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METRIZABILITY OF PIXLEY-ROY HYPERSPACES

By

Hidenori TANAKA

\S 1. Introduction.

Throughout this paper, all spaces are assumed to be $T_{1}$-spaces. The Pixley-

$Roy$ hyperspace $\mathcal{F}[X]$ over a space $X$, defined by C. Pixley and P. Roy in [30],

is the set of all non-empty finite subsets of $X$ with the topology generated by

the sets of the form $[F, U]=\{G\in \mathcal{F}[X]:F\subset G\subset U\}$ , where $F\in \mathcal{F}[X]$ and $U$ is
an open subset in $X$ containing $F$. In [14], it was pointed out that for any

space $X,$ $\mathcal{F}[X]$ is a zero-dimensional hereditarily metacompact space.

Generalized notions of metrizability were introduced by several authors.

They still retain many of the desirable features of metric spaces (see [1], [11],

[16], [21], [26] and [29]).

Our main purpose of this paper is to discuss these notions and to investigate

metrizability in Pixley-Roy hyperspaces. More precisely, we shall establish the

following theorems.

THEOREM 1.1. For a space $X$, the following conditions are equivalent.
(a) $\mathcal{F}[X]$ is metrizable,

(b) $\mathcal{F}[X]$ is a La\v{s}nev space,
(c) $\mathcal{F}[X]$ is a paracompact perfectly normal quasi-k-space.

THEOREM 1.2. For a space $X$, the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is an $M_{1}$-space,
(b) $\mathcal{F}[X]$ is a stratifiable space,
(c) $\mathcal{F}[X]$ is a paracompact $\sigma$ -space,
(d) $\mathcal{F}[X]$ is a paracompact perfectly normal space.

THEOREM 1.3. For a space $X$, the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is metrizable,

(b) $\mathcal{F}[X]$ is a paracompact p-space.

Secondly, we study weakly separated spaces and partially separated spaces
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in the sense of M. G. Tka\v{c}enko [35] and M.G. Bell [4]. Weakly (partially)

separated spaces play the fundamental role for the paracompactness of Pixley-

Roy hyperspaces (see [4], [7], [31] and [33]). Several results conceming

partially separated spaces are given, one of which asserts that every Pixley-Roy

hyperspace is the open finite-to-one image of a paracompact Hausdorff space by

using the fact that every Pixley-Roy hyperspace is partially separated. This
may be of interest in connection with the following H.J.K. Junnila’s problem in
[22]: Is every metacompact space the pseudo-open compact image of a para-
compact Hausdorff space? Furthermore, we also prove that for generalized
ordered spaces, semi-stratifiable spaces or locally \v{C}ech complete Tychonoff spaces,
weak separatedness is equivalent to partial separatedness.

Our undefined terminology follows [10], [15] and [19]. For Pixley-Roy

hyperspaces, the reader is refered to [14], [31], [33] and [34].

\S 2. Proofs of Theorems 1.1 and 1.2.

DEFINITION 2.1. A space $X$ is said to be a quasi-k-space [28] if, given $A\subset X$,
$A$ is closed whenever $A\cap K$ is relatively closed in $K$ for every countably

compact $K\subset X$.

Since for any space $X,$ $\mathcal{F}[X]$ is hereditarily metacompact (see E.K. van
Douwen [14]), $\mathcal{F}[X]$ is a quasi-k-space if and only if $\mathcal{F}[X]$ is a k-space. Closed
images of metric spaces were characterized intemally by N.S. La\v{s}nev in [23]

(and thus, such spaces bear his name) and K. Morita and T. Rishel obtained

LEMMA 2.2 ([27]). A regular space $X$ is a La\v{s}nev space if and only if the
following conditions are satisfied:

(a) $X$ is a quasi-k-space,
(b) there is a sequence $\{\mathfrak{E}_{n} : n\in N\}$ of hereditarily closure preserving closed

covers of $X$ with the properties below:
(i) for any point $x\in X$, any sequence $\{A_{n} : n\in N\}$ of sets, such that $A_{n}\in \mathfrak{C}_{n}$

and $x\in A_{n}$ for all $n\in N$, is either hereditarily closure preserving or forms a net-

work at $x$ .
(ii) for any point $x\in X$, there is a network $\{A_{n} : n\in N\}$ at $x$ such that $A_{n}$

$\in \mathfrak{E}_{n}$ for $n\in N$.

A space is said to be $\sigma$ -discrete if it is the union of countably many closed
discrete subspaces.



Metrizability of Pixley-Roy hyperspaces 301

LEMMA 2.3 (Lutzer [25]). For a space $X$, the following conditions are equi-
valent.

(a) $\mathcal{F}[X]$ is perfect,
(b) $\mathcal{F}[X]$ is semi-stratifiable,
(c) $\mathcal{F}[X]$ is a $\sigma$ -space,
(d) $\mathcal{F}[X]$ is $\sigma$ -discrete,
(e) every point of $X$ is a $G_{\delta}$-point in $X$.

In order to prove the implication $(c)\rightarrow(b)$ of Theorem 1.1, we show

LEMMA 2.4. If $X$ is $\sigma$ -discrete and paracompact Hausdorff, then there is a
sequence $\{\mathfrak{U}_{n} : n\in N\}$ of open covers of pairwise disjoint open subsets of $X$ satisfy-
ing the following condition:

$(*)\left\{\begin{array}{l}ifforeachx\in Xandn\in N,A_{n}istheuniqueelement\\of\mathfrak{U}_{n}suchthatx\in A_{n\prime}then\{A_{n}.\cdot n\in N\}isa\\hereditarilyclosurepreservingclosedcollectionofX.\end{array}\right.$

PROOF. Let $X=\cup\{X_{n} : n\in N\}$ , where each $X_{n}$ is a closed discrete subspace
of $X$. We may assume $ X_{n}\cap X_{m}=\emptyset$ for $n,$ $m\in N$ and $n\neq m$ . Since $X$ is a zero-
dimensional paracompact Hausdorff space, there is a discrete collection $u_{1}^{\prime}=$

$\{U_{1}(x):x\in X_{1}\}$ of open-and-closed subsets of $X$ such that $x\in U_{1}(x)$ for each
$x\in X_{1}$ . Then $U_{1}=X-\cup\{U(x):x\in X_{1}\}$ is an open-and-closed subset of $X$. Let
$\mathfrak{U}_{1}=\mathfrak{U}_{1}^{\prime}\cup\{U_{1}\}$ . Inductively, we obtain a sequence $\{\mathfrak{U}_{n} : n\in N\}$ of open covers of
pairwise disjoint open subsets of $X$ such that:

(1) for $n\in N$ and $x\in\cup\{X_{i} : i\leqq n\}$ , there is an element $U_{n}(x)$ of $11_{n}$ such
that $x\in U_{n}(x)$ and if $x,$ $y\in\cup\{X_{i} : i\leqq n\}$ and $x\neq y$ , then $ U_{n}(x)\cap U_{n}(y)=\emptyset$ .

