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UNIFORM VECTOR BUNDLES OF RANK $(n+1)$ ON $P_{n}$

By

Edoardo BALLICO

Introduction.

Here vector bundle (or sometimes bundle) means aIgebraic vector bundle on
an algebraic variety. Every variety is defined over an algebraically closed field
$K$ with $ch(K)=0$ . We write $P_{n}$ $:=P_{n}(K)$ . A vector bundle $E$ on $P_{n}$ is uniform
if there exists a sequence of integers $(k;r_{1}, \cdots, r_{k} ; a_{1}, \cdots, a_{k})$ (called the
splitting type of $E$ ) with $a_{1}>\cdots>a_{k}$ and such that for every line $L$ of $P_{n}$ :
$E_{L}\cong\oplus_{i=1}^{K}r_{i}\mathcal{O}_{L}(a_{i})$ . If the rank $r$ of $E$ is low with respect to the dimension $n$

of $P_{n}$ , there are only a few uniform vector bundles of rank $r$ . See [1], [2], [5]

for the following

THEOREM. For $r\leqq n,$ $n\geqq 2,$ $r=3$ and $n=2$ , the uniform vector bundles of
rank $r$ on $P_{n}$ are (up to isomorphism) direct sum of line bundles, $\Omega_{P_{n}}^{1}(a),$ $TP_{n}(b)$ ,
$S^{2}TP_{n}(c)$ , with $a,$ $b,$ $c$ integers.

In particular every such bundle is homogeneous, $i.e$ . for every automorphism
$g$ of $P_{n},$ $g^{*}(E)\cong E$ . But for $r\geqq 2n$ there exists uniform vector bundles of rank
$r$ on $P_{n}$ which are not homogeneous. Thus it remains open the range $n+1\leqq r<2n$ .
Ph. Ellia in [3] proved that a uniform $rank-(n+1)$ vector bundle on $P_{n}$ is
decomposable if $n=3,4,5$ or $n=p-1$ where $p$ is a prime number. His methods
give also many other partial results on $rank-(n+1)$ vector bundles on $P_{n}$ , giving
evidence to the following

TEEOREM 1. Every uniform vector bundle of rank $n+1$ on $P_{n}$ is isomorphic
either to a direct sum of line bundles or to the direct sum of a line bundle and of
$\Omega_{P_{n}}^{1}(b)$ or $TP_{n}(a)$ .

In this paper we prove theorem 1, using the methods of [3]. To pass from
[3] to theorem 1 no geometry is involved; the only problems are about roots of
unity, roots of polynomials or decomposition of polynomials. Thus the proofs are
tricky.

We want to thank U. Zannier for useful conversations.
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\S 0. Notations. For more details, see [2], [3].

Every vector bundle $E$ on $P_{1}$ is a direct sum of line bundles and thus it has

a natural filtration. If $E\cong\oplus_{i=1}^{K}r_{i}\mathcal{O}_{P_{1}}(a_{i})$ with $a_{1}>\cdots>a_{k}$ , the j-th term of the
filtration $HN^{j}E$ is the unique subbundle of $E$ isomorphic to $\oplus_{i=1}^{j}r_{j}\mathcal{O}_{P_{1}}(a_{i})$ . This
is the Harder-Narasimhan filtration. Now we define the relative Harder-

Narasimhan filtration. Let $G(1, n)$ be the grassmannian of lines in $P_{n}$ and
$F_{n}$ $:=\{(x, 1)\in P_{n}\times G(1, n):x\in 1\}$ the incidence variety. We have the projections
$p:F_{n}\rightarrow P_{n},$ $q:F_{n}\rightarrow G(1, n)$ .

PROPOSITION [2] Let $E$ be a uniform vector bundle on $P_{n}$ of splitting type
$(k;r_{1}, \cdots, r_{k} ; a_{1}, \cdots, a_{k})$ . There are bundles $E_{i}$ of rank $r_{i}$ on $G(1, n)$ such

that $p^{*}E$ has a filtration by subbundles whose graded bundle $is\oplus_{i=1}^{k}[q^{*}E_{i}\otimes p*o_{P_{n}}(a_{i})]$ .
This is the $HN$ (or Harder-Narasimhan) filtration:

$HN^{j}p^{*}E:={\rm Im}[q^{*}q_{*}p^{*}E(-a_{j})\otimes p*o(a_{j})\rightarrow p^{*}E]$ .

We write $G:=G(1, n)$ and $F:=F_{n}$ if there is no possibility of misunder-

standing. Let $H$ be the tautological subbundle on $P_{n}i.e$ . let $H$ be $\mathcal{O}_{p_{n}}(-1)$ .
Let $Q$ be the tautological quotient bundle on $P_{n}i.e$ . let $Q=TP_{n}(-1)$ . Let $N$

be the tautological quotient bundle of rank $(n-1)$ on G. $F$ is naturally identified

to $P(Q)$ and this identification determines on $F$ a relative tautological subline
bundle $H_{Q}$ . We consider the Chern classes (in $H^{*}(F, Z)$ over $C$ or, if you
prefer, in general in the Chow ring) $U:=c_{1}(p^{*}H),$ $V:=c_{1}(H_{Q})$ .

Consider the polynomial

$R(X, Y)=X^{n}+\cdots+X^{l}Y^{n-l}+\cdots Y^{n}$

In [2] it is proved the following result (Leray-Hirsch’s theorem):

a) The natural morphism $t$ of $Z[U, V]$ into $H^{*}(F, Z)$ induces an isomor-
phism of $H^{*}(F, Z)$ with $Z[U, V]/(R(U, V),$ $U^{n+1}$ ).

b) The subalgebra $p^{*}H^{*}(P_{n}, Z)$ is the image by $t$ of the algebra of poly-

nomials in the variable $U$ .
c) The subalgebra $q^{*}H^{*}(G, Z)$ is the image by $t$ of the algebra of symmetric

polynomials in $U,$ $V$ .
d) The Picard group of $F$ is the free abelian group generated by $p^{*}H$ and

$H_{Q}$ . Every vector bundle $E$ of rank $r$ on a projective variety has the Chern
polynomial

$C_{E}(T):=T^{r}-c_{1}(E)T^{r-1}+\cdots+(-1)^{r}c_{r}(E)$ .

