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AUTOMORPHISMS OF CERTAIN ROOT LATTICES
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Zenji KOBAYASHI and Jun MORITA

0. Introduction.

Let 4 be a reduced irreducible root system of type X, in a Euclidean space
V, in the sense of Bourbaki [T]. Then 4 generates a lattice I” of rank / in V.
We fix the lattice I. Let 4’ be another reduced irreducible root system in V,
generating [, of type X;,. We investigated whether 4’ coincided with 4, and
found out that only the case of C, is exceptional. If X; is not C, then 4’ is
equal to 4. This means that (V, I, X;) determines 4 uniquely unless X; is C,.
In case X, is C,, there are three root systems, generating I, of type C, in V.
As we will explain afterward, these are verified by looking at the list of root
systems in Bourbaki [17].

Let W be the Weyl group of 4, and O(I") the orthogonal group of I. Then
W<OWI"). Let D be the subgroup of O(I') generated by all symmetries of the
Dynkin diagram of 4. Put W=<W, D), the subgroup of O(I") generated by W
and D. Notice that —I (minus identity) is contained in W (cf. [5). Then
the fact in the previous paragraph can be described as follows. The group index
O : W] is 3 if X,=C,; 1 otherwise.

In this paper, we will calculate the index [O(I): W] in the case that 4 is
the root system of a Kac-Moody Lie algebra of Euclidean type or of low rank
hyperbolic type. Let A be a generalized Cartan matrix of Euclidean type or of
hyperbolic type, and B the associated form. Let 4, I" and O(I") be the root
system of A, the root lattice of 4 and the orthogonal group of I" associated with
B, respectively. We denote by W (resp. D) the Weyl group (resp. the diagram
automorphism group) of A. Put W=<W, D, —I>. It is known that the index
Ind(A)=[0): W] is finite (cf. [1; Chap. 5, §4, Ex. 18], [1I]. If A is sym-
metric, then we get Ind(A)=1 as a direct consequence of [7; Prop. 1.6] and [12;
Theorem 2. We will compute Ind(A) explicitely when A is of Euclidean type,
of rank 2 hyperbolic type or of rank 3 hyperbolic type. The most interesting

2 -3 —1
case is when A=|—1 2 —1|. In this case, we will observe that a certain
-1 -3 2
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subgroup of W acts on the infinite set of all solutions (s, ¢, u, v) of the following
Diophantine equation :

s2—24t*=1 (Pell’s equation)

u?—24v*=1  (Pell’s equation)

su—24tyv=-—5

Furthermore this action is transitive. Using this fact, we can establish Ind(A4)=2.
In the appendix, we display the list of hyperbolic generalized Cartan matrices
of rank =3, which is already known but seems to be published explicitly
nowhere. (cf. [1].)
The authors wish to express their sincere gratitude to Professor E. Abe and
Professor N. Iwahori for their valuable advice. ‘

1. Finite type.

Let 4 denote a reduced irreducible root system in V, in the sense of Bourbaki
[1]. Let IT be a base of 4, and I' the root lattice. We denote by A a Cartan
matrix of 4. Put Ind(A)=[OW"): W]. Then we can determine Ind(A) using the
list of root systems in [1].

THEOREM 1. If A is of type C,, then Ind(A)=3. Otherwise Ind(A)=1.

PROOF. To show Ind(A)=1, we prove that the elements of 4 are character-
ized by their lengths among the elements of I. If A is symmetric (7.e. of type
A,, D, and E,), 4 is the set of all the non-zero elements of minimal length in
I’ (e.g. see [7; Prop. 1.6]). The other cases are similarly proved by direct
computation.

To treat the case of type C, and to show examples, we give the proof in

the case of type F, and C..
F,: 4is
.. 1
{:*:ei (1=i=4), teite; 1Si<j=<4), ?(ielieziesieo}
and 17 is
‘ 1 -
{ez——es, es—ey, e, —2-(e1—ez—es—e4)} in RY,

where {e;} is a standard orthonormal basis. It is easy to see that all elements
of I of length 1 or 2 are contained in 4. Therefore O(I") coincides with the
Weyl group W, which implies Ind(F,)=1. In particular, the order of O(I") is 27-32.
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C.: 4dis
{+2¢; (1=7i=<4), deyte; (1Si<=4))
and 17 is
{e1—e,, ey—es, es—ey, 2¢,4 in R

The dual root system 4(F,)V of type F, is
{+2¢;, +e;tej, *ete,teste,).

Therefore the root lattice I” of 4 is equal to that of A4(F,)Y. The Ind(C)=
Lo : Wi=27-32/27.3=3. | Q.E.D.

2. Euclidean type and hyperbolic type.

An X! integral matrix A=(a,;) is called a generalized Cartan matrix if
a;;=2 (1=i=0), a;=0 (1=i#s=/) and a;;=0 whenever a;;=0. Cartan matrices
arising from root systems in the sense of Bourbaki are generalized Cartan
matrices. Such generalized Cartan matrices are called of finite type. A general-
ized Cartan matrix A is called of Euclidean type if A is singular and possesses
the property that removal of any row and the corresponding column leaves a Cartan
matrix (i.e. a generalized Cartan matrix of finite type). A generalized Cartan
matrix A is called indecomposable (resp. symmetrizable) if A cannot be expressed

as ( 0 *) under any permutations of indices (resp. if there are positive rational

numbers ¢, *, i such that g;a;;=g;a;; for any i, j=1, ---, ). The generalized
Cartan matrices of Euclidean type are indecomposable and symmetrizable. Of
course, Cartan matrices are symmetrizable. A generalized Cartan matrix A is
called of hyperbolic type if A is indecomposable, symmetrizable, not of finite type,
not of Euclidean type and possesses the property that removal of any row and
the corresponding column leaves a union of Cartan matrices and the generalized
Cartan matrices of Euclidean type. The generalized Cartan matrices of Euclidean
type and the generalized Cartan matrices of hyperbolic type have been classified (cf.
Appendix, ’ @» ’ )

From now on, we suppose that A is a generalized Cartan matrix of Euclidean
type or of hyperbolic type. Then the root system 4=4(A) of the Kac-Moody
Lie algebra associated with A is described as follows. For Kac-Moody Lie algebras,

i L ) .
we refer the reader, e.g. [8] Let I'= Za; be a free abelian group with
i=1

free generators ay, -, ;. We take an element w; (1=:/=<!) of GL(I") defined
by wia;)=a;—aqa; for all =1, ---, I. The Weyl group of A is defined to be
the subgroup W of GL(I") generated by w; for all i=1, ---, [. Let B be a sym-
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metric bilinear form on I” satisfying B(a;, a;)=¢;a;;. This form B is W-invariant.
Then the root system 4 is a disjoint union of real roots, 4= {w(a,)|weW, 1=/}
and imaginary roots, 4;={acl'| B(a, «)<0} (cf. [12]). Let

ON={geGL(I")| B(ga, gB)=B(a, p) for all a, B},

and let D be the subgroup, called the diagram automorphism group of A, of
O(I') generated by all symmetries which are induced by permutations on {a;, -+, a;}
preserving the form B. Put W=<W, D, —I>SO(I'). We are interested in the

index of ¥ in O(); denote it by Ind(4). Let I'={a= 3 a,e;€I'a;=0 for all i
and Z=I\U(—TI}), and II={a,, -, ai}.

THEOREM 2. Suppose that A is of Euclidean type. Then Ind(A)=1if A=X3’
(#C{P) or AR ; Ind(A)=2 if A=A®_, (n+4); Ind(A)=3 if A=C{ or D{¥;
Ind(A)=4 if A=E® ; Ind(A)=6 if A=A® ; Ind(A)=2""" if A=D..

Ao[ *
* | 2
(resp. B, Cn, Ba, Fy, Gy) if A is of type X (resp. AR, AR, D1, E(®, DP®).
For the convenience, we assume that a; is a short root associated with A, As

is well-known, 4;,={acTl’|Bla, a)=0}=Rad(B) and 4, is a free Z-module of
rank 1. Take a generator & of 4;, which is called a fundamental null root. Let

I,= geiZai, then I'=IyPZE (orthogonal sum). Take an element ¢ €O(["). Since
i=

PROOF. We can assume that A::( >, where A, is of finite type X,

g | O
o(§)=+¢&, we can write oz( ’ —), where o,0(],) and O([}) is embedded
* |+1
1 0
] 0 .
in O(I') by UOH(—bli——). Therefore o= 0 1 modulo O(I3)X<{—1Ir>.
1 I

1 0 *‘1

Set T=1{| 0 A 1 s;=Z;. Then we have O(IN=(0U)x T)x<{—Ir). Let

Sy Sioql 1
W, (resp. W) be the Weyl group of A, (resp. A), and let D, (resp. D) be the
diagram automorphism group of A, (resp. A). For each element a of 4z we
define an element w, of O(I') by w.(x)=x—2B(a, x)/Bla, a))a for all xeI.
Set m;=min{m>0|a;+mécdy} for i=1, ---,[—1. For each =1, -, [—1, an
element h; of W is defined to be wss +m;eWa; if A=A and i=1; Wa,+m;eWa,
otherwise. Let H be the subgroup of W generated by hy, -+, hi-y. Then
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W=W,x H. We note that W=W xD)x{—Ir> and W,=W,x D, Hence we have

Lo: W]:%%—[T : H]. Furthermore [T : H]=:l:[i m; (det Ay)k, where

x:—;— if A=A : 1 otherwise. Then [D: D,]=(det Aok (cf. [9; p. 96]). There-

fore Ind(A):Ind(Ao)lI_Ilm,-. By and the structure of 4, we can
i=1
compute the index Ind(A). Q.E.D.

Let A be of rank 2 hyperboli¢ type. That is, A:(Eb —-za)’ ab>4. We put

q1=%, qzz—g—, so the associated form B is defined by B(a,, a,)=b, Bla,, a;)=a

and B(ay, az)z—%g. The Weyl group W is generated by w;—(}l Cll) and

wzz(z —01) Let ¢=0O(I"), and choose an element S=ha;+n,a, of Wo(ay),

the W-orbit of o(a;), which satisfies the condition that n,*+n,® is minimal in
thiS Orbit. Since wl(ﬁ):(—nl‘}‘ang)a],"}“ngag and wg(ﬁ):n1a1+(bn1_nz)a2, we
have n,(an,—2n,)=0 and n,(bn,—2n,)=0 by the condition of 8. If n,>0, n,>0
(resp. n,;<0, 7n,<0), then %—nlgngg—g—nl (resp. —Z—nl;nzg—g—m), which means
0=B(B, B)=B(a,;, a;)=>b, a contradiction. Thus, 7,7,=<0. On the other hand,
b=bn}—abn,n,+an} since B(B, B)=B(a,, a;)=b. Then n,n,<0 implies that
(ny, ny)=(=*1, 0), or that (n,;, n,)=(0, +1) and a=>. In the latter, A is symmetric,
so we already know ceW. Therefore we can assume that there is an element
weWsatisfying wo(a)=a;. Write wo(a,)=F,a;+ksa,. Then B(wo(a,), wolas))

—bk:—abk,ky,~aki=a and Bwo(ay), al>=bk1——“23k2=—fﬁ. Hence (k,, ko=

2
0, 1) or (—a, —1). This leads to we=I or wo=(—Iw,, and sW. Thus we
have the following.

THEOREM 3. Suppose that A is of rank 2 hyperbolic type. Then Ind(A)=1.

Next we treat the case that A is of rank 3 hyperbolic type. We use here
the classification of the generalized Cartan matrices of this type (cf. Appendix,
2 =3 —1 2 —4 =2
[13, [2] [13]). Suppose that A is none of |—1 2 ——1\, —1 2 —1} or
o1 o ~1-3 2/ \c2 -4 2
(——4 2 —2). Then OIS Z, hence in particular Wa(a;)SZ for all s=0),
0 —2 2
1<:i<3. Therefore O(I") T =4y (cf. [7]). By [12; Theorem 2], we have O(I" =W
and Ind(A)=1. We shall consider the remaining three cases.
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2 —3 —1
(1) The case when A=(—1 2 —1]|.
-1 -3 2

Let o, be an endomorphism of I defined by
gola)=—a;, ogla)=a,—as, glas)=—a;—a,.

Then o, preserves the form B and ¢, 0" y—W. Take an element O —W.
Since the elements a= I’ satisfying B(a, a)=B(a,, a,) and a&Z are +(a;—as),
there is an element w<=W such that wa(a,)=a,—as. (For €O )—W, there is
an element w’eW such that w’o(a,)=a;—as or a,. The latter induces w’c(dz)
=4g. But this leads to a contradiction.)

