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FIBER SHAPE CATