]] D)
—c(M)||oel| 23— <q, u> 1,.

By using Sobolev inequality

(2.16) ||26l| £, = 2o |2l |

for a constant z;, which is independent of A, we have

(2.17) Slul=(1/4—8z:/c)llu||%
- —(1/4+c(M)+8c|| P-F(A)| | L)l|#l|z;
—<q,U> Ly,

which induces the following for an appropriate value of ¢

(2.18) S L) =1/8llwlr—c(M )L+ | P-F (Al )22
—<q,U> L,.
We apply [(2.13) to [2.18) to obtain
(2.19) 145 4 nP_F(Ao)an)} (Sulul+ <, w> 1) = Slull,
#(Ao) 8
that is,
M -1 1
2.20) Sqlul+ <q,u>L2§{1+ ZEAO; A+IPF A x5l

We have now the estimate
(2.21) <gq,u>r,=azlqllel,+1/allully,
for an arbitrary a>0, where we have used the Holder’s inequality and the Sobolev

inequality. Then

"é‘“ull%

2.2 sz |1+ Ip P

—1/allully—aziligl|i.ys-
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If we let a equal 1611—!— M) (1+”P_F(A0>HLE>} , then
#(Ao)
1 M
2.2) stz |1+ LB 1P FAdD|
c(M) , .
1623 {1+-S0D 0 IP-FAY D

from which follows.

LemMMA 2.4. There is a constant z;>0, which is independent of A,€&£(P) and
P such that if p(A,)>0, then

(2.24) ol =||Dak¥vllL, =20l

_ 1
ZaC(AO)
for all veg.

Proor. We can use the estimate for S,[#] with ¢=0. From (2.12) we have

|[0|lz2/2sC(Ae)<||D4a¥||z,. The inequality [|D.F v|lz,=2zs||v||x follows from the defini-
tion of D,¥* and the norm ||.]|x.

ProPOSITION 2.5. Let A, be a connection on P with z(A,)>0. Let #el'(@®R4%)
be the unique solution to D4 Da¥u=gq for qel'(§®4%). Then
(2.25) 1D a¥ul| 2, =2.L(A0)lgll s
(2.26) 1D a*ull r =24{l1ql] 2, +E(A)Igl] £y (L HIF (AN L, + (A P_F (Aol 2.}
and
2.270)  |IDs*ullz,=2ddllgll, +E(Ao)Ig) za/s(L +IF (Aol 2, +E( A PF (Ao)llz)} »

where z, depends only on the Riemannian structure.
Proor. From the Sobolev inequality (2.27) immediately follows (2.26).

We show first (2.25). Since # satisfies 1/2||Da¥ul|li2= <q, u> 1, ||DafullL] is
estimated by ||D.a*ull2=2l|ullz,llqllz, s =22:|u||zllgllz,,. From (2.24) we have

|| D a*ul| 2= 22225 (A)l| D a¥ul | L,1gl| 2 /g -
Hence we obtain [(2.25).
The proof of (2.26) is as follows. Set b=Dj¥u. Then b satisfies
(2.28) Dab=q,
(2.29) Vifo=—x[uNP_F(Ap)].
Here we get from the following ; for all ¢€I'(8)
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<VA;kb) ¢> L2: <VA;kDAskuy ¢> L2: <u’ P—-dAOVAO¢> L2= <uy [P—F(Ao), ¢]>L2-

The norm ||b||z,=||Da¥u||L, is estimated by [2.25). Since belI'(RA'), we can
apply to |[VabllLi=<Va¥Fab,b> ., the Bochner-Weitzenbock formula, given by
Bourguignon and Lawson [3], that is, for ael'(GRA1")

(2.30) Va¥Va,a=2D*Daa+Vali*a
+2[P. F(Ao), a]— R(a),

where R is an endomorphism of §®A' defined by the curvature tensor of the
Riemannian structure. Then we have

(2.31) WWabllL;=2<D4afDah,b> 1, + <Fala¥b,b> 1,
+2<[P F(A,), b1, 0> 1,— < R(b), b> 1,
=2llgll;+ e\ P_F (Aol
+2<[P:F(As), b, 0> 1,— < R(b), b> 1,.

By using the Holder’s inequality together with the Sobolev inequality, we get

(2.32) 17Dl s =2llqll 25+ 82| | P_F (Ao)l| 2| 4] %
+c¢2}||blI3 +64/cll P F(A 21101 25 + 2/ Rl 21151 2,

for an arbitrary constant ¢>0. Hence

(2.33) 116117 =21lql| 3+ 82| | P_F (Ao)]| 2|2l

+1161 21+ 2|| Rl 2, +64/ || P+ F(Ao)||22) + 22| |b] 34,
that is,
(2.34) (L—c23)|b% =2llgl| .2+ 82| | P_F (Ao)|| 2] || 4

+ 11611 3{1 + 2| | R]| 2, 4 64/c|| P. F(Ao)| | 12} .
Since ||u||n/2:{(Ao0)=]b]|z,, We obtain

(2.35) (I—=c2)llbllz=2llgl|; +{1 +2[| Rl .. +64/c|| P F(Ao)ll 1
+ 822230 (A0)*|| P_F(Ao)l| L1511 3.