Therefore to consider W’\O(F ) we can assume o(a,)=a,—as. Write o(a;)

1 3

=k, +kyas+ksas and o(as)=la;+ a1+ 1a;. - We put B=5 =7 and qaz—%—.
Then we have: 4

B2+-3h3+h3—3k ho— brkys—3koky=1
o313 18— 31,y —yls—3lals =1

(El) 2k111+6k212+2k313_3k112_klls_gkzll_skzls—kgll—?)klg:“_l
k1_‘k3:'—'1
11_13:_1.

Put s=2k,—6k,+1, t="Fk,, u=2[,—6[,-+1 and v=[,. Then the Diophantine equation
(E,) implies the Diophantine equation

s?—24t*=1
(Ey) ut—2412=1
su—24tyv=-5.

Notice that 5++/24 is the dominant fundamental factor of the Pell’s equations
s2—2412=1 and u2—2412=1 (cf. [3; P. 83], [4; P. 110]). Let

S:{(my n,; &, & €3 54)|m, nezzo, im_nl-_-l, €i:i1, 618325264:—1}_

Then the set of all solutions of the Diophantine equation (¥,) is parametrized by
S. That is,

s=&,(CP+L™)/2,  t=e,((T—L™)/24/24,

u=e3({3+C2)/2, v=e,{7—(")/2+/24,

where {.=5++/24. Here we will choose three elements of W. Let 01=Ws,
p:=wwsw; and ps=(—I)d, where d=[la,—a, a,—a, a;—a,], a non-trivial
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diagram automorphism. Then these ps fix a;—a; Thus pso (1=1, 2, 3) gives
a new solution of (E)). Since pla(al):k1a1+(k1—k2+k3)a2+k3a3 and p,o(as)=
hay -+l —l+1)ay+lsas, we see that p, produces a new solution
§'=—g,(CmHLLmY /2 (resp. s’'=—e (LT HLTN/2),
1 =ey((PH1—Lm+) /24/24  (resp. t'=e,({P 1 —{™1)/2~/24),
u'=—ey(L3H+C2)/2 (resp. u'=—es({27'+C271)/2),
v/ =e (L3 —{"*)/24/24  (resp. v =e (L3 1L /24/24)

of (E,) from an original solution (s, ¢, u, v) if &;6,>0 (resp. €,6,<0). Since

pza(al):(ekz_ks)al“{" k2a2+(—k1+6k2)(13
and
on'(as>:(612—13)a1+lza2+(_11+612)a3 »

the element p, produces a new solution (—s, ¢, —u, v) from (s, t, u, v). Since

pso(a)=—kso,—ka,—kias
and

ps0(as)=—lsa,—l,a,—l1as,
the element p; produces a new solution (—s, —f, —u, —vp) from (s, t, u, v). Hence
the subgroup G of W generated by p1, p» and p; transitively acts on the set of
all solutions of (E,). This means O’ —W= Wa,, so {1, oo} is the complete set
of representatives of WAO).

) 2 —4 —2
(2) The case when A=|—1 2 —1|.
-2 —4 2

In this case, we can take an element o, of O(F)—W defined by o(ay)=az+as,
oolas)=a,—as; and o, as)=a,;. For each element an(F)—W there exists an
element weW such that we(a,)=a;—a,; since the elements el satisfying
Bla, a)=B(a,, a,) and a&Z are =(a;—ay). Then the elements reO(F)-—W
with the property z(a,)=a,—a; are 7y, 7o, 75 and 7, where

Ti=lay—as, ay—a—as A= axtasl,
o=, —ay, as;—a,—as, as'—>—a1¥ia2],
re=[ar—as+as ay—a,—as as—as],

To=la;— —a;— &y, Ay—a—a;, Az —as].

Put d=[a;—as, a;—a, as—a,], a nontrivial diagram automorphism. Then we
have (—I)dr,=t,, (—I)dts=ts, wsr1=7s and wyr,=ts. Therefore O)—W=Wa,,
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so {1, g,} is the complete set of representatives of mo).