The Chern polynomial has the following properties:
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i) if $L$ is a line bundle, then $C_{E\otimes L}(T)=C_{E}(T-c_{1}(L))$ ;

ii) if $E$ has a filtration with graduation $\oplus_{i}E_{i}$ , then $C_{E}=\Pi {}_{i}C_{E_{i}}$ .

Now let $E$ be a uniform vector bundle of rank $r$ on $P_{n}$ of splitting type

$(k;r_{1}, \cdots, r_{k} ; a_{1}, \cdots, a_{k})$ . Consider $P(T, U)=T^{r}+c_{1}UT^{r-1}+\cdots+c_{r}U^{r}$ the Chern

polynomial of $p^{*}E$ , where $c_{i}$ are the Chern classes of $E$ (recall the definition of
$U)$ . Then ii) applied to the HN-filtration of $E$ gives the following relation in

$Z[T, U, V]$ :
$P(T, U)+Q(T, U, V)U^{n+1}+M(T, U, V)R(U, V)=\Pi_{i=1}^{k}S_{i}(T+a_{i}U, U, V)$

where $Q(T, U, V)$ is a homogeneous polynomial of degree $r-n-1,$ $M(T, U, V)$

is a homogeneous polynomial of degree $r-n$ and $S_{i}(T, U, V)$ is the Chern poly-

nomial of $q^{*}E_{i}$ (it is homogeneous of degree $r_{i}$ and symmetric in $U$ and $V$ ). In
particular let $E$ be a uniform vector bundle on $P_{n}$ of rank $n+1$ and splitting

type { $k;r_{1},$ $\cdots,$ $r_{k}$ ; $a_{1},$
$\cdots$ , $a_{k}$ ). We have the following fundamental relation

$(\mathcal{E})$ $P(T, U)+xU^{n+1}+(aT+bU+cV)R(U, V)=\Pi_{l}^{k_{=1}}S_{i}(T+a_{i}U, U, V)$

with $P(T, U)=T^{n+1}+c_{1}UT^{n}+\cdots+c_{n}U^{n}T$ the Chern polynomial of $p^{*}E,$ $x,$ $a,$
$b$

and $c$ integers. $(\mathcal{E}_{j})$ is the relation obtained by $(\mathcal{E})$ replacing $T$ by $T-a_{j}U$ :

$(\mathcal{E}_{j})$ $P_{j}(T, U)+x_{j}U+(aT+b_{j}U+cV)R(U, V)=\Pi_{i=1}^{k}S_{i}(T+(a_{i}-a_{j})U, U, V)$

with $P_{j}(T, U)$ Chern polynomial of $p^{*}(E(-a_{j}))$ and $b_{j}=-aa_{j}+b$ . In this paper
$x_{j},$ $a,$ $b_{j},$ $c$ will have always the meaning given by $(\mathcal{E}_{j})$ . From the symmetry

of $S_{j}(T, U, V)$ it follows [3 lemma III. 1.2] that either $x_{j}=0$ or $x_{j}=c-b_{j}$ .

\S 1. We fix a uniform vector bundle of rank $n+1$ and splitting type
$(k;r_{1}, \cdots, r_{k} ; a_{1}, \cdots, a_{k})$ . For simplicity we consider always the geometrical

situation of $(\mathcal{E}_{j})$ , avoiding the case in which $(\mathcal{E}_{j})$ does not come from the HN-
filtration of such a bundle. If $k=1$ or $k=2,$ $r=n$ or 1, then theorem 1 is
satisfied [3, IV. 2]. Thus we may assume $k\neq 1$ , if $k=2,$ $r\neq n$ or 1, $n\geqq 7$

[3, Chapter 6] and that the $a_{i}\prime s$ are consecutive (otherwise $E$ splits by [2]).

With these assumptions the proof of theorem 1 is purely algebraic: it follows

from the relations $(\mathcal{E}_{j})$ .
Ellia’s machinery permits to handle easily the case $c=0$ [ $3$ , Chapter III] and,

with much more efforts, the case “
$x_{j}=c-b_{j}$ for every $j$ . The main technical

point of this paper is the following lemma, proved in the second paragraph:

LEMMA 1. If $x_{j}=0$ , then $c=b_{j}=0$ .

For the proof of lemma 1 we will show that if $c\neq 0$ or $b_{j}\neq 0$ , then $P_{j}(T, 1)$
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has $(n+2)$ roots, impossible. But for some detail we use the techniques of the
first paragraph. The reader can verify that this is not a circular proof. We
say that $t$ is a primitive solution of $(\mathcal{E}_{i})$ if in $(\mathcal{E}_{i})$ :

1) $x_{i}=c-b_{i}$ ;
2) $t$ is a root of $S_{i}(0,1, V),$ $t\neq 1$ , and $t$ is a simple root of the polynomial

$D_{i}(V):=cV^{n+1}+(c+b_{i})(V^{n}+\cdots+V)+c$ .
Ellia assume $x_{i}\neq 0$ instead of condition 1). By [3, lemma III. 1.2], $x_{i}\neq 0$ implies
$x_{i}=c-b_{i}$ . The condition 1) is sufficient for us, even if $b_{i}=c$ .

LEMMA 2. Let $t_{1},$
$\cdots,$

$t_{s}$ be primitive solutions of $(\mathcal{E}_{i})$ . If for every $1\leqq h\leqq 1$

there exists $s(h)$ such that $t_{sth)}^{n+1-h}\neq 1$ , then $c_{n+1-h}=0$ for $1\leqq h\leqq 1$ .

The proof is exactly the same of [3, lemme V. 1.1].

Recall that Ellia [3, lemme III. 1.3] proved that the polynomial $D_{i}(V)$ defined
in (1) has, for $c\neq 0$, at most 3 real roots and that every multiple root of $D_{i}$ is
a real root.

Copying [3, Remarque V. 3.3] we have the following

REMARK 1. Consider $S(v)=Mv^{2}+Dv+M$, $A(v)=Mv^{8}+Zv^{2}+Zv+M=$

$(1+v)(Mv^{2}+(Z-M)v+M)$ . Then $S(v)$ has a double roots if and only if $S(1)=0$

or $S(-1)=0$ . Thus if $x_{i}=c-b_{i},$ $r_{i}=2$ or $r_{i}=3$ and there is no primitive solu-
tion of $(\mathcal{E}_{i})$ , then either $c=-(nb_{i})/(n+2)$ or, if $n$ is odd, $c=b_{i}$ or, if $n$ is even,
$c=(nb_{i})/(n+2)$ .

LEMMA 3. A primitive root of unity of order $r,$ $2<r\leqq n$ , is a root of the
polynomial $A(x)=cx^{n+2}+bx^{n+1}-bx-c,$ $c\neq 0$, if and only if $b=0$, $\pm c$ or, for
$n\equiv 1$ mod6, $b=-2c$ , for $n\equiv 3$ mod6, $2b=-c$ .

PROOF. If $r>12$ or $r=5,7,9,11$ this is in [3, V. 4.4 and V. 4.6]. The
remaining cases can be checked directly. Q.E.D.

By lemma 2 and lemma 3 if there exists an index $i$ with $x_{i}=c-b_{i}$ , $c\neq 0$,

$-\frac{1}{2}b_{i},$ $-2b_{i}$ , except in a few cases in $(\mathcal{E}_{i})$ we have $c_{1}=\cdots=c_{n}=0$ . We want

to show that there exists always an index $i$ such that in $(\mathcal{E}_{i})c_{1}=\cdots=c_{n}=0$ .
By [3, Chapter III] this is the case if $c=0$. Thus by lemma 1 we may assume
for this problem $x_{i}\neq 0$ for every $i$ and $c\neq 0$ .

LEMMA 4. Assume $r\geqq 3,$ $x_{i}=c-b_{i},$ $c\neq 0,$ $b_{i}=-2c$ if $n\equiv 1mod 6,2b_{i}=-c$

if $n\equiv 3mod 6$ . Then in $(\mathcal{E}_{i})$ we have $c_{1}=\cdots=c_{n}=0$ .
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PROOF. Under both assumptions the polynomial $A(x)=cx^{n+2}+b_{i}x^{n+1}-b_{i}x-c$

$=(x-1)D_{i}(x)$ has no multiple root since it is easy to check that it has no real
multiple root and by [3, lemme III. 1.3] any multiple root of $A(x)$ is real. The
only cyclotomic polynomial which divide $D_{i}(x)$ is $x^{2}-x+1$ . Thus if $r\geqq 3$ , we
may apply lemma 2. Q.E.D.

To use the general machinary of [3], we have to control the case of primi-
tive solutions of $(\mathcal{E}_{i})$ which are roots of unity.

LEMMA 5. Assume $a=0$ and either $b_{i}=0$ or $b_{i}=-c$ . Then we have $c=0$ or
$k=1$ .

PROOF. Assume $c\neq 0$ . We have $b_{i}=b_{j}$ for every $i,$ $j$. We put $b:=b_{i}$ .
Suppose $b=-c$ . Then the left-hand side of $(\mathcal{E}_{i})$ is $P_{i}(T, U)+c(V^{n+1}+U^{n+1})$ . If
in $(\mathcal{E}_{i})$ we put $U=1$ , $V=z$ with $z^{n+1}=-1$ , $S_{j}(j-i, 1, z)=0$, we obtain that
$(j-i)(-1+z)$ is a root of $P_{i}(T):=P_{i}(T, 1)$ (see the proof of lemma 8 in the next
paragraph). In the same way, taking $V=1,$ $U=z$ as above, we obtain the roots
$-(j-i)(-1+z^{-1})$ . We obtain $2n-2r_{i}+2$ distinct roots of $P_{i}(T)$ since $1(-1+z)$

$=k(-1+w)$ with 1, $k$ non-zero integers and $z^{n+1}=w^{n+1}=-1$ implies $z=w$ by
lemma 7 in the next paragraph. Thus we have $k\leqq 2$ . Assume $k=2$ , thus $r_{1}=r_{2}$ .
We have shown that $P_{2}(T)=P_{1}(T-1)$ has $2n-2r_{1}+2$ roots of type $\pm(-1+z)$

with $z^{n+1}=-1$ and $P_{1}(T)$ has $2n-2r+2$ roots of type $\pm(-1+w)+1$ with $w^{n+1}$

$=-1$ . An equality $\pm(-1+z)=\pm(-1+w)+1$ for such $w,$ $z$ implies $z=w,$ $-w$ ,
$w^{-1},$ $-w^{-1}$ and $z$ of order 3 or 6. This is impossible since $n$ is odd $(r_{1}=r_{2})$ and
$z^{6}=1$ implies $z^{n+1}=1\neq-1$ . For $b=0$ a different proof is given in [3, V. 5.1.1].

Q. E. D.

LEMMA 6. Assume $a=0,$ $c\neq 0,$ $k\neq 1,$ $x_{j}=c-b_{j}$ . Then there exists an index
$i$ such that in $(\mathcal{E}_{i})$ we have $c_{l}=0$ for $1\leqq t\leqq n$ .