(2) each $U_{n+1}$ is a refinement of $U_{n}$ .
If $x\in X_{n}$ , then, using (1) and (2), $U_{m}(x)\subset U_{n}(x)$ for $n\leqq m$ . Pick an arbitrary

element $x\in X$ and let $A_{n}$ be the unique open subset of $U_{n}$ containing $x$ for each
$n\in N$. Since each $1\ddagger_{n}$ is pairwise disjoint in $X$, each $A_{n}$ is an open-and-closed
subset of $X$. Let $E_{n}$ be a closed subset of $X$ such that $E_{n}\subset A_{n}$ for each $n\in N$

and let $y\not\in\cup\{E_{n} : n\in N\}$ . Then there are $n,$ $m\in N$ such that $x\in X_{n}$ and $y\in X_{m}$ .
Let $s=\max\{n, m\}$ . By using (1), (2) and the fact that $A_{i}=U_{i}(x)$ for $n\leqq i$ , we
have $ U_{s}(y)\cap(\cup\{E_{i} : s\leqq i\})=\emptyset$ . Since $\{E_{i} : i<s\}$ is a finite collection of closed sub-
sets of $X$, there is an open neighborhood $W$ of $y$ such that $ W\cap(\cup\{E_{i} : i<s\})=\emptyset$ .
Thus we have $(U_{s}(y)\cap W)\cap(\cup\{E_{i} : i\in N\})=\emptyset$ . Hence $\cup\{E_{i} : i\in N\}$ is a closed
subset of $X$. Thus $cl(\cup\{E_{i} : i\in N\})=\cup\{E_{i} : i\in N\}$ . It follows that the collec-
tion $\{U_{n} : n\in N\}$ satisfies the condition $(*)$ . The proof is completed.
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LEMMA 2.5. If $X$ is $\sigma$ -discrete and a paracompact Hausdorff quasi-k-space,
then $X$ is a La\v{s}nev space.

PROOF. Let $\{U_{n} : n\in N\}$ be a sequence of open covers of pairwise disjoint
open subsets of $X$ constructed in Lemma 2.4 and let $\{X_{n} : n\in N\}$ be a countable
cover of closed discrete subsets of $X$ which were used to construct $\{\mathfrak{U}_{n} : n\in N\}$ .
For each $n\in N$, let $\mathfrak{S}_{n}=U_{n}\cup\{\{x\}:x\in X_{n}\}$ . Then each $\mathfrak{S}_{n}$ is a hereditarily

closure preserving closed cover of $X$. By Lemma 2.4, the sequence $\{\mathfrak{S}_{n} : n\in N\}$

satisfies the condition (b) of Lemma 2.2. Thus $X$ is a La\v{s}nev space, which com-
pletes the proof.

PROOF OF THEOREM 1.1. The implication $(a)->(c)$ is obvious and the implica-
tion $(c)\rightarrow(b)$ follows from Lemmas 2.3 and 2.5.

$(b)\rightarrow(a)$ . By the well known Morita-Hanai-Stone’s theorem, it suffices to
prove that $\mathcal{F}[X]$ is first countable. We modify the proof of a theorem in Hyman
[20]. Let $f:M\rightarrow \mathcal{F}[X]$ be a closed mapping from a metric space $M$ with a
compatible metric $d$ onto $\mathcal{F}[X]$ and let $F$ be a non-isolated point of $\mathcal{F}[X]$ .
Since $\mathcal{F}[X]$ is a Fr\’echet space, there is a sequence $\{F_{n} : n\in N\}$ of points of
$\mathcal{F}[X]$ converging to $F$ such that $\{F_{n} : n\in N\}\subset \mathcal{F}[X]-\{F\}$ . Without loss of
generality, we may assume that $F\subset F_{n}$ for each $n\in N$. Let $E=f^{-1}(F)$ and $E_{n}$

$=f^{-1}(F_{n})$ for each $n\in N$. Put

$U_{n}=\cup\{S(x,$ $\frac{1}{2}d(x, E)):x\in E_{n}\}$

for each $n\in N$, where $S(x, \epsilon)=\{y\in M:d(x, y)<\epsilon\}$ . Then each $\mathcal{O}_{n}=\mathcal{F}[X]$

$-f(M-U_{n})$ is an open neighborhood of $F_{n}$ . Then there is an open neighborhood
$V_{n}$ of $F_{n}$ in $X$ such that $[F_{n}, V_{n}]\subset \mathcal{O}_{n}$ for $n\in N$. Since $F\subset F_{n}$ for $n\in N$, we
have $F\subset V_{n}$ . We shall prove that $\{[F, V_{n}]:n\in N\}$ is a countable neighborhood

base at $F$ in $\mathcal{F}[X]$ . To see this, let $W$ be an open neighborhood of $F$ in $X$

and let $G=f^{-1}([F, W])$ . Then $G$ is an open neighborhood of $E$ . Put

$G^{\prime}=\cup\{S(x,$ $\frac{1}{2}d(x, M-G)):x\in E\}$

and let $\mathcal{O}^{\prime}=\mathcal{F}[X]-f(M-G^{\prime})$ . Since $O^{\prime}$ is an open neighborhood of $F$, there is
an $n\in N$ such that $F_{n}\in \mathcal{O}^{\prime}$ . Pick an arbitrary $H\in \mathcal{O}_{n}$ and let $x\in f^{-1}(H)$ . Since
$H\in \mathcal{O}_{n}$ , there is an element $y\in E_{n}$ such that $d(x, y)<(1/2)d(y, E)$ . Since $E_{n}=$

$f^{-1}(F_{n})\subset G^{\prime}$ , there is an element $z\in E$ such that $d(y, z)<(1/2)d(z, M-G)$ . Thus
$d(y, E)<(1/2)d(z, M-G)$ . Hence
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$d(x, z)\leqq d(x, y)+d(y, z)$

$<\frac{1}{4}d(z, M-G)+\frac{1}{2}d(z, M-G)=\frac{3}{4}d(z, M-G)$ .

Thus $x\in G$ and hence, $f^{-1}(H)\subset G$ . Since $H$ is an arbitrary element of $O_{n}$ , we
have $\mathcal{O}_{n}\subset[F, W]$ . Thus $[F_{n}, V_{n}]\subset[F, W]$ . It follows that $[F, V_{n}]\subset[F, W]$ .
$TheIproof$ is completed.