2—-1 0
(3) The case when A=|—4 2 —2}|.
0—-2 2

In this case, the elements a1 satisfying B(a, a)=B(a,, a;) and a&Z are
+(a;—a;) and +(a;+a.—as). Let o, (resp. 7,) be the endomorphism of I” defined
by oofa)=a.—as, ogla)=—a, and ooas)=—a;—a, (resp. tla)=a+a,—as,
rolas)=as; and 7o(as)=a,). Then they belong to O(')—W. For each element
c=O(I—W, there is an element weW such that we(a,)=a,—a, Or a;+a;—as.
Then the elements ¢ of O(")—W having the property r(a;)=a.—as are g, os,

os and g4, where
gi=la;—a,—as, a,—as as—o+a,],
ge=[a;—as—as, a;——az Az3— —0;—ds],
os=[a,—a,—as, ay— —2a,—3a,, a;—a,+a.],
o.=[a;—a,—as, a,—2a,+2a,+as, ag— —a,—a,],

and the elements ¢ of O(I" )—W having the property 7(a;)=a,+a,—a; are 7,
T4, 7s and z,, where

o=la;—a;ta,—a;, a,—as, as—asz],

ty=[ay— a1t ay—as, o —a,—a,, as— —a,],
ry=[a,>a,ta,—as, ay——a,—3a,;, as—a,],
Ty=[a;—a,+a,—as, ay— 20+, azg— —a,] .

Furthermore w,w,w,0,=0, wiw.w.,0,=0; and w,o;=7; (1=i{=<4). Therefore
O(F)_—W:WGQUWTO. On the Other hand, Uofo_l(al):a1+a2_a3$dn, SO UQTO-IGEW.
This means that {1, ¢,, 7o} is the complete set of representatives of o).

THEOREM 4. Suppose that A is of rank 3 hyperbolic type. Then Ind(A)=2

2 =3 -1 2 —4 =2 2—-1 0
if A=l —1 2 —1lor|—1 2 —1}; Ind(A)=3 if A={—4 2 —2]; Ind(A)=1
-1 -3 2 —2 -4 2 0-2 2

otherwise.
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Appendix

Hyperbolic generalized Cartan matrices of rank=3

ai;j 5 aj; z 7 aij aji 2 J
0io0fo of-1i-3]|0
1 -1|o—o || -1} 4| 0%
12| o@wo || 2 2| B0

SYMMETRIC CASE.
4)

@ 4
4@ @ o @ ‘v’ v ‘v’
o———0—=o° OO0 )\ /¥ @

Y <& P
VU
Patlicais s s
T
g
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NON-SYMMETRIC CASE.

(1) rank 3

D 0e® o 0@ o B 4

@5 @

A (2)' 0B o
@

N PR 3 o ® o3 o O

RGP : NG PR G CIPSC) o) o @ o

oD o 4 o NI COR @) o @ 4 @ o @ |

o< o @y oW Qg

o— D 0P 4

oo @ o

ocb o @ o o< 0D . NG NP C) I o . 0@ o

3

2 (3
) <;<3>
( @) ) 1) ) (4)
o\ /2 W> o\ O\ Ay v a\ b

4)
“@)
(2);‘ ;(2)

(2) rank 4

4

3

4)

@
(2

4
4) : i; 4)

4
\

)

3)

3

2)

(2)

(2)

(2)

(2)

(2)

2

3

3

(2)

2

3

(2)

3

)

(3)
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3

3

(3)

(2)

3

(2)

(2)

(2)

(2)

3)

3

3

(3)

@ , @

2

(2) (2)

(2)

2)_o (2

(2)

3)

(2)

2

(2)

(3)

3

2)

2)

(2)

@)

(2)

@

(2)

@

2

@

2

@

@

(2)

@

2)

(3) rank 5

2

2)

2)

2

(2)

(2)

(2)

@

—
N
~

o~ ~~

N N

~—/ ~
~~
N
~

—
N
S—
—
N
~—
~~
N
N~
P
N
~—
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>(2)c <@ f>(2)° 0@ 4
2 2
D&o D&o ”E; ()E;o
(2) (2)
o % 2) o . J:(z) o

(4) rank 6
] 2) : : c (2) o o o o

2 2 @

02, " o 2)sc
: I o-2q o Do 6 o—o I 52,
o . I 0D o oo I o-Po  o0Dso I o Dq
o020 I o2 o
(2)
(2) @

@)
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(5) rank 7
2

O_M_I_H<2> oé_u_o—I—«»——o

(6) rank 8

0P o0 o I o—o0 0P oo I o—o

(7) rank 9
(2)

e e

(8) rank 10

Do o o—o0 o I——o——o

&)

NOTE. The rank of a hyperbolic type generalized Cartan matrix is at most 10
(cf. [1D.
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