PROOF. By lemma 5 we may assume that $b:=b_{j}\neq-c$ . The proof of [3,

V. 3.6.] shows that there exists an index $i$ and a primitive solution $u$ for $(\mathcal{E}_{i})$

with
$\pi/(n+1)<\arg(u)<5\pi/(n+1)$ (2)

In particular $r_{i}\geqq 2$ . If we cannot apply lemma 2, $i.e$ . if $u$ is a root of unity,
then either $b=c$ (case solved by lemma 1 or lemma 10) or $2\leqq r_{i}\leqq 3,$ $n\equiv 1$ mod6
or $n\equiv 3$ mod6, $u^{6}=1$ . But for $n\geqq 14$ this contradicts (2). If there are at least
4 odd $r\prime s$ , then $c=0$ (same proof as [3, V. 3.1]. Thus there exists an index $j$

with $r_{j}=2$. Since $S_{j}(k-j, 1, x)$ is a different factor of $D_{j}(x)$ (unless the linear
term of $T$ in $S_{j}(T, U, V)$ vanishes) then we obtain easily $r_{1}=2$ or $r_{2}=2$ and
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then, for the same reason, $r_{s}=2$ for every index $s$ . We have only to control

the cases $n=7,9$ or 13. Consider $S_{1}(T, U, V)=T^{2}+dT(U+V)+A(U^{2}-UV+V^{2})$ .
Since $c\neq 0,$ $A\neq 0$ . By the restriction to a fiber of the Harder-Narasimhan filtra-

tion we obtain $A\geqq 0$ since a subbundle of a trivial bundle has non-negative even
Chern classes. We consider the decomposition of $D_{1}(V)$ by the factors

$S_{1}(s-1,1, V)$ . From the terms of degree $n+1,$ $n$ and $0$ we obtain $12/A+6d/A$

$=9/2$ for $n=7,42/A+21d/A=15/2$ for $n=13$ and $30/A+15d/A=7$ for $n=9$ .
This is impossible. Q. E. D.

PROPOSITION 1. Assume $c\neq 0,$ $k>1$ . Then there exists an index $i$ such that

in $(\mathcal{E}_{i})$ we have $c_{s}=0$ for $1\leqq s\leqq n$ .

PROOF. We may assume $a\neq 0$, $x_{j}\neq 0$ for every index $j$ . Assume $b_{j}=0$ .
Then $(cV+b_{j})R(1, V)+c-b_{j}=c(V^{n+1}+\cdots+V+1)$ . We have $c_{s}=0$ for $1\leqq s\leqq n$

in $(\mathcal{E}_{j})$ by lemma 2 if the order of the roots of $S_{j}(0,1, V)$ have $n+2$ as minimum
common multiple. This happens if $r_{j}\geqq(n+2)/2$, for examples by the degrees of

cyclotomic polynomials [4, pag. 206]. Assume $b_{h}=-c$ . Then $(cV+b_{h})R(1, V)$

$+c-b_{h}=c(V^{n+1}+1)$ . As above we have $c_{1}=\cdots=c_{n}=0$ in $(\mathcal{E}_{h})$ if $r_{h}\geqq(n+1)/3$ .
In fact $v^{k}=1,$ $k\leqq n+1,$ $v^{n+1}=-1$ implies $k$ even, say $k=2s,$ $v^{s}=-1,$ $s\leqq(n+1)/3$ .
Suppose the thesis does not hold. There can be other factors $S_{i}$ , but, if we
have $j,$ $h$ with $b_{j}=0,$ $b_{h}=-c$ , at most one factor $S_{i}$ with $r_{i}=2$ . This factor

can exist only if $n\equiv 1,3mod 6$ . In fact the case $b_{i}=cn/(n+2)$ cannot occur if
$b_{j}=0,$ $b_{h}=0$ , since $b_{i}=b_{j}+(j-i)a$ . Furthermore if there exists $j$ with $b_{j}=0$ ,

there exists at most a factor $S_{i}$ with degree $r_{i}=1$ and it exists only for $n$ even.
Thus we have $(n+2)/2+(n+1)/3+2+1\geqq n+1i.e$ . $n\leqq 20$ . The factor with $r_{i}=2$

could exist only for $n=3,7,13,15$ or 19; if it does not exist, we have the better

inequality $n\leqq 8$ . Thus we may assume $n=7,8,9,13,15$ or 19. For $n=19$ ,

$V^{20}+1=\phi_{h0}(V)\cdot\phi_{8}(V)$ , where $\phi_{d}$ is the cyclotomic polynomial of order $d$ ; since
$\deg\phi_{40}=16>(n+1)/2,$ $b_{h}=-c$ cannot happen. For $n=13,$ $V^{14}+1=\phi_{4}(V)\cdot\phi_{28}(V)$

and $\deg\phi_{28}=12>(n+1)/2$ . For $n=9,15n+2$ is prime, $V^{n+1}+V^{n}+\cdots+V+1$ is

irreducible, thus $b_{j}=0$ implies $k=1$ . The remaining possibility (when either
$b_{j}\neq 0$ for every $j$ or $b_{h}\neq-c$ always or $n=7,8$) can be checked directly. We

have to use remark 1 to analyze the existence of primitive solution for $(\mathcal{E}_{i})$ if

$r_{i}=2,3$ and use [3, V. 3.1] and its extension to the case $n$ odd. Q.E.D.