If we let ¢=1/2z; then we derive from [2.25)

(2.36) 1/2]16]1% =2lIq1| 25+ {1+ 2|| R|| 2, + 12824 | P, F(Ao)| .}
+ 82223 (Ao)*|| P-F( Aol 132 (Ao)lIgll % -

Therefore there is a constant z,>0, which depends only on the Riemannian structure
such that

(2.37) 16z =25{llgl| 2, +E(Agl| 2,/ s(1 +1| P F(Ao)l| 2, + C(AIP_F (Aol )}
from which (2.26) follows, since ||P,F(Ao)llz,=|1F (Ad)llz,-

In the following we need the Holder’s inequality
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(2.38) lgllz, =llgllzy® llgllz,”.

From [Proposition 2.5 we have

(2.39) IIDA;ku,]L2§Z4C(Ao)] gl Ly =2,0(Ao)/P(Ao),
(2.40) max {||DaXul|r,, || DFullz} =2.0(q),
where

H(A0)=1+F(Ao)llz, +E(AIP-F (Aol
(2.41)
ag)=d(g, Ao)=lgllz, +C(AlIgllL,/s" $(Ao).

Now consider a sequence of solutions {u:} to the linear equations D4,D4fur=qx
for a given sequence {g:} in I'(gRA%). Define ¢, and u; inductively by

(2.42) g1=—P_F(A),
and for k=2
(2.43) qk=——ZZ’;;f DA;“uj#DA;“uk_l

—D aFftwi 1D afthe-: .
If all «; exist, then the partial sum s,=X T, %, satisfies

(2.44) Du,Da¥*Sn+Da¥sm_i#Da*sm_1=—P_F(Ay).

ProprosiTION 2.6. Let A, be a connection on P satisfying 32 2% 6(A,) {(A.)<1.
Then each u: and gx exist and are smooth, and moreover satisfy

(2.45) 1D st = T (162 AN AN/ 9 Ao,
4
(2.46) max {||DsFurllL, ||D aFurl|z}

1 ., )
= 16—&-(16z45(A0))kc(A0)k .

Proor. The proposition is verified inductively on &.

By the definition of g«

(2.47) llgellz, =45 1D aFousll L)l DaFue_i|lz,
and
(2.48) llgil|z, =4 2 1D a¥ousll e D afrex_il|z,.

The inequalities [2.45) and [2.46) for k=1 are just and [2.40). By

induction on j<k, we have
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2
qu]|L1§4<%> (16233)% 122 1 k=1 = 1(16225) 7L
4

2
:4(161z ) ¢ (16230)K k21 + 16220 + - - - +(16220)*k~2Ck2}
4

Since 16236 <1/2, which is the hypothesis of the proposition, we have 1+41622(-+
< +(162300)**<2. Thus

1 \? _ 2 -
(2.50) qukIILI§8(H) ¢ (162%0)*Cx 2,

Similarly we obtain

1

(2.51) a1, =8 1o

)2(16235)"C’““2 .
Hence from llgllz,,, is estimated by
2.52) Iy =8 ) 9762,
Since d(gx) is given by d(gr)=|lgellL,+ L llgkllz, s ¢, 0(gr) is estimated by
(2.53) aqe) = 16<I€—;12—4>2(16z§5)"ck“ .

From we get

2
nDA*ukn§z4a<qk>¢-*§16z4( 1 )(16zza>kc'¢—l¢-l
° 16z,

1
<_— 23\k7k—1,1,—1
=16z, (16230)C* ¢,
which is just The inequality [(2.46) is also obtained in the similar manner.

ProrosiTiON 2.7. Let A, be a connection on P satisfying p(A,)>0 and
32220(A0).(Aos)<1. Then {sm} converges to # in 4, and {D.¥sn} also converges to a
in K which satisfies

(2.54) Difu=a
and
(2.55) l|a||z =22:0(A,).

Proor. We show that {s»} and {D.fsm} are Cauchy. For n=zm=N we obtain
from Lemma 2.4 together with (2.45)

”Sn—smHH§ZSC(A0) Z;cl=m+1 “DAzkuk”Lg
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_s_l—ngr—%‘%)— {16233 Ao) (Aot
=162 4¢(A0) ey 2 (162360)¢
Z o
_16z4¢(A0) ’
hence
(2.56) I5n—Smllar = 22— -27%,
162z,
since ¢(Ag)=1.
Similarly we get from
(2.57) |1 D.af 50— D afsulln S Do I Dl = 5= 27

is a standard result.
To show we must estimate || X5 Dafuelle.

By [2.46) || X Da¥uil| is estimated by

| ZDafur|lu=2 [|Dafuilla= 16—2 (16230)*Ck!

=2,02, (162200)¥<22,0.
LemMmAa 2.8. The sequence {vn} given by
(2.58) Om=D 4D .s¥sm+Ds¥sn$Ds¥sm~+ P_F(Ao)

converges to zero in L,.

Proor. Let n=zm=N. Since # is symmetric,
Hi)n-—i)m||L2<8HDA (Sn—Sm)IIH+||DA (sn‘—sm)#DA*(sn‘*‘sm)”Lz,

where we used the fact ||D4.b||z,=<8|lbl|lz for each bel'(@®A'). By the Holder’s
inequality and Proposition 2.6 we see easily that {vn»} is Cauchy and converges
from (2.44) to zero in the sense of L.-norm.