LEMMA 2.6 (Przymusi\’{n}ski [31]). For a space $X$,
(i) the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is paracompact,
(b) for every non-empty finite subset $F$ of $X$, one can choose an open

neighborhood $U(F)$ so that the inclusions $F\subset U(H)$ and $H\subset U(F)$ imply $ F\cap H\neq\emptyset$ .
(ii) the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is hereditarily paracompact,
(b) for every non-empty finite subset $F$ of $X$, one can choose an open

neighborhood $U(F)$ so that the inclusions $F\subset U(H)$ and $H\subset U(F)$ imply $F\subset H$ or
$H\subset F$.

PROOF OF THEOREM 1.2. The implications $(a)_{\leftarrow}^{\rightarrow}(b)\rightarrow(c)_{\leftarrow}^{\rightarrow}(d)$ follows from
Lemma 2.3 and G. Gruenhage [17] or [18].

$(c)\rightarrow(b)$ . Assume that $\mathcal{F}[X]$ is a paracompact $\sigma$ -space. Then $\mathcal{F}[X]$ is
hereditarily paracompact. For each $F\in \mathcal{F}[X]$ , let $U(F)$ be an open neighborhood
of $F$ in $X$ satisfying the condition (b) of Lemma 2.6 (ii). By Lemma 2.3, every
point of $X$ is a $G_{\delta}$-point in $X$ . Thus for each $x\in X$, there is a decreasing sequence
$\{V_{n}(x):n\in N\}$ of open neighborhoods of $x$ such that $\cap\{V_{n}(x):n\in N\}=\{x\}$ .
Put

$\mathcal{G}(n, F)=[F, (\cup\{V_{n}(x):x\in F\})\cap U(F)]$

for each $n\in N$ and $F\in \mathcal{F}[X]$ . Thus for each $F\in \mathcal{F}[X]$ , a sequence {$\mathcal{G}(n, F)$ :
$n\in N\}$ of open neighborhoods of $F$ is given. By Borges [8], it suffices to prove
that for every closed subset $\mathcal{E}$ of $\mathcal{F}[X],$ $\mathcal{E}=\cap\{cl_{\mathcal{F}[X]}(\cup\{\mathcal{G}(n, F):F\in \mathcal{E}\}):n\in N\}$ .
Let $\mathcal{E}$ be a closed subset of $\mathcal{F}[X]$ and let $F\not\in \mathcal{E}$ . Then there is an open neigh-
borhood $W$ of $F$ in $X$ such that (1) $[F, W]\cap \mathcal{E}=\emptyset$ , and (2) $W\subset U(F)$ . Thus for
each $E\in \mathcal{E}$, either $F\not\subset E$ or $E\not\subset W$ . It is clear that if $E\in \mathcal{E}$ and $E\not\subset W$, then
$[F, W]\cap \mathcal{G}(1, E)=\emptyset$ . By using the condition (b) of Lemma 2.6 (ii), it follows
that if $[F, W]\cap \mathcal{G}(1, E)\neq\emptyset$ for some $E\in \mathcal{E}$, then $E$ is a proper subset of $F$.
Thus $\mathcal{E}^{\prime}=\{E\in \mathcal{E};]F, W]\cap \mathcal{G}(1, E)\neq\emptyset\}$ is finite. Then there is an $n\in N$ such
that if $E\in \mathcal{E}^{\prime}$ , then $ F-\cup\{V_{n}(x):x\in E\}\neq\emptyset$ . Then $[F, W]\cap(\cup\{\mathcal{G}(n, E):E\in \mathcal{E}\})$
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$=\emptyset$ . Thus $F\not\in clff[X](\cup\{\mathcal{G}(n, E):E\in \mathcal{E}\})$ . It follows that $\mathcal{E}=\cap\{cl_{\xi F[X]}(\cup\{9(n, E)$ :
$E\in \mathcal{E}\}):n\in N\}$ . The proof is completed.

\S 3. Proof of Theorem 1.3.

In [9], it was pointed out that if a Tychonoff space $X$ is a p-space, then
the following condition is satisfied:

$(_{*}^{*})$ $\left\{\begin{array}{l}thereisasequence\{V_{n}\cdot.n\in N\}ofopencoversofX\\suchthatifx\in U_{n}\in u_{n}forn\in N,then\cap\{clU_{n}\cdot.n\in N\}\\isacompactsubsetofX\end{array}\right.$

LEMMA 3.1. Let $X$ be a space. If $\mathcal{F}[X]$ satisfies the condition (:), then
every point of $X$ is a $G_{\delta}$-point in X. Hence $\mathcal{F}[X]$ is semi-stratifiable.

PROOF. Let $\{\mathfrak{U}_{n} : n\in N\}$ be a sequence of open covers of $\mathcal{F}[X]$ satisfying
the condition (:). Assume that $x$ is not a $G_{\delta}$-point in $X$ and let $ql_{n}$ be an ele-
ment of $U_{n}$ containing $\{x\}$ for $n\in N$. Then $\cap\{cl_{\mathcal{F}[x]}qf_{n} : n\in N\}$ is a compact
subset of $\mathcal{F}[X]$ . For $n\in N$, let $V_{n}$ be an open neighborhood of $x$ such that:

(1) $[\{x\}, V_{n}]\subset v_{n}$ for each $n\in N$, and
(2) $V_{n+1}\subset V_{n}$ for each $n\in N$.
Then, using (1), $\cap\{[\{x\}, V_{n}]:n\in N\}=[\{x\}, \cap\{V_{n} : n\in N\}]$ is a compact

subset of $\mathcal{F}[X]$ . Since $x$ is not a $G_{\delta}$-point in $X,$ $\cap\{V_{n} : n\in N\}$ contains un-
countably many points. Let $\{y_{n} : n\in N\}$ be a countable distinct points of
$\cap\{V_{n} : n\in N\}$ and put

$\mathcal{E}_{n}=[\{x, y_{1}, \cdots, y_{n}\}, V_{n}]$

for each $n\in N$. Using (2), $\{\mathcal{E}_{n} : n\in N\}$ is a closed collection which satisfies the finite
intersection property. Since each $\mathcal{E}_{n}$ meets $[\{x\}, \cap\{V_{n} : n\ni N\}],$ $\cap\{\mathcal{E}_{n} ; n\in N\}$

must be non-empty. However, it is clear that $\cap\{\mathcal{E}_{n} : n\in N\}=\emptyset$ , which is a
contradiction. Thus every point of $X$ is a $G_{\delta}$-point in $X$. By Lemma 2.3, $\mathcal{F}[X]$

is semi-stratifiable. The proof is completed.

Since a paracompact Hausdorff space is metrizable if and only if it is a
Moore space (see [15]), Theorem 1.3 follows from the next theorem.