If $c=0$ , then ([3, Chapter III]) there exists an index $j$ such that in $(\mathcal{E}_{j})$ we
have $c_{1}=\cdots=c_{n}=0$ ; furthermore if $c=0,$ $S_{j}(0,1, V)$ is divided by $V$ . We use
always the above notations, $i.e$ . we assume $c_{s}=0$ in $(\mathcal{E}_{j})$ by prop. 1. At this

point, modulo the proof of lemma 1 given in the next paragraph, to prove theo-
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rem 1 it is sufficient to copy, with mild simplifications, the proofs in [3, V. 6].

We put $b:=b_{j},$ $u_{i}$ $;=a_{i}-a_{j},$ $1\leqq i\leqq k$ . We have $u_{j}=0$ and the $u_{i}$ are consecutive
by assumptions. Thus $u_{i^{=}}$ ] $-i$ . In $(\mathcal{E}_{i+j})$ the left-hand side is

$T^{n+I}+\cdots+(-1)^{n}(n+1)i^{n}TU^{n}+U^{n+1}((-1)^{n+1}i^{n+1}+c-b)$

$+(aT+(-ai+b)U+cV)R(U, V)$ .
Since either 1) $x_{i+j}=0$ or 2) $x_{i+j}=c-b_{i+j}$ for every $i$ by [3, lemme III. 1.2], we
have respectively either 1) $i^{n+1}=(-1)^{n}(c-b)$ or 2) $i^{n}=-(-1)^{n}a$ . The condition
$c_{1}=0$ in $(\mathcal{E}_{j})$ implies

$\sum_{i=1}^{k}r_{i}(i-j)=0$ (3)

and thus $k\neq 2$ and $j\neq l,$ $k$ . 1) and 2) implies $k\leqq 4$ . If $n$ is odd, $x_{j-1}=x_{j+1}=0$.
Thus the left-hand side of $(\mathcal{E}_{j})$ is $T^{n+1}$ for $n$ odd by lemma 1 and, for $n$ odd,

the vector bundle $E$ splits and the theorem is proved.

Thus we may assume $n$ even. We have $a=-1$ . Suppose $k=4$ . Taking

eventually the dual vector bundle, we may assume $j=2$ . Then $x_{4}=0$ and by

lemma 1 $b_{4}=c=0$ . The condition $b_{4}=0$ is equivalent to $b=-2$ . From 1) we
have $2^{n+1}=-b$ , contradiction.

Thus we may assume $n$ even, $k=3,$ $a=-1,$ $j=2$ . (3) implies $r_{1}=r_{3}$ . It

cannot happen $x_{1}=0$ or $x_{3}=0$ . For example $x_{1}=0$ implies $b_{1}=b-1=0$ , $c=0$.
The left-hand side of $(\mathcal{E}_{2})$ is $(b=1, a=-1, c=0)$

$T^{n+1}-TR(U, V)+UR(U, V)-U^{n+1}=(T-U)(R(T, U)-R(U, V))$

$=(T-U)(T-V)\Sigma_{n-1}(T, U, V)$

where we write
$\Sigma_{n-1}(T, U, V)=\sum_{r+s+t=n- 1}T^{r}U^{s}V^{l}$ .

$\Sigma_{n-1}(T, U, V)$ is irreducible, thus $x_{1}\neq 0$, because this contradicts the hypotheses

that, for $c=0,$ $V$ devides $S_{2}(0,1, V)$ . Now assume $r_{1}\geqq 4$ . As in [3, V. 6.3.1]

we obtain $c=0$ and, taking $T=0$ in $(\mathcal{E}_{2})$ the left-hand side is $b_{1}V(V^{n-1}+\cdots+1)$ .
If $b_{1}\neq 0$, as in [3, pag. 48-49], we obtain a contradiction. If $b_{1}=0,$ $i.e$ . $b=-1$ ,

we are in the case $a=-1$ , $b=-1$ , $c=0$ , just solved. Thus we may assume
$r_{1}=r_{3}\leqq 3$ . First assume $\gamma_{1}$ odd. Since $n$ is even, by [3, lemme V. 3.1] we have
$c=0$ . The relation $(\mathcal{E}_{r})$ gives, for $T=0$, the identity

$bV(V^{n- 1}+\cdots+1)=S_{1}(-1,1, V)S_{2}(0,1, V)S_{3}(1,1, V)$

and, since $n$ is even, every $S$ has a real root, which is absured unless $b=0$ .
Assume $b=0$ . The left-hand side of $(\mathcal{E}_{2})$ is $T(T^{n}-R(U, V))$ and $T^{n}-R(U, V)$

is irreducible by the Eisenstein’s criterion, contradiction. The case $r_{1}=r_{3}=2$ is
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verbatim [3, V. 6.4.2 case (2)]. The proof of theorem 1 is flnished, modulo the
proof of lemma 1.

\S 2. In this paragraph we prove lemma 1. Thus we assume $x_{j}=0$ and
write $b,$ $r$ instead of $b_{j},$ $r_{j}$ ; $P(T):=P_{j}(T, 1)$ where $P_{j}(T, U)$ is defined by $(\mathcal{E}_{j})$ .
We will prove, under the assumption $c\neq 0$ or $b\neq 0$, that $P(T)$ has $n+2$ roots, a
contradiction.

We use freely particular cases of the following lemma.

LEMMA 7. Let $d,$ $s$ be non zero integers, $v,$ $w,$ $z$ roots of unity with $v\neq 1$ .
Assume

$d(-1+z)w=s(-1+v)$ (4)

Then $zw^{2}=v$ . Furthermore $z$ and $v$ are conjugate unless

1) $s=2d,$ $w^{\$}=-1,$ $z=-1,$ $v=w^{-1}$ ;
2) $s=-2d,$ $z=-1,$ $w^{3}=-1,$ $v=-w^{-1}$ ;
3) $2s=d,$ $w^{3}=1,$ $v=-1,$ $z=w$ ;
4) $2s=-d,$ $w^{s}=1,$ $v=-1,$ $z=-w$ .

Furthermore if $w^{2}=1$ , then the $z=v,$ $s=dw$ .

PROOF. We have $\arg(-1+z)^{2}+\arg(w)^{2}\equiv\arg(-1+v)^{2}mod 2\pi$ . $Since-1+e^{ix}$

$=-2ie^{ix/2}\sin(x/2)$ , we have $\arg(z)-\pi/2+2\arg(w)\equiv\arg(v)-\pi/2mod 2\pi i.e$. $v=$

$zw^{2}$ . If $w^{2}=1$ , then we have finished. Thus we may assume $w$ not rational.
From $zw^{2}=v$ and (4) it follows $z,$ $v\in Q(w)$ and the minimal polynomials of $w$

over $Q(z)$ and $Q(w)$ have degree at most 2. Thus either $w^{3}\in Q(z)$ or $w^{2}\in Q(z)$ .
But $w^{2}\in Q(z)$ implies $w\in Q(z)$ by (4). Assume $w^{3}\in Q(z)$ , $w\not\in Q(z)$ ; we have
$ord(w)=3ord(z)$ or $ord(w)=6ord(z)$ . From $d(-1+z)w^{2}=s(-w+zw^{3})$ , we obtain
$-dw^{2}+dzw^{2}+sw\in Q(z);szw^{g}-dzw+dw\in Q(z)$ , i.e. $-dw^{2}+d^{2}w/s-d^{2}w/(sz)$ is
in $Q(z)$ , implies $dzw^{2}+sw-d^{2}w/s+d^{2}w/(sz)\in Q(z)i.e$ .

$w(-2d^{2}/s+d^{2}/k^{2}+s+d^{2}z/s)\in Q(z)$ .
Thus, since by assumption $w\not\in Q(z)$ , $d^{2}z^{2}+z(-2d^{2}+s^{2})+d^{2}=0$ . This implies

either $z=-1,4d^{2}=s^{2}$, or $-2d^{2}+s^{2}=\pm d^{2}$ . In the last case $d^{2}=s^{2}$ (since $3d^{2}=s^{2}$

is impossible) and taking absolute values in (4) we obtain $z=v$ or $z=v^{-1}i.e$ . $z$

and $v$ are conjugate. If $z=-1,$ $s=2d$ , we have case 1), otherwise case 2). By

symmetry if $w\not\in Q(v)$ , either $z$ and $v$ are conjugate or we are in cases 3) or 4).

Thus we may assume $Q(z)=Q(w)=Q(v)$ . Hence either $z$ is conjugate to $v$ or $z$

is conjugate to $-v$ . Assume for example $ord(z)<ord(v)$ . Then $ord(v)=2ord(z)$
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and either $ord(w)=ord(z)$ or $ord(w)=ord(v)$ . In both cases $w^{2ord(z)}=1$ and $v=zw^{2}$

gives the contradiction. Q.E. D.

LEMMA 8. $x_{j}=0$ implies either $c=b_{j}=0$ or $2r_{j}\geqq n$ .

PROOF. Assume $c\neq 0$ or $b:=b_{j}\neq 0$ ; recall $r=r_{j}$ . Then from $(\mathcal{E}_{j})$ we obtain,
taking $T=0$, the fundamental relation

$(cV+bU)R(U, V)=\Pi_{i=1}^{k}S_{i}((i-])U, U, V)$ (5)

Fix $i\neq j$ . Let $A_{i}$ be the set of root of unity $w$ satisfying $(S_{i}(i-j, 1, w))/(cw+b)$

$=0$ . For some $F_{i},$ $F_{i}^{\prime},$ $F_{i^{\prime\prime}},$ $S_{i}(T+(i-j)U, U, V)=TF_{i}+S((i-j)U, U, V)$ implies
$S_{i}(T, U, V)=(T-(i-j)U)F_{i}^{\prime}+S_{i}((i-j)U, U, V)=(T-(i-\gamma)V)F_{i^{\prime\prime}}+S_{i}((i-j)V, V, U)$

since $S_{i}(T, U, V)$ is symmetric in $U,$ $V$ . Thus we have

$S_{i}(T+(i-])U, U, V)=(T+(i-j)U-(i-j)V)G_{i}+S_{i}((i-j)V, V_{f}U)$ (6)

for some $G_{i}$ . If in (6) we take $U=1,$ $V=t\in A_{i}$ , we obtain $P((i-j)(-1+t))=0$

because $S_{i}((i-j)U, U, V)$ is a product of symmetric divisor of $R(U, V)$ and even-
tually a constant multiple of $(cV+b)$ .

If in (6) we take $U=t,$ $V=1$ , we obtain that $(i-J)(-1+t)t^{-1}=-(i-])(-1+t^{-1})$

is a root of $P(T)$ . Since $t$ and $t^{-1}$ are conjugate, they are both roots of
$S_{i}(i-], 1, V)$ . Thus $P(T)$ has at least $2n-2r$ distinct roots (by lemma 7) of a
very particular form. Thus $2n-2r\leqq n$ . Q.E.D.

REMARK 2. The proof of lemma 8 shows that if $x_{j}=0,$ $c$ and $b_{j}$ not both
$0,$ $P(T)$ has at least $2n-2r$ non-zero distinct roots of a very particular type.

LEMMA 9. $x_{j}=0$ implies $b_{j}=0$ or $r_{j}\geqq n$ .

PROOF. Take $S_{j}(T, U, V)=\sum_{h\geq 0}T^{h}B_{h}(U, V)$ . Let $w$ be a root of $B_{0}(1, V)$

$=0$ . From $(\mathcal{E}_{j})$ , deriving with respect to $T$ at the point $T=0,$ $U=1,$ $V=w$ , we
obtain

$c_{n}=(\Pi_{i\neq j}S_{i}(i-J, 1, w)(B_{1}(1, w):=(cw+b)B(w)B_{1}(1, w)$

In the same way for $T=0,$ $U=w,$ $V=1$ , we obtain

$c_{n}w^{n}=(c+bw)B(w)B_{1}(1, w)$

From this relation it follows either $c=0$ or $bw=bw^{n}$ for any $w$ with $B_{0}(1, w)$

$=0$ . Assume $b\neq 0$ . Then since $2r\geqq n$ , we obtain $c_{n}=0$ . Thus $B_{1}(1, V)=0$ since
it has degree $r-1$ and $r$ distinct roots. Let $t$ be the largest integer $n$ such that
$c_{l}\neq 0$ . If $t=0,$ $P(T)=T^{n+1}$ and the proof of lemma 8 shows that $r\geqq n$ (in fact
in this case we have $k=1$ and $E$ is a direct sum of line bundles). Now assume
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$t>0$ . We have $c_{s}=0,$ $B_{s}(U, V)=0$ for $s>t$ exactly as above. Deriving $(e_{j})$ with
respect to $T$ at $T=0,$ $U=1,$ $V=w$ and at $T=0,$ $U=w,$ $V=1$ , we obtain $(c+bw)$

$=w^{t}(cw+b)$ i.e. $(cx^{l+1}+bx^{l}-bx-c)$ has cyclotomic polynomials as divisor.
Assume $c\neq 0$ . Then by lemma 3 this implies $b=0$ or $b=\pm c$ . Suppose $b=\pm c$ ;

we have $w^{t}=1$ for every root $w$ of $B(1, V)=0$ . Since $2r\geqq n$ , we have $t=r=$

$[(n+1)/2]$ and $P(T)$ has $0$ as a root of multiplicity at least $n/2+1$ . Thus
remark 2 gives the contradiction. If $c=0$, the proof is even simpler. Q.E.D.

LEMMA 10. $x_{i}=x_{j}=0$ for $i\neq j$ implies $c=b_{j}=a=0$ .

PROOF. We may assume $b_{i}=b_{j}=0$ and thus $a=0$ . Assume $c\neq 0$ . Then
$2r_{j}\geqq n,$ $2r_{i}\geqq n$ implies $r_{i}+r_{j}\geqq n$ , thus $k\leqq 3$ and if $k=3,$ $r_{h}=1$ . It is easy to
prove, as in the proof below of lemma 1, that $P(T)$ has more than $n+1$ roots,

contradiction. We use the relation $P(T)=P_{i}(T+j-i)$ and the fact, easily checked
directly, that an equation $1\pm(-1+t)=\pm(-1+w)$ with $t,$ $w$ roots of unity has
only a few solutions. Q.E.D.

Now we are ready for the proof of lemma 1. We may assume $n\geqq r,$ $c\neq 0$ ,
$b_{j}=0$ and in $(\mathcal{E}_{j})c_{n}\neq 0$ (see proof of lemma 9). We may assume $a\neq 0$ by the
proof of lemma 10. Taking $U=1,$ $V=w$ with $R(1, w)=0$ , $S_{j}(0,1, w)\neq 0$, we
obtain $\gamma$ non-zero roots of $P(T)$ from the roots of $S_{j}(T, 1, w)$ . Taking $U=1$ ,

$V=w$ with $S_{j}(0,1, w)=0$ , from the equation $S_{j}(T, 1, w)=0$ we obtain $r-1$ non-
zero roots of $P(T)$ because $c_{n}\neq 0$ . Since $r(n-r)+r(r-1)=(n-1)r>n(r-1)$ , there
exists $h\neq 0$ with $S_{j}(h, 1, w)=0$ for at least $r$ different $w\prime s$ with $R(1, w)=0$ .
Thus $P(T)$ has $r+1$ roots of the type $h$ , $hw_{1},$ $\cdots$ , $hw_{r}$ : since $S_{j}(h, 1, w)=$

$S_{j}(h, w, 1)$ , if $S_{j}(h, 1, w)=R(1, w)=0$, $hw^{-1}$ is a root of $P(T)$ . Since
$2n-2r+r+1>n$ for $n\geqq r$, we may assume that $P(T)$ has a set $A=\{d,$ $dw_{1}$ ,

$\ldots$ $dw_{r}$}, $w_{i}$ distinct $(n+1)$-th roots of unity $(w\neq 1)$ , of $r+1$ roots, where $d=$

$s(-1+v)$ or $d=-s(-1+v)$ for some $v$ with $S_{s+j}(s, 1, v)=0$ .
We distinguish 3 cases (the assertions follows from lemma 7):

1) if $v^{6}\neq 1$ , from the roots of $B$ of $P(T)$ given by lemma 8 at most $\pm s(-1+v)$ ,

$\pm s(-1+v^{-1})$ are in $A$ ;
2) if $v^{6}=1$ but $v\neq-1$ , then $B\cap A$ contains at $most\pm 2s,$ $\pm s(-1+v),$ $\pm s(-1+v^{-1})$ ;

3) if $v=-1$ , then $B\cap A$ contains at most $2s,$ $\pm s_{h}(-1+v_{h}),$ $\pm s_{h}(-1+v_{h}^{-1}),$ $h=$

$1,2$ , where $v_{1}^{3}=1,$ $v_{2}^{3}=-1$ and the $s_{h}\prime s$ are given by lemma 7.

In case 1) we have $2n-2r-4+r+1\leqq ni.e$ . $n\leqq r+3$ . In case 2) we have $n\leqq r+5$

while in case 3) we have $n\leqq r+9$ . Furthermore in case 2) if $n\geqq r+4$ we have
$k\geqq 3$ and $n$ odd; in case 3) $n$ is odd and if $n\geqq r+2$ we have $k\geqq 3$ , since for
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$k=2$ only $2s$ can be in $A\cap B$ by lemma 7.
First we assume $k\geqq 3$ . If for some index $i,$ $r_{i}=1,$ $S_{i}(T+i-J1, V)$ is of the

form $T+H(1+V)$ or $T+dV$ . In both cases it is easy to show that $P(T)$ has at
least $\{-H(1+w)\}$ or $\{-dw\}$ , with $R(1, w)=0$ , as roots. By remark 2 this is
impossible. Thus we assume $r_{i}\geqq 2$ for every $i$ . By the first paragraph we may
assume $b_{j}=0,$ $c=-b_{i},$ $c=-(nb_{h})/(n+2),$ $c=b_{s}$ ( $n$ odd) or $c=(b_{s}n)/(n+2)$ ( $n$ even)

or $b_{l}=-2c$ ( $n\equiv 1$ mod6), $2b_{l}=-c$ ( $n\equiv 3$ mod6). If $n\equiv 1,3$ mod6, then 3 does
not divide $n+1$ and case 2) do not occur; furthermore in case 3) we have
necessarily $n\leqq r+1$ and thus $k=2$ ; in case 1) we have at most $k=3,$ $r_{h}=r_{l}=2$,
$r_{j}=n-3$ : this case can be handle taking $U=1,$ $V$ roots of unity in the polynomials
$S_{i}(T, U, V),$ $i\neq j$ (we know their constant part since only $-1$ and $i$ give in this
case cyclotomic polynomials of degree at most 2). But such a cumbersome cal-
culation can be avoid with the following remark; if in the case above there is a
cyclotomic polynomial of degree 2, then 4 devides $n+1$ ; if $c=b_{s}$ see below; if
$c=-b_{i},$ $V^{n+1}+1$ has no factor of degree 2 and we win; otherwise there is a
primitive solution of $(\mathcal{E}_{i})$ for some index $i$ since $c=-(nb_{l})/(n+2)$ is impossible
if $2b_{l}=-c$ or $2c=-b_{l}$ , because $b_{i}=b_{j}+(i-j)a$ ; we use the last part of the first
paragraph to conclude, in particular (3) gives the contradiction since there is an
index $i$ such that in $(\mathcal{E}_{i}),$ $c_{1}=\cdots=c_{n}=0$ . If $c=b_{k}$ ( $n$ odd) we have $x_{k}=0$ and
$c=0$ by lemma 10. Again if $c\neq b_{k}$ and $n$ is odd, the contradiction comes from
the last part of the first paragraph, where, for $n$ odd, it is not necessary to use
lemma 1, lemma 10 is sufficient. If $n$ is even, we have necessarily $n=r+3$ by

the discussion of 2) and 3). Since $-1$ is not a root of $R(1, V)$ for $n$ even, in
$(\mathcal{E}_{j})$ there cannot be two factors of degree 2.

Thus we may assume $k=2,$ $x_{1}=0,$ $x_{2}\neq 0$ .
Assume $n=r+3$ . Then $S_{2}(1,1, V)$ has a factor $(1+v)$ and a factor $(1+dV+V^{2})$

with $d=0$ or $d=l$ or $d=-1$ ; the order of the root of unity is respectively 4, 6,
3. The factor $(1+V)$ implies that $n$ is odd. $P(T)$ has as roots $0$, the elements
of $A,$ $\pm 2$ . Thus $P(\pm 2t)\neq 0$ if $R(1, t)=0,$ $t\neq-1$ , and thus $\pm 2$ is never a root
of $S_{r}(T, 1, t)$ for such a $t$ and it is at most a simple root of $S_{r}(T, 1, -1)$ . We
have $r(r-1)+r-2+r(n-r-1)=(n-2)r+r-2$ . Thus there exists $z\in C$, $z\neq 0$,
$\pm 2$ , such that for at least $n-1$ roots of $R(1, V),$ $S_{2}(z, 1, t)=0$ . As at the begining
of the proof of the lemma, the elements of $A^{\prime}$ $:=\{e, ew_{1}, \cdots, ew_{n- 1}, \pm 2\}$ with
$w_{i}$ roots of unity, are roots of $P(T)$ . This is easily seen impossible. Now
assume $n=r+2$ . $S_{2}(1,1, V)$ has $(1+dV+V^{2})$ as a factor, $d=0,1$ or $-1$ . Sup-
pose $n$ odd. Since $x^{n+1}+1$ has no factor of degree 1 or 3, we have necessarly

$c=-(b_{2}n)/(n+2)$ by the first paragraph, since for $r_{2}=3$ , if $n\equiv 1,3mod 6$ and $b_{2}$

has an exceptional value, then $(\mathcal{E}_{2})$ has a primitive solution. From $(\mathcal{E}_{2})$ it follows
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that $D_{2}(x)=cx^{n+1}+(c+b_{2})(x^{n}+\cdots+x)+c$ has at least 4 real roots ( $r$ is odd and
$S_{2}(0,1, V)$ has 3 real roots). This implies $c=0$ by [3, lemme III. 1.4]. Suppose
$n$ even and thus $d=1$ . Then in $A$ there is at most one of $(-1+v),$ $-(-1+v)$

and one of $-(-1+v^{-1})$ and $(-1+v^{-1})$ with $v^{3}=1$ , since $R(1, -1)\neq 0$ . Thus
$n\leqq r+1$ , absurd.

Assume $n=r+1$ . Then $S(1,1, V)=dV(1+V)$ and thus $n$ is odd. For every
$(n+1)$-root of unity $w$ , we have $P(2w)=0$ since $2w$ is either $\pm 2$ or conjugate to

an element in A. $P(T)$ would have $n+2$ roots, absurd. Thus theorem 1 is
proved.
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