Proor of THEOREM 2.1. Since v, converges to zero in L., the limit z=1im sp
is a weak solution to (2.4), hence u satisfies
(259) <DA0DA;ku+DA;ku#DA8ku+P_F(AO), v> L2=O

for all vel'GRA2). Since A, is smooth, it is claimed from a regularity theorem
of elliptic equations that # belongs to I"(§QA%).
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3. Self-dual connections associated to B P S T-solutions.

In this section we give precise definition of BPST-solutions and deal with

some properties of them.

The 4-space R* canonically has the structure of quaternion numbers H=
{r=x'+ 2%+ 2*j+2'k}. We identify G=SU(2) with Sp(l)={xeH;|r|=1} and its
algebra 3u(2) with the subspace of purely imaginary numbers by the aid of the
cross product.

We define an SU(2)-connection W over R*, called a Belavin-Polyakov-Schwartz-
Tyupkin (BPST)-solution by

xd% .
The curvature form Fy is then given by
_ dxNdzx
3.2) Fw(x)= A+12 "

Since dxAdz is an 8u(2)-valued self-dual 2-form with respect to the standard
metric of R*, W defines a self-dual connection. From the form of Fw it is easily

seen that W is irreducible.

By simple computations we obtain the following

ProrosiTioN 3.1. The BPST-solution W=7} W,.(x)dx" satisfies the following
properties

(1) W@Gjor)=0  at x=0,
here r(x)=|x]|,

(2) 3. 0/6x" W,=0,

(3) L¥w=W for all @aeSU(2),

here L, is an R-linear mapping from H to H given by L.(x)=ax and

(4) for any mapping ¢; H — 3u(2)
_ g =l
(3.3) Zp[W#’[WF’¢]]_ 2(1+|.Z‘|2)2 ¢

The BPST-solution is a rotation-invariant connection such that the fixed gauge
is a Hodge gauge which is moreover exponential ([12).

Let p denote the north pole of a 4-sphere S* and p the south pole. Open
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subsets U;=S*\p and U,=S*"\p give a trivializing covering for any bundle over S*.
Then a bundle over S* is determined by its transition function %#; U,NU;, — G.
Let s; R* —> U, and 5;R*— U, respectively be the stereographic projections
from p and p. The maps s and § also define local coordinates of S*.

Define a transition function %2 over U,NU, by A(x)=z/|x]. Then we have an
SU(@)-principal bundle P of index 1 and a connection on P satisfying the cocycle
condition

3.4 M(x)™" - dh(z)+1(z)™" W (@) - I(z)= W*(y)

where W' and W?* are the same BPST-solution over R*=H, and y=("los)(x)=x""

(zeR\0) (1]

If we put directly y=x"!, ye R*\O in the right hand side of the above, then
we get

q’x-x“‘ ‘
1+|x|®

which describes the BPST-solution in a singular form.

(3.5) (G los)*W)(x)=—Im [

For 2>0 the scale transformation 1; R*— R* is defined by A(x)=2x/2. Then
it is easily seen that self-dual connections are mapped by the scale transformation
into self-dual connections.

ProrosiTION 3.2. Let 2>0. Then the following hold

x —Im | 29T
(3.6) (A*W)(z)=Im ( A z)? }’
" _ AdxAdx
3.7 (1 FW)(-”)—(22+|xl2)2 ’
and
(3.8) (505 W)(w)=—Im| ZEZE L,
x€R*\0.

These are shown by straight computation.

4, The existence of generical self-dual connections.

Let M be a compact connected, oriented Riemannian 4-manifold. Let
(Vi, 1), -+, (Vi, ¢r) be disjoint local coordinates of M such that each ¢:; Vi— R*
can be extended to a smooth map to S*. Then {V, Vi, -+, Vi} gives an open
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covering of M where Vo=M\{m,, « -+, mi} (mi=¢7'0),1=i=<k). Thus we have an
onto mapping ¢; M — S* satisfying ¢|v,=¢i, 1=i=k and ¢ maps M\CJ V; into the
north pole p. Since deg (¢)=k, the pulled back gb*ﬁ of the SU(Z)-prliHcipal bundle
P over S* of index 1 defines an SU(2)-principal bundle of index k.

The transition function g, of gb*.ﬁ over VoNV; 1=i<k is given by gu(m)=
h(pi(m)), me VoN V.
Let A be a generical self-dual connection on ¢*P. Then there is a system

{Ai}izo.1.....x where each A; is a smooth 3u(2)-valued 1-form over V; satisfying the
cocycle condition over V,NV;

4.1) Ai=g7 ' dg+97"' Ao 9, 9=00i.

Choose a point m=m,., in M \gj Vi. We define a local coordinate neighborhood

k
with parameter A contained in an open ball BcM\\U V..

i=1
Let U be a Gaussian normal coordinate neighborhood in B around the = and
¢; U—> ¢(U)c R* a coordinate chart. Set B.={m'eU; |¢(m’)| <7} for r>0. For a
sufficiently small R>0 the metric ¢ satisfies

4.2) 19" (m’)—6""] <

for all m’e€ Br where { is a small constant which depends only on R and the
Riemannian curvature at m=m.,.

FIGURE 1.
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For technical convenience we let 2 be in (0, min (1, R/10)). Set Vi..,=5: and
cover M by Ve=M\{mi, - -+, Mxs1}, Vi, +++, Vi and Vi =Vi,,. We define a local
chart ¢xi1=¢}s Over Visy DY gpri(m’)=¢(m’)/2.

DEFINITION 4.1. Let P? be an SU(2)-principal bundle over M with parameter
2 defined by transition functions related to the covering {Vilosise+:1 as follows.
The transition function go; over Von Vi is just the transition function of g*P for
1=i=<k and g¢ox.: is defined by

(43) Jo k+1(ml>=h(¢k+1(m,)>, m' eVoN Vit
by the aid of the chart ¢x+i.

Since the chart ¢., together with ¢, .-+, ¢ can be extended to a smooth
mapping of M onto S* with degree £+1, the bundle P? thus constructed, has index

k+1.

We introduce a smooth function §; R* —> R* with the following properties

4.4) Blx)=1 x=1
=0 x=3/2

and we set 8, for >0 by B.(z)=p(z/r).
We define an SU(2)-connection A? on P2

DEFINITION 4.2. A connection A* is a system of 3u(2)-valued 1-forms Ajs
over Vi's 0=i=k+1 satisfying in V,

(4.5) Ab=1—Bs) Ao+ *(Bs- (W),
in Vi

4.6) Ai=A;

and in Vi,

4.7) En =@ (AX(W1).

Here we denote by W? the form (3-!os)*W?2.

Because A is a connection on ¢*P, A% satisfies the cocycle condition in V,N V3,
1=i=k. Sincein VoN Vi A} and A}, respectively reduce to ¢*(Z*W"-) and ¢*(A*W1),
we see from the definition of gox.: that A? satisfies the cocycle condition also in
Vo Viss.

ProposITION 4.3. There is a constant 2,>0 which is independent of 2 such
that
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4.8) E(AN| L = k2™
and
4.9) |P_-F(AY)||L, =k 2?1, p>0.

Proor. For simplicity we write A* in M\{m} as A*=g*(8,- *W?) +(1— ) A.

Then F'=F(AY)=dA*+A*AA* and F*=P_F* are given by

(4.10) Fr=@¢*(8;- 7*Fw) +¢*(dB, A\ 1*W'?2)
—*{(Bi—BDI*WE AW} +(1—Bs1)F(A)
—dfuNA—{(1—Bs)—(1—Bs)IANA

and

(4.11) Fi=¢*{(B,- P_2*Fy + P_(dB: N 2¥W?)
—(Bi—B)P_2¥WE AW —P_(dBu A)
—{(1—Bs1)— (1 —B:)} P_(AN A).

We devide M into four pieces M\Bs,, Bs;\Bs;, By;\B: and B, For brevity we

denote m’eB;, and x=¢(m’) by the same x. From (4.2) we see that the norm
|-l and the Euclidean norm |-| is equivalent in the ball Bz and the volume ele-

ment V]g| dz is also equivalent to the standard volume element dz.

First we show (4.8). Since supp (8;—83)C B\ B: and supp {1 —Bs;)—(1— )%}
Bs)\B;; we have in M\B;;

(4.12) Fi=F(A),
in Bsz\Bsz
(4.13) Fi=—(dBuNA)—{1—Bs)—1—p)ANA

and in Ba;\Bg
(4.14) F=g¢*{(B:2*Fw)+(dBaA W 2)— (8, — BOAX (W AW )},
Moreover in B, F* reduces to ¢*(A*Fw).

We have then

(4.15) ([ s, P8 VTdIdz) " SUFCA,

b2

Because 2=<1 and |dBs:|(x)=1/34|dB|(|x|/32), we get in Bs;,\Bs;
(4.16) |F?o(x) = k2/2

where k; is a finite constant, independent of 2, hence
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@.17) (15, 15, P18V I0ld) " <k

for some constant k; which is independent of 2. Moreover we have from

and

22 13/2 24
2 <
(4.18) Pl =k s + e + |x|2<zz+|x12>2}
for xeB;;\B;, where k, is a constant, independent of 2. Because 2=1 and i1=|xz]

it follows that

(4.19) |F| (2) = ks
for 2=<|z|=34, from which we obtain
’ 1/4
12 [ i) sk
(4.20) (15, | P18V Toldz)
for some constant ks. In the ball B; we see from that
22

2 —_————
(4.21) [F2 () =k (Z+|z|D)E’
hence by a simple computation
4.22 FlavVTglds) =kt
(4.22) (1,11 Tgld) "<t

for a constant ks. By these estimates we obtain
(4.23) F| L, <ked™!
where A, is a constant which is independent of A.
We shall now estimate the L,-norms of the anti-self-dual part F2 of F*

As in the case of the full curvature F* we have in M\DBs,

(4.24) Fi=0,

in Bs:\Bs

(4.25) F1=P_[—(dBuNA)—{1—B:)—(1—Ba) AN A]
and in B;\B;

(4.26) FL=P_[¢*{Bs *Fyw +(dB A ¥W ) — (B — )W AW,

Moreover in the ball B; FL=P_(¢*2*Fw).
Because |F%|,=|F*|, we have

(4.27) |FL|g(x) = R1oA™!

in Bs;\Bs,, hence
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(4.28) [Sﬂs \B (IFL]p)? '\/mdx]vp—s—kul(“p_l) ,
B3,

where £k, is independent of 2. Similarly we get in By,\B: |F*|(z)=<|F?(z)<ki,,
from which

_ 1/p
4.29) (15,15 (P17 Vgl ] <kiares.
In B, F* is self-dual with respect to the flat metric. Then
(4.30) Fi=(x—x,)F*

where * denotes the Hodge operator related to the flat metric. By using
(see also (8.20) in [11])

(4.31) |FL () S kys| 2|2 | F*|(2)

for xeB,. We have from

(4.32) [SB (IF%],)? «/mdx]””gk“xvp.
P

Thus (4-9) is derived.

ProrosiTION 4.4. Let A be a self-dual connection on the SU(Z)-bundle gb*ﬁ
satisfying Ker D *=0. Then there exists a constant 7z>0 which is independent
of 2 such that p(A*) =/ for sufficiently small 2>0.

Proor. By the definition of A* we have that
(4.33) 8 A% u\ns,| =8P A7 | i85,
and the covariant derivative /; with respect to A’ coincides with V4 over M\B;,.

For ¢el'(§®A%) we define ¢, and ¢, respectively by ¢,=8s5:¢ and ¢.=(1— Bs:)¢.
Then ¢=¢,+¢. and

(4.34) 1D*N 2= |Da* il L2 +2<Di* Py Da*pe> 1, + || D a* |12
where D;=Dj4+ and D*=D4*.

Suppose that ¢ is a normalized eigensection of D,D;* with eigenvalue . Now
we derive a lower bound for p. To estimate the first term of (4-34) we use the
Bochner-Weitzenbock formula

(4.35) ID:*¢l| 2= 1Vl L2+ < R(P), §> 1, +~ 2 <FLP), > 1,
and also the Holder’s inequality and the Sobolev inequalities to obtain

(4.36) DXl ;2 |7l fl — (| R LBy, HIEF L 28,0}
— (| Rl g5, + 1L Lol Il 2
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where ¢, is a constant which is independent of 2. Since A?=g¢*(8;- *W?)+(1—Ba)A,
we have

(4.37) i =P s+ (1—Bs)[A, 1]
hence
(4.38) 217l 22 IV 2| 22— 21| All £oo:B gl 23

where F, denotes the covariant derivative with respect to 8;-2*W?2. Thus we obtain
(4.39) ID*ull 2= 1/2 |\ 2pill {1 — c1(| R || e85, + I F 2| 24850}
— 1Al 2z, + 11— | Al 28 I R 2g:Bs, +1F L Ly DHlnl |25

A lower estimate of ||F.¢||z? is obtained as follows. Since supp (¢)C B and
dp®A% is over By; a direct sum of three copies of g=3u(2), it follows from
[Proposition 5.1| in the next section that

(4.40) |7 21| 22 o/ 22 b | 2,

where ¢, is a finite constant, independent of 2. Because [|R||z,.5,,=csA* and
|Fi Ly, =|IF2]|lzpr has a bound from [4.9), there is a constant ¢, which is
independent of 2 such that for sufficiently small 21>0

(4.41) ID*@ull L2z caf 22|l | 2.
For the second term of [(4.34) we use formulas

(4.42) D*py =*(dBsaA\P)+Bsa+ Di*¢

and

(4.43) l|@Bs: A ¢llL,=csalldl 2.,

to obtain

(4.44) | <D*¢1, D a*Pa> | =|1D a* Pl 2,([1Di* @l 2, + 521 2.) -

Here the L.-norm of ¢ can be taken over Bi.\Bsi;, since supp (¢1)C B and
supp (¢2)Cc M\Bs;. The estimation of ||¢||z, is done by using the eigenvalue equa-
tion (see also the proof of Proposition 8.8. in

(4.45) <D*p, D*¢p> —pu<y, o> =0

for all »eX, which is equivalent to

(4.46) <V, Vip> 14 <R, ¢> 1,4+ V2 <9 FUP) > 1,— <7, ¢> 1,=0.
Set v=+"1+[¢[; and y=f-v'-¢ where feC*(M), fZ0. Since

(4.47) Vap=Vfv='¢p— fo* o+ fo~'V¢
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we get
(4.48) <P, Vf>1,— vV 2 <0, |FLf>,—(cs+p)<v, f>1,=0
for all feC~(M), f=0, where c¢; depends only on the metric g.

Because F2=0 in B,,:\Bs: and we have normalized ¢, we can apply Theorem
5.3.1 in [9] to obtain the following bound on |jv||z,

(4.49) Pl =0l 2o S C2(1 +]|¢l] 2,) = 2¢0] )| 2, -
Then the second term of (4.34) is estimated by

(4.50) 21<Dy*¢dr, Da*¢e> | 22/ |D a* el | £,(1| Da* &l 2, + 52l |4 | )
=1/2-|1Da*¢el| 3 +411D:* Q|| ; +4ci 2| ;.

Hence we see

(4.51) ID*GI|Z IDs* ¢l 3+ Da*l 23
—1/2||D 4* || ; — 4| Di* Pl ; — 4cid®|| Pl

that is,

(4.52) S5|ID*QILi=|D*Ql L2 +1/2 || D a* || L2 — 4ciA®||Pl] 2.

Thus the following estimation is established from together with the condition
that Ker D *=0

(4.53) ID2*ll 3= cof 2|l 15 +1/2+ 1o el | 1] — 4C32%| PN | 5 = 2D 5

for sufficiently small 2>0, where g is a constant which is independent of 2.

PropoSITION 4.5. Let A be a self-dual connection on the bundle ¢*P satisfy-
ing Ker D,*=0. Then for sufficiently small A>0 there exists on the bundle P* a
self-dual connection A’=A*+a,ael(GRA") satisfying Ker Dy*=0. Moreover, if
A is irreducible, then so is A’.

Proor. From Proposition 4.4 we have pu(A9)=p. Then for small 2>0 {(A%),
introduced at §2 has a uniform bound by Proposition 4.3

(4.54) L(AN=d,.
Moreover we see from Proposition 4.3 that (A% is estimated as
(4.55) (AN =d,4,

where d, does not depend on 2. Then for 2 sufficiently small we find from Theorem
2.1 a solution a=a* in I'(GRA1') to (2.2). Hence A’=A*+a gives a self-dual con-
nection on P?
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To prove Ker D4*=0 we need to verify that u(A’)>0.

Since Du*¢p=D;*¢+a(¢), peI'(@R 1), where a map ¢+—a(¢) is represented
in terms of @, we have by using the Hoélder’s inequality together with the Sobolev
inequality and also that

(4.56) 1D:*¢||2;=2[|Da*l| s +2d:2%(||l| 5 + | 72| 23).

From the Bochner-Weitzenbock formula the last term of is estimated by
(4.57) Vil 3 =2/1D2*@ |25 +2[| Rl Lol || 23 + 4 F L )l 2.

Since we have from

(4.58) 17:¢l2;=dul| D125+ dsl ]

for small 2, ||Da*¢||.2 has a bound

(4.59) 2||D 4 *¢l| ;= (1 —2dsd 2| Di*@l| 12— 2ds(1 + ds)| || 2.

Hence it follows from [Proposition 4.4 that ||D#¢|:2=i||¢||.2.

We now show that A’ is irreducible if so is A. It suffices for this to verify
that

inf {|[Pagllz}; ¢el@), lgllz,=1}>0,
because any reducible connection has a non-trivial parallel section of §.
Since Vgp=rVip—[a, ¢],
Wil 3 =201V arl|; +4ll9] illall 2
where we used an inequality |[@, ¢]|=+ 2]a||¢| and Holder’s inequality. Because
(4.60) llalli=dllally =d.2*,

we obtain by using the Sobolev inequality and the lower estimation of [|17:9]] 22,
given easily in the similar manner as in the case of [1D*¢|z,

(4.61) WWardll;=1/2{(1 — dsa®) 1 — ds 2%} ||| 3.

Hence A’ is irreducible for small A.

5. The first eigenvalue of the rough’Laplacian related to B P S T-solutions.

Let Br be the Gaussian normal coordinate neighborhood of M centered at the
fixed point m, which we gave in §4. Let 1€(0, min (1, R/10)). Denote by I'y=
I'o(Bio50) the set {¢; Bios —> ¢ smooth, ¢|az,,,=0}.
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We define in Bio:
6.1) v(2)=inf {L;[#]; pel’o, #0}
where L{¢1=P 9|20,/ 10]|L5:8,,,

with respect to the covariant derivative p;-=d-+[8:-2*W?!, 1.

The aim of this section is to verify the following

ProprosITION 5.1. There is a constant ¢>0 such that
(5.2) v(A)=c/2%.

LemMA 5.2. (1) There exists ¢o€l, which attains the infimum of I[.].

(2) This ¢, satisfies that
5.3 [, <pigopip>de=sid| = <gog>da
B0z Bioz

for all ¢el's and also that in Bio:
(5.4) PP 1o =v(A)do.

Proor. (1) is a consequence of theorems in Ch VI of [6]. To show (2) we
set ¢,=go+1¢, pel’s and differentiate Ij[$,] with respect to ¢ and put £=0. Then
we obtain (5.3). (5.4) follows immediately from (5.3) by Stokes’ theorem.

For any g-valued function ¢ and each aeSU(2) define a new g-valued function
¢* by ¢*(x)=¢(ax). Then we have from Proposition 3.1

(5.9) (Lo*p:1¢)(x) =P 1¢"(x), x € Br.

We notice that SU(2) acts effectively on R*=H and the normalized invariant
measure da on SU(2) coincides with the canonical measure on the unit 3-sphere

St=SU(2).
For any ¢el’, define ¢* by integration

(.6) ¢*(x)=g 9%(x)da.

SU(2)
Of course ¢* is L,-invariant.
Lemma 5.3. For each ¢, ¢el', and each aeSU(2)
(5.7 <P 9%, V"> (2)= <P, V1> (azx)

and further



Self-Dual Yang-Mills Equations and Taubes’ Theorem 23

(5.8) 7ih)=|, 79 a)da.

SU 2

The proof of this lemma is easily done, because is given by a simple
computation and follows from the commutability of the integration with
respect to SU(2) and differentiation with respect to the coordinate.

By using this lemma we have

LEMMA 5.4. If ¢el, satisfies L[¢]=inf I;[¢], then the Le-invariant ¢* also
attains the infimum.

Proor. If ¢ in (5.7) is Le-invariant, then each ¢el’ satisfies from (5.8)
(5.9) <P pig> @)=\ <Pib,Pip>(az)da.
Then we have from (5.9) for ¢=¢*

(5.10) IV;¢’l2(x)=S <P, pi*>(aw)da.

SU (2

Since the right hand side depends only on |z|,
|74 |2(z)=|p.¢"|2(ax) for all aeSU(2).

We assume that ¢ attains the infimum. Set ¢=¢* in (5.3). Then we obtain

(5.11) SB <V, Vx¢‘>dx=v(2)SB <¢, ¢*>dx

102

Since 0B,={ra; aeSU(2)}, the left hand side reduces to

S:MKatadt. S <Vl¢: Vl¢*> (ta)da’

SU (2)

where K, is the volume of S°. From@(5.10) this is given by
[ waipgro="keal poreda=, pgrd
o P g o 7P svey Bioz * )
In the similar manner we can also reduce the right hand side of (5.11) to
u(i)SE |¢'dz. It follows then that ¢* attains the infimum.
102

Since g=8u(2) is identified with the space of pure imaginary numbers, every
g-valued function ¢ is written by ¢i+¢:j+¢sk, where ¢ is a real valued function,
1=/=3.



24 Mitsuhiro ITon

LemMMmA 5.5. If gel’, attains the infimum and is Lg-invariant, then each com-
ponent of ¢ does also.

This is easily verified from together with [Proposition 3.1

The rough Laplacian p*p=p#p, operates on an Lo-invariant ¢ as

5.12) PP =~ ) )+ i),

where 4=3!_, (8/oz")z.

We suppose that ¢el’, is Lq-invariant and attains the infimum. Then ¢ satisfies
that

2|z |*p

Since ¢ is a function of #=|z|, this reduces to

(5.14) (‘—j;?+% % () — F Ol =0.

where f(¢)=2¢*8%2)/(2*+¢*)%. Each component of ¢ also satisfies this equation. For

simplicity we denote by the same symbol ¢ one of components of ¢.

Since ¢=¢(x) is smooth and depends only on ¢=|z|, d¢/dt —> 0, if + —> 0.
Because the equation is linear, we can extend the solution ¢ over t>102

Since the BPST-solution is analytic, there exists for this ¢ a value 4, in
(0,104) such that ¢(2,)=0 and ¢(#)=0 for 0<¢< 2,.

Now we shall estimate the first zero point i, of ¢ by comparing with
so-called Bessel equation.

We may assume that ¢>0 in (0, 2,). Compare [(5.14) with the following equation

d’y , 3 dy _

This equation reduces to the following

d*z 1 dz 1],
(5.16) E;+—t~-zt—+[v(l)——;2—]z—-0,

if we set z=t-y(¢) (I3). In terms of Bessel functions each solution z(¢) of
is represented by

(5.17) 2BO)=al\(V Q) +bY (V@A) 1),
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where J, and Y, respectively are the Bessel functions of the first kind and of the
second kind with z=1. Assume that lim,., ¥(¢)<co. Then y(¢) is given by y()=
al.\(¥ v t)jt. We have further lim,..(dy/dt)=0. We can normalize y as
lim;., y(¢)=1.

Define a new function ¢ by ¢(f)=¢"%-¢() for the solution ¢ of (5.14). Then
¢ satisfies

(5.18) ztf’ ((D f(t)—;{t?)sb 0.

L dy
Of course 1}_1}.1 I =0,

Define a new function ¢ similarly ¢(#)=#2-y(¢) for the solution y(f) of [(5.15)
Then ¢ satisfies

9 ( ___> i %Y
(5.19) dt2+ v(2) 4t2¢ =0 and 115101 dt—o'

If we set A(¢) and &(¢) respectively by A()=v(2)— f(¢)—3/4¢* and h(t) =v(2)—3/422,
then we see that A(f)<h(f) for ¢>0.

Denote by 1, the first zero point of ¢, in other words, the first zero point of
Ji(v/ () #). Then we have

LEMMA 5.6. Ao=A,.

ProOOF. Assume that 4,>4. Then ¢>0 and y>0 in (0, ).
Fix ¢ in (0, 2,) and apply Sturm’s technique to (5.18) and (5.19). Then

oG8 ) ( 52 )

=5 %2 (a) {¢<> 99 g% <e>}

+{"n-myggar.
Since A(t)<h(t), the right hand side of (5.20) is smaller than

d
— g% s”<e>+——<>¢<>+¢<zo> 2 420,
Because ¢>0 in (0, 4,) and ¢(4,)=0, we have d¢/dt<0 at 2. If welet ¢ tend to 0,
then the above has the limit ¢(2,)-d¢/dt(4,) which must be negative. This leads a
contradiction. Thus we obtain 2= 4,.
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ProoF of ProposiTION 5.1. Denote by #, the first zero point (>0) of the

Bessel function /,(#). Then 2,=%,/v v(2). Therefore from the above lemma we
conclude that

tolV U(R) =2,=102,
that is, £2/10022=<v().

6. Reducible self-dual connections.

We introduce in this section a topological condition on SU(2)-principal bundles
which carry reducible connections and investigate structure of the moduli space
of self-dual connections around a reducible self-dual connection. As a consequence

we obtain [Theorem 1].1.

ProPOSITION 6.1 (see also [4]). Let P be an SU(2)-principal bundle of index
k. It admits a reducible connection if and only if there exists a complex line
bundle L with ¢, (L)*==k.

ProOF. Assume that a complex line bundle L satisfies that c¢,(L)?=k. Since
S(U1)x UQ1))cSU2) and L carries a U(1)-structure with a U(1)-connection, a bundle
L@L"is associated to an SU(2)-principal bundle P,. The connection on LA L induced
from L defines a connection A, on P, which is indeed reducible. Index of P,
equals to —c(LALY)=c, (L)%

The inverse implication is shown by the following lemma.

LemMa 6.2. Let A be a reducible connection on an SU(2)-principal bundle P.
Then there is a complex line bundle L with a U(1)-connection « such that P reduces
to a bundle associated to an S(U(1)x U(1)) bundle LEPL~' and g splits into L*P1,
and moreover A reduces to (“ _a). Further Ker d,cI'(§) and the isotropy group
G4 of A are respectively given by

{(«/——10_«/_—10); ceR} and {edece_J—_lc>; CGR},

Proor. Since A has a nontrivial parallel section ¢ of §, g.=expit¢g=23 ¢"/n!)¢"
defines a nontrivial circle subgroup in &p satisfying ¢.(A)=A. Then for a fixed
# in P we obtain a circle subgroup {b;} in SU(2) by g.(u)=#u-b,. If uu,=u) is a
horizontal lift of a curve in M, then ¢,(%;) is also horizontal and satisfies g,(u;)=u;-b;.
Hence the holonomy group of A is contained in the centralizer of the circle {b.}.
Then the holonomy group is conjugate with {(eJ—lae_ J_—w); 06R}. From a reduc-
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tion theorem ([8]) P is equivalent to an S(U(1)x U(1))-bundle @ and A does also
reduce to an S(U(1) x U(1))-connection on Q. The vector bundle canonically associated
to @ is written as LPL~' for some U(l)-vector bundle L. The index of P is
certainly —c,(LAL Y)=c,(L)%.

The rest of Lemma follows from [4].

REMARK. The simply-connectedness of M is not necessarily assumed for this
proposition.

LEmmA 6.3 ([2]). Let A be self-dual connection. Then we have an elliptic
complex associated to A

A da ~ D4 R
0—>I'@Q) — I'§R4)— I'(gRA2) —> 0
By using this lemma together with Kuranishi’s method we obtain

LEmMMA 6.4 ((4]). Let A be a reducible self-dual SU(2)-connection satisfying
Ker D4,*=0. Then the moduli space <9 around [A] has a form of an S'-quotient
of a slice neighborhood as {¢pel"GRA'); ||¢ll<e, da*¢=0 Dap=—#f}/ G4 Which is
homeomorphic to {QeH'@); |l¢ll<el/Ga
where H'(g)=KerdsxNKer D4.

Since D4; I'GRA") —> I'(§®A~) decomposes into

D@D,
I'(ANYPI(L2RA4Y) @—> I A2PI(LFRAY), Ker Ds*=Ker D*P Ker D, *.
Because ¢4 and H°@§)=Ker d, are one dimensinal from Lemma 6.2 and b:(M)=
dim Ker D*=0, we have from the Atiyah-Singer index theorem ([2])

6.1) dim H'(§)=8k—dim SU(2)/2-(x(M)—=(M))+1
=8k —2—3b%(M)+3b'(M)
=8k—2+43b'(M)

which is equal or greater than 6+3b'(M).

LemmMA 6.5. Let {4, be a one-parameter family of reducible self-dual con-
nections on an SU(2)-bundle P which is non-trivial with respect to gauge trans-
formations. Then {A;} induces canonically a harmonic 1-form a. Conversely each
harmonic 1-form yields a one-parameter family of non-trivial self-dual connections
which are all reducible.

Proor. It is seen that for a reducible self-dual connection A and a harmonic
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1-form a {A—f—t(“/—l a_ VT a) ;teR} defines a one-parameter family of reducible

connections on P.

Conversely, let {A,} be a one-parameter family of reducible connections which
are not equivalent to A=A, From [Lemma 6.2 P reduces to an S(UQ1)x UQ))-
bundle such that A reduces to (a_a) with respect to gr=1PL%:. Then A; has
’\/jl a, br,
—b, —vV=la, .
1-form b,. By choosing suitable gauge transformations we can assume that d,4*A=0
for A=d/th,|L=o, which implies d*@=0 and d,*b=0, where d=d|dt a;|,-o and b=
d|dt bei—o.

for each ¢ a form of <a >+< ) for a real 1-form @, and an L?-valued
—a

Since each Kerd,, is one dimensional from [Lemma 6.2, we can choose a
parallel section ¢, of /'(d), smoothly parametrized with ¢. Differentiate da =0
with respect to ¢ and put £=0. Then we have

6.2) da+[A, $o]=0,
where ¢=d i =(vV-1c — i i
¢=d[dt $]i=0. Since gbo—( e | C) for constant ¢, (6.2) is equivalent
to
dSZJI:Oy
6.3 —
( ) {dn¢z+’\/—1 cb=0

b j , .
for </)=< ;’21 ?) Then it follows from d.*b=0 that b must vanish.
@2 — ¢

Since each A, is self-dual, 4 is closed, and hence is a harmonic 1-form,

Proor of THEorReM 1. From Lemma 6.5 {reducible self-dual connections on
P}/ Gp, denoted by R is b'(M) dimensional. Since dim Y =dim H'@)—1>dim R, M
is packed full with irreducible self-dual connections. Hence we obtain Theorem 1.1.
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