THEOREM 3.2. For a space $X$, the following conditions are equivalent.
(a) $\mathcal{F}[X]$ is a p-space,
(b) $\mathcal{F}[X]$ is a Moore space,
(c) $X$ is first countable.
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PROOF. The equivalence of (b) and (c) was proved by E. K. van Douwen
[14] and the implication $(b)\rightarrow(a)$ is well known. The implication $(a)\rightarrow(b)$ im-
mediately follows from Lemma 3.1 and G. Creede [13].

THEOREM 3.3. For a space $X$, the following conditions are equivalent.
(a) $\mathcal{F}[X]$ is metrizable,
(b) $\mathcal{F}[X]$ is an M-space.

PROOF. Since a metacompact M-space is a paracompact M-space ( $=a$ para-
compact $p$-space), this follows from Theorem 1.3.

For each $n\in N$, let $\mathcal{F}_{n}[X]=\{F\in \mathcal{F}[X]:|F|\leqq n\}$ , where $|F|$ stands for the
cardinality of $F$. Notice that for each $n\in N,$ $\mathcal{F}_{n}[X]$ is a closed subspace of
$\mathcal{F}[X]$ and, in particular, $\mathcal{F}_{1}[X]$ is a closed discrete subspace of $\mathcal{F}[X]$ .

We consider compact subsets in Pixley-Roy hyperspaces. Let $A(\omega_{1})$ be the
one-point compactification of a discrete space of cardinality $\omega_{1}$ , where $\omega_{1}$ is the
first uncountable ordinal and let $\infty$ be the non-isolated point of $A(\omega_{1})$ .

THEOREM 3.4. For a space $X$, we consider the following conditions:
(a) $\mathcal{F}[X]$ contains an uncountable compact subset,
(b) $\mathcal{F}[X]$ contains a copy of $A(\omega_{1})$ , and
(c) $X$ contains a copy of $A(\omega_{1})$ .
Then $(c)\rightarrow(a)\Leftrightarrow(b)$ . Furthermore, in case $X$ is Hausdorff all of the above

conditions are equivalent.

PROOF. $(b)\rightarrow(a)$ . Obvious.
$(c)\rightarrow(b)$ . Assume that $X$ contains a copy of $A(\omega_{1})$ . We denote it by $A(\omega_{1})$ ,

too. Let $\llcorner A=\{\{x, \infty\}:x\in A(\omega_{1})-t\infty\}\}\cup\{\infty\}$ . Then it is clear that uz is a
copy of $A(\omega_{1})$ .

$(a)\rightarrow(b)$ . Let JC be a compact subset of $\mathcal{F}[X]$ . Since $\mathcal{F}_{1}[X]$ is a closed
discrete subspace of $\mathcal{F}[X],$ $j\zeta_{1}=j\zeta\cap \mathcal{F}_{1}[X]$ is finite. Let $j\zeta_{1}=\{\{x_{i}\}:i\leqq n_{1}\}$ and
let $U(x_{i})$ be an open subset in $X$ containing $x_{i}$ for $i\leqq n_{1}$ such that { $[\{x_{i}\}, U(x_{i})]$ :
$i\leqq n_{1}\}$ is pairwise disjoint in $\mathcal{F}[X]$ . Let $j\zeta_{2}^{\prime}=j\zeta-\cup\{[\{x_{i}\}, U(x_{i})]:i\leqq n_{1}\}$ . Then
$J\zeta_{2}^{\prime}$ is a compact subset of $\mathcal{F}[X]$ . If $j\zeta_{2}=Jl_{2}^{\prime}\cap \mathcal{F}_{2}[X]$ , then, since $j\zeta_{2}$ is a closed
discrete subspace of $j\zeta_{2}^{\prime}$ $j\zeta_{2}$ is finite. Let $j\zeta_{2}=\{\{y_{i}, z_{i}\}:i\leqq n_{2}\}$ and let $U(y_{i}, z_{i})$

be an open set in $X$ containing $\{y_{i}, z_{i}\}$ for each $i\leqq n_{2}$ such that:
(1) $[\{y_{i}, z_{i}\}, U(y_{i}, z_{i})]\cap(\cup\{[\{x_{j}\}, U(x_{j})]:j\leqq n_{1}\})=\emptyset$ for each $i\leqq n_{2}$ , and
(2) $\{[\{y_{i}, z_{i}\}, U(y_{i}, z_{i})]:i\leqq n_{2}\}$ is pairwise disjoint in $\mathcal{F}[X]$ .
Let $j\zeta_{3}^{\prime}=J\zeta_{2}^{\prime}-\cup\{[\{y_{i}, z_{i}\}, U(y_{i}, z_{i})]:i\leqq n_{2}\}$ and let $j\zeta_{3}=Jt_{3}^{\prime}\cap \mathcal{F}_{3}[X]$ . Then

$J\zeta_{3}$ is finite. Since $\chi$ is a compact subset of $\mathcal{F}[X]$ , this process is finished by



306 Hidenori TANAKA

finitely many times. Thus there is a finite subset $\{E_{i} : i\leqq n\}$ of $ j\zeta$ and a finite
family $\{U_{i} : i\leqq n\}$ of open subsets of $X$, where each $E_{i}$ is contained in $U_{i}$ , such
that:

(3) $\{[E_{i}, U_{i}]:i\leqq n\}$ covers $\chi$ , and
(4) $\{[E_{i}, U_{i}]:i\leqq n\}$ is pairwise disjoint in $\mathcal{F}[X]$ .
Let $ j\zeta$ be an uncountable compact subset of $\mathcal{F}[X]$ . By the above considera-

tion, we may assume that $\chi$ is contained in a $[E, U]$ , where $ E\in j\zeta$ and $U$ is
an open neighborhood of $E$ in $X$. Let $|E|=n$ and for each $m\in N$, let $JC_{m}=$

$\{GeJt : |G|=m\}$ , where $ it_{m}=\emptyset$ for $m\in N$ and $m<n$ . Since $ j\zeta$ is uncountable,

there is an $m\in N$ such that $j\zeta_{m}$ is uncountable. Let $m$ be the least such a na-
tural number. Then $n<m$ . Since $E\in X$ , we have { $ G\in j\zeta$ : $it_{m}\cap[G, U]$ is
$uncountable\}\neq\emptyset$ . Let $s$ be the largest of { $t\in N:j\zeta_{m}\cap[G, U]$ is uncountable
for some $G\in Jt_{t}$ and $t<m$ } and let $G=\{x_{i} ; i\leqq s\}eii_{s}$ such that $j\zeta_{m}\cap[G, U]$ is
uncountable. Let $c\mathcal{J}=j\zeta\cap \mathcal{F}_{m}[X]\cap[G, U]-\cup$ { $[H,$ $U]:H\in JC_{l}$ and $s<t<m$}.
Then $J$ is an uncountable compact subset of $\mathcal{F}[X]$ . If $J^{\prime}=J-\{G\}$ , then it is
clear that $\mathcal{J}$ is the one-point compactification of the uncountable discrete space
$J^{\prime}$ . Thus $\mathcal{F}[X]$ contains a copy of $A(\omega_{1})$ .

Assume that $X$ is a Hausdorff space and let us show the implication $(b)\rightarrow(c)$ .
Suppose that $\mathcal{F}[X]$ contains a copy of $A(\omega_{1})$ . We denote it by $J=J^{\prime}\cup\{G\}$ ,

where $t\mathcal{J}^{\prime}$ is a discrete space of cardinality $\omega_{1}$ . Let $G=\{x_{i} : i\leqq n\}$ and let $U(x_{i})$

be an open neighborhood of $x_{i}$ for $i\leqq n$ such that $\{U(x_{i}):i\leqq n\}$ is pairwise dis-
joint in $X$. Since $c\mathcal{J}-[G, \cup\{U(x_{i}):i\leqq n\}]$ is finite, without loss of generality,
we may assume that $J\subset[G, \cup\{U(x_{i}):i\leqq n\}]$ . For $i\leqq n$ , let $A_{i}=\{y\in U(x_{i})$ :
$y\in H$ for some He.5}. Then $x_{i}eA_{i}$ for $i\leqq n$ . Since $|J|=\omega_{1}$ , we have $|A_{i}|=\omega_{1}$

for some $i(i\leqq n)$ . Since $J$ is the one-point compactification of $J^{\prime}$ , $A_{i}$ and $A_{i}$

$-\{x\}$ , where $x\in A_{i}-\{x_{i}\}$ , are compact. Since $X$ is a Hausdorff space, $A_{i}-\{x\}$

is closed in $A_{i}$ for each $x\in A_{i}-\{x_{i}\}$ . Thus $A_{i}-\{x_{i}\}$ is discrete and hence, $A_{i}$

is a copy of $A(\omega_{1})$ . The proof is completed.

We cannot omit the condition “X is Hausdorff” in Theorem 3.4.

EXAMPLE 3.5. There is a compact space $X$ for which $\mathcal{F}[X]$ contains an
uncountable compact subset, but $X$ does not contain a copy of $A(\omega_{1})$ .

Let $X$ be a set of cardinality $\omega_{1}$ . We topologize it as follows: closed sub-
sets of $X$ are $\emptyset,$ $X$ and finite subsets of $X$. It is clear that $X$ does not contain a
copy of $A(\omega_{1})$ . If $\mathcal{A}=\{\{x, y\}:y\in X-\{x\}\}\cup\{x\}$ for some $x\in X$, then $\cup t$ is an
uncountable compact subset of $\mathcal{F}[X]$ .

If $X$ is a set linearly ordered by $<$ , then $X$ with the usual order topology
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$\lambda(<)$ induced by $<$ is said to be a linearly ordered topological space $(=LOTS)$ .
Intervals are denoted in the usual way. For example, we denote $\{x\in X:a\leqq x\leqq b\}$

by $[a, b]$ for $a,$ $b\in X$ satisfying $a\leqq b$ . A subset $C$ of a LOTS $X$ is said to be

order-convex if whenever $a,$ $beC$ satisfying $a\leqq b$ , then $[a, b]\subset C$ . If $Y$ is a
set linearly ordered by $<$ and $\tau$ is a topology on $Y$ such that (1) $\lambda(<)\subset\tau$ and
(2) $\tau$ has a base consisting of order-convex sets, then $X=(Y, \tau)$ is said to be a
generalized ordered space ($=GO$ space) [24] and we often say that the GO space
$X$ is constructed on the LOTS $Y$ . Every GO space is known to be a hereditarily

collectionwise normal space.
A Hausdorff space $X$ is said to be of pointwise countable type [2] if for each

$xeX$, there is a compact subset $K$ of $X$ containing $x$ such that $K$ has a count-
able character in X. $p$-spaces and first countable spaces are of pointwise countable
type.

For GO spaces, we obtain

THEOREM 3.6. If $X$ is $a$ GO space, then the following conditions are equi-
valent.

(a) $\mathcal{F}[X]$ is a Moore space,
(b) $\mathcal{F}[X]$ is of pointwise countable type,
(c) $X$ is first countable.

PROOF. We shall prove the implication $(b)\rightarrow(c)$ . By E. K. van Douwen [14],

it suffices to prove that $\mathcal{F}[X]$ is first countable. It is well known that $A(\omega_{1})$ is
not a GO space. Since every subspace of a GO space is also a GO space, by

using Theorem 3.4, every compact subset of $\mathcal{F}[X]$ is countable (hence metri-
zable). Thus for each $F\in \mathcal{F}[X]$ , there is a compact metric space $X(F)$ contain-
ing $F$ such that $j\zeta(F)$ has a countable character in $\mathcal{F}[X]$ . Hence $\mathcal{F}[X]$ is first
countable. The proof is completed.

By a space of ordinals, we mean a subspace of some ordinal.

THEOREM 3.7. If $X$ is a space of ordinals, then the following conditions are
equivalent.

(a) $\mathcal{F}[X]$ is metrizable,
(b) $\mathcal{F}[X]$ is of pointwise countable type.

PROOF. $(a)\rightarrow(b)$ . Obvious.
$(b)\rightarrow(a)$ . In [31] or [33], it was pointed out that if $X$ is a space of ordinals,

then $\mathcal{F}[X]$ is paracompact. Thus this follows from Theorem 3.6 and [15, 5.4.1].
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The proof is completed.

\S 4. Partially separated spaces.

DEFINITION 4.1. A space $X$ is said to be weakly separated [35] if there is
a reflexive and antisymmetric relation $\leqq$ defined on $X$ such that for each $x\in X$,
$\{y\in X:y\leqq x\}$ is an open set of $X$. If, in addition, the relation is transitive
( $i.e$ . the relation is a partial order of $X$ ), then $X$ is said to be partially separated
[4], [7].

As was seen in [35], a space $X$ is weakly separated if and only if for each
$xeX$, there is an open neighborhood $U(x)$ of $x$ in $X$ such that if $y\in U(x)$ and
$x\in U(y)$ , then $x=y$ , or equivalently, $X$ has an antisymmetric neighbornet in the
sense of H.J.K. Junnila [21]. Similarly partially separated spaces are charac-
terized as follows.

LEMMA 4.2. A space $X$ is partially separated if and only if there is a weak
separation $\mathfrak{U}=\{U(x):x\in X\}$ of $X$ such that if $y\in U(x)$ , then $U(y)\subset U(x)$ , or
equivalently, $X$ has an antisymmetric and transitive neighbornet.

A space $X$ is said to be scattered if $X$ has no dense-in-itself subsets. It is
well known that $X$ is scattered if and only if for some ordinal $\alpha,$

$ X^{(\alpha)}=\emptyset$ ,

where $X^{(\alpha)}$ is the $\alpha$-th derivative of $X$. A space $X$ is said to be locally count-
able if every point of $X$ has a neighborhood with cardinality at most $\omega_{0}$ . $\sigma-$

discrete spaces, scattered spaces and locally countable spaces are known to be
partially separated spaces by M.G. Bell [4]. Furthermore,

LEMMA 4.3. For a space $X,$ $\mathcal{F}[X]$ is partially separated.

PROOF. For each $F\in \mathcal{F}[X]$ , let $V(F)=[F, X]$ and let $11=\{V(F):F\in \mathcal{F}[X]\}$ .
It is to prove easy that $\mathfrak{U}$ is a partial separation of $\mathcal{F}[X]$ . The proof is completed.

As mentioned in the introduction, weakly (partially) separated spaces play

the fundamental role for the paracompactness of Pixley-Roy hyperspaces.

LEMMA 4.4 (Bell [4], Bennett, Fleissner and Lutzer [7]). If $X$ is partially
separated, then $\mathcal{F}[X]$ is paracompact.

LEMMA 4.5 (Przymusi\’{n}ski [31], Tanaka [33]). For a space $X$, the following
conditions are equivalent.
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(a) $\mathcal{F}_{2}[X]$ is paracompact,
(b) $X$ is weakly separated.

Let us define $\mathcal{F}^{1}[X]=\mathcal{F}[X]$ and $\mathcal{F}^{n+1}[X]=\mathcal{F}[\mathcal{F}^{n}[X]]$ for each $n\in N$. The
following result is an immediate consequence of Lemmas 4.3 and 4.4. However,

it has already obtained by T. Przymusi\’{n}ski in [31].

LEMMA 4.6. Let $n\geqq 2$ . For a space $X,$ $\mathcal{F}^{n}[X]$ is paracompact.

THEOREM 4.7. For a space $X$, there are a paracompact Hausdorff space $Y$

and an open finite-to-one mapping $\Phi$ from $Y$ onto $\mathcal{F}[X]$ .

PROOF. By Lemma 4.6, $\mathcal{F}^{2}[X]$ is a paracompact Hausdorff space. As the
space $Y$ , we take $\mathcal{F}^{2}[X]$ and define $\Phi$ : $\mathcal{F}^{2}[X]\rightarrow \mathcal{F}[X]$ by $\Phi(\{F_{1}, \cdots, F_{n}\})=$

$F_{1}\cup\cdots\cup F_{n}$ , where $F_{i}\in \mathcal{F}[X]$ for $i\leqq n$ . It is clear that the mapping $\Phi$ is finite-
to-one. For $\{F_{1}, \cdots , F_{n}\}\in \mathcal{F}^{2}[X]$ , let $[\{F_{1}, \cdots , F_{n}\}, [F_{1}, U_{1}]\cup\cdots\cup[F_{n}, U_{n}]]$ be
a basic open neighborhood of $\{F_{1}, \cdots, F_{n}\}$ . Then

$\Phi([\{F_{1}, \cdots, F_{n}\}, [F_{1}, U_{1}]\cup\cdots\cup[F_{n}, U_{n}]])$

$=[F_{1}\cup\cdots\cup F_{n}, U_{1}\cup\cdots\cup U_{n}]$ .
Thus $\Phi$ is an open mapping. It is similar to the above argument that $\Phi$ is

a continuous mapping. The proof is completed.

COROLLARY 4.8. For a space $X$, the following conditions are equivalent.
(a) $\mathcal{F}[X]$ is a Moore space,
(b) $\mathcal{F}[X]$ is the open finite-to-one image of a metric space,
(c) $\mathcal{F}[X]$ is contained in MOBI in the sense of A. V. Arhangel’skii [3].
(d) $X$ is first countable.

RROOF. We shall prove the implications $(a)\rightarrow(b)$ and $(c)\rightarrow(d)$ .
$(a)\rightarrow(b)$ . If $\mathcal{F}[X]$ is a Moore space, then $\mathcal{F}^{2}[X]$ is a paracompact Moore

space and hence, metrizable. Thus this implication follows from the proof of
Theorem 4.7.

$(c)\rightarrow(d)$ . If $\mathcal{F}[X]$ is contained in the class MOBI, then $\mathcal{F}[X]$ is first count-
able. Hence $X$ is first countable. The proof is completed.

REMARK 4.9. In [12], J. Chaber characterized open finite-to-one images of
metric spaces as follows: A space $X$ is the open finite-to-one image of a metric
space if and only if $X$ is a metacompact developable space having a countable
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cover by closed metrizable subspaces.

Next we prove that partial separatedness is preserved by perfect mappings.

THEOREM 4.10. Let $f:X\rightarrow Y$ be a perfect mapping from $X$ onto Y. Then
(a) if $X$ is partially separated, then so is $Y$, and
(b) if $Y$ is partially separated, $X$ is a Hausdorff space and $\mathcal{F}[X]$ is para-

compact, then $X$ is partially separated.

PROOF. (a) Let $\mathfrak{U}=\{U(x):xeX\}$ be a partial separation of $X$. For each
$Fe\mathcal{F}[X]$ , let $U(F)=\cup\{U(x);x\in F\}$ . Then $\mathfrak{U}^{\prime}=\{U(F):F\in \mathcal{F}[X]\}$ satisfies the
condition (b) of Lemma 2.6 (i) (for details, see M. G. Bell [4] and H. R. Bennett,

W.G. Fleissner and D.J. Lutzer [7]). For each $y\in Y$ , let $F_{\nu}$ be a finite subset
of $f^{-1}(y)$ such that $f^{-1}(y)\subset U(F_{y})$ . Since $\mathfrak{U}$ is a partial separation of $X$, for each
$y\in Y,$ $\cup\{U(x):x\in f^{-1}(y)\}=U(F_{y})$ . For each $y\in Y$ , let $V(y)=Y-f(X-U(F_{y}))$

and let $\mathfrak{B}=\{V(y):y\in Y\}$ . We shall prove that $\mathfrak{B}$ is a partial separation of $Y$ .
To see this, assume that $y\in V(z)$ and $z\in V(y)$ for some $y,$ $zeY$ . Then $f^{-1}(y)$

$\subset U(F_{z})$ and $f^{-1}(z)\subset U(F_{y})$ . Since $U$ is a partial separation of $X,$ $U(F_{y})=U(F_{z})$ .
Thus $ F_{y}\cap F_{z}\neq\emptyset$ and hence, $y=z$ . Thus $\mathfrak{B}$ is a weak separation of $Y$ . Since
$U$ is a partial separation of $X,$ $\mathfrak{B}$ is transitive. Thus $\mathfrak{B}$ is a partial separation

of $Y$ .
(b) Let $U=\{U(y):y\in Y\}$ be a partial separation of $Y$ . By T. Przymusi\’{n}ski

[31], every fiber is a scattered subset of $X$. For $x\in f^{-1}(y)$ and $yeY$ , if $ x\in$

$(f^{-1}(y))^{(a)}-(f^{-1}(y))^{(\alpha+1)}$ for some $\alpha$ , let $V(x)=f^{-1}(V(y))-((f^{-1}(y)^{(\alpha)}-\{x\})$ . Let
$\mathfrak{B}=\{V(x):x\in X\}$ . Assume that $x\in V(z)$ and $z\in V(x)$ for some $x,$ $z\in X$. Then
$f(x)\in U(f(z))$ and $f(z)\in U(f(x))$ . It follows that $f(x)=f(z)$ . By the definition
of $\mathfrak{B},$ $x=z$ . Hence $\mathfrak{B}$ is a weak separation of $X$. Since $U$ is a partial separa-
tion of $Y$ , it is easy to prove that $\mathfrak{B}$ is transitive. Thus $\mathfrak{B}$ is a partial separa-
tion of $X$. The proof is completed.

EXAMPLE 4.11. We cannot omit the condition $\mathcal{F}[X]$ is paracompact’‘ in
Theorem 4.10 (b).

Let $X$ be a partially separated space and let $f:X\times I\rightarrow X$ be a perfect map-
ping from $X\times I$ onto $X$, where $I$ is the closed unit interval. By M.E. Rudin’s
theorem in [32], $\mathcal{F}[X\times I]$ is not normal. Thus by Lemma 4.4, $X\times I$ is not partially

separated.

In [33], the author has shown that for any GO space $X,$ $\mathcal{F}[X]$ is paracom-
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pact if and only if $X$ is weakly separated ( $i.e.,$ $\mathcal{F}_{2}[X]$ is paracompact by Lemma
4.5) as the affirmative answer to H.R. Bennett’s problem in [5]. Furthermore,
we obtain the following theorem.

THEOREM 4.12. Let $X$ be $a$ GO space. Then $X$ is partially separated if and
only if $X$ is weakly separated.

PROOF. It suffices to prove the “if” part. Let $X$ be a GO space constructed
on a LOTS $(Y, <)$ . Let $U=\{U(x):x\in X\}$ be a weak separation of $X$. Without
loss of generality, we may assume that each $U(x)$ is order-convex. For each
$x\in X$, define a subset $V(x)$ of $X$ as follows: $y\in V(x)$ if and only if there is a
finite sequence $\{x_{1}, \cdots, x_{n}\}$ of points of $X$ such that $x_{1}\in U(x),$ $x_{i+1}\in U(x_{i})$ for
$i<n$ and $y\in U(x_{n})$ .

We shall prove that the collection $\mathfrak{B}=\{V(x):x\in X\}$ is a partial separation
of $X$. It suffices to prove that $\mathfrak{B}$ satisfies the following conditions:

(1) $V(x)$ is an open neighborhood of $x$ for each $x\in X$,
(2) if $xeV(y)$ and $y\in V(z)$ , then $x\in V(z)$ , and
(3) if $x\in V(y)$ and $yeV(x)$ , then $x=y$ .
For each $xeX$, we have $U(x)\subset V(x)$ . Since $\mathfrak{U}$ is a weak separation of $X,$ $\mathfrak{B}$

satisfies (1). From the definition of $\mathfrak{B}$ , it is clear that $\mathfrak{B}$ satisfies (2). It follows
from the following claim that $\mathfrak{B}$ satisfies (3).

CLAIM. Let $\{x_{1}, \cdots , x_{n}\}$ be a finite sequence of points of $X$ such that $x_{i+1}$

$\in U(x_{i})$ for each $i\leqq n$ , where $x_{n+1}=x_{1}$ . Then $x_{1}=\cdots=x_{n}$ .

PROOF OF CLAIM. Let us call such a sequence $\{x_{1}, \cdots, x_{n}\}$ a cycle with
length $n$ . We shall prove by induction on the length. If $n=1$ , the claim is
obvious. Let $n>1$ and we have already proven the claim with length $<n$ . Let
$\{x_{1}, \cdots , x_{n}\}$ be a cycle with length $n$ . Then there is an $i\leqq n$ such that $x_{i-1}\leqq x_{i}$

and $x_{i+1}\leqq x_{i}$ , or $x_{i-1}\geqq x_{i}$ and $x_{i+1}\geqq x_{i}$ , where $x_{0}=x_{n}$ and $x_{n+1}=x_{1}$ . We con-
sider the first case only. If $x_{i+1}\leqq x_{i-1}(\leqq x_{i})$ , then $x_{i-1}\in[x_{i+1}, x_{i}]\subset U(x_{i})$ , be-
cause $U(x_{i})$ is order-convex. Since 1\ddagger is a weak separation of $X,$ $x_{i-1}=x_{i}$ and
hence, $x_{i+1}\in U(x_{i-1})$ . If $x_{i-1}\leqq x_{i+1}(\leqq x_{i})$ , then $x_{i+1}\in[x_{i-1}, x_{i}]\subset U(x_{i-1})$ . In
either case, we have $x_{i+1}eU(x_{i-1})$ . Hence $\{x_{1}, \cdots , x_{i-1}, x_{i+1}, \cdots, x_{n}\}$ is a cycle
with length $n-1$ . By the induction hypothesis, $x_{1}=\cdots=x_{i-1}=x_{i+1}=\cdots=x_{n}$ .
Moreover $x_{i}=x_{i+1}$ , because $x_{i}\in U(x_{i-1})=U(x_{i+1})$ and $x_{i+1}\in U(x_{i})$ . The proof is
completed.

THNOREM 4.13. Let $X$ be $a$ GO space. Then the following conditions are
equivalent.
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(a) $\mathcal{F}[X]$ is paracompact,
(b) $\mathcal{F}_{2}[X]$ is paracompact,
(c) $X$ is partially separated.

PROOF. This follows from Lemmas 4.4, 4.5 and Theorem 4.12 immediately.

COROLLARY 4.14. Let $X$ be $a$ GO space. Then the following conditions are
equivalent.

(a) $\mathcal{F}[X]$ is metrizable,
(b) $\mathcal{F}_{2}[X]$ is metrizable,

(c) $X$ is a first countable partially separated space.

PROOF. By D.J. Lutzer [25], $\mathcal{F}_{2}[X]$ is first countable if and only if $X$ is
first countable. Thus this follows from Theorem 4.13.

We furthermore characterize GO spaces constructed on separable LOTS’s
whose Pixley-Roy hyperspaces are metrizable.

THEOREM 4.15. Let $X=(Y, \tau)$ be $a$ GO space constructed on a separable LOTS
$(Y, <)$ . Then the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is metrizable,
(b) $\mathcal{F}_{2}[X]$ is metrizable,
(c) if we define

$I=\{x\in Y:\{x\}\in\tau\}$ ,

$L=\{xeY-I:]\leftarrow, x]\in\tau\}$ ,

$R=\{x\in Y-I:[x, \rightarrow[\in\tau\}$ ,

$E=Y-(I\cup L\cup R)$ ,

then
(i) $E$ is countable,

(ii) $R$ (resp. $L$ ) can be written as $R=\cup\{R_{n} : n\in N\}$ (resp. $L=\cup\{L_{n}$ : $n\in N\}$ )

such that $ cl_{\tau}R_{n}\cap L=\emptyset$ (resp. $ cl_{\tau}L_{n}\cap R=\emptyset$ ) for each $neN$,

(iii) if $x\in E\cap cl_{\tau}R_{n}$ , then for some $y<x,$ ] $y,$ $ x[\cap R_{n}=\emptyset$ , and
(iv) if $x\in E\cap cl_{\tau}L_{n}$ , then for some $z>x,$ ] $x,$ $ z[\cap L_{n}=\emptyset$ .

REMARK 4.16. In [6], H.R. Bennett, W.G. Fleissner and D.J. Lutzer ob-

tained another characterization.

PROOF OF THEOREM 4.15. $(a)\rightarrow(b)$ . Obvious.
$(b)\rightarrow(c)$ . This implication was in fact proved by H. R. Bennet, W. G. Fleissner
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and D.J. Lutzer in [6].
$(c)\rightarrow(a)$ . By Theorem 4.12, it suffices to prove that $X$ is weakly separated.

(Notice that $X$ is first countable.) Since $X=E\cup(\cup\{cl_{\tau}R_{n} : n\in N\})\cup(\cup\{cl_{\tau}L_{n} : neN\})$

$\cup I$ , by M.G. Bell [4], it suffices to prove that $cl_{\tau}R_{n}$ and $cl_{\tau}L_{n}$ are weakly

separated for $n\in N$. Fix $n$ and we shall prove that $cl_{\tau}R_{n}$ is weakly separated.
Using (ii), $ cl_{\tau}R_{n}\cap L=\emptyset$ . Clearly $ cl_{\tau}R_{n}\cap I=\emptyset$ . For each $x\in cl_{\tau}R_{n}$ , define an
open neighborhood $U(x)$ of $x$ in $X$ as follows:

(1) if $x\in R\cap cl_{\tau}R_{n}$ , let $U(x)=[x,$ $\rightarrow[$ .
(2) if $x\in E\cap cl_{\tau}R_{n}$ , then, using (iii), there is a $y<x$ such that ] $y,$ $x[\cap R_{n}$

$=\emptyset$ . Let $U(x)=$ ] $y,$ $\rightarrow[$ .
Let $ll=\{U(x):xecl_{\tau}R_{n}\}$ . Then $U$ is a weak separation of $cl_{\tau}R_{n}$ . To see

this, assume that $y\in U(x)$ and $x\in U(y)$ for some $x,$ $y\in cl_{\tau}R_{n}$ . We devide two

cases.

CASE 1. $x\in R\cap cl_{\tau}R_{n}$ . Since $U(x)=[x,$ $\rightarrow$ [, we have $x\leqq y$ . If $y\in E\cap cl_{\tau}R_{n}$ ,

then there is a $z<y$ such $that$ ] $z,$ $y$ [ $\cap R_{n}=\emptyset$ and $U(y)=$ ] $z,$ $\rightarrow[. Then]z,$ $y[\cap cl_{r}R_{n}$

$=\emptyset$ . Thus it follows that $x\leqq z$ and hence, $x\not\in U(y)$ , which is a contradiction.
Thus $y\in R\cap cl_{\tau}R_{n}$ . Hence $y\leqq x$ . We have $x=y$ .

CASE 2. $x\in E\cap cl_{\tau}R_{n}$ . Then there is a $z<x$ such that ] $z,$ $ x[\cap R_{n}=\emptyset$ and
$U(x)=]z,$ $\rightarrow$ [. Hence ] $z,$ $ x[\cap cl_{\tau}R_{n}=\emptyset$ . Since $yecl_{\tau}R_{n}$ , we have $x\leqq y$ . If
$yeR\cap cl_{\tau}R_{n}$ , then $x\neq y$ and hence, $x<y$ , which contradicts the fact that $ x\in$

$U(y)$ . Thus $y\in E\cap cl_{\tau}R_{n}$ . Hence we obtain $y\leqq x$ similarly. We have $x=y$ .
The proof is completed.

REMARK 4.17. The collection $\mathfrak{U}=\{U(x):x\in cl_{\tau}R_{n}\}$ constructed in the proof

of Theorem 4.15 is in fact a partial separation of $cl_{\tau}R_{n}$ .

As other classes of spaces for which weak separatedness implies partial

separatedness,

THEOREM 4.18. Let $X$ be a semi-stratifiable space. Then the following con-
ditions are equivalent.

(a) $\mathcal{F}[X]$ is paracompact,
(b) $\mathcal{F}_{2}[X]$ is paracompact,
(c) $X$ is $\sigma$ -discrete,
(d) $X$ is partially separated.

PROOF. This follows from H.J.K. Junnila [21].
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The following results are essentially proved by T. Przymusi\’{n}ski (see [31, \S 4])
and thus, the proofs are omitted.

THEOREM 4.19. Let $X$ be a locally $\check{C}ech$ complete Tychonoff space. Then
the following conditions are equivalent.

(a) $\mathcal{F}[X]$ is paracompact,
(b) $\mathcal{F}[X]$ is normal,
(c) $\mathcal{F}_{2}[X]$ is paracompact,
(d) $\mathcal{F}_{2}[X]$ is normal,
(e) $X$ is scattered,
(f) $X$ is partially separated.

THEOREM 4.20. Let $X$ be a compact Hausdorff space. Then the following
conditions are equivalent.

(a) $\mathcal{F}[X]$ is metrizable,
(b) $\mathcal{F}_{2}[X]$ is metrizable,
(c) $X$ is countable,
(d) $X$ is a first countable partially separated space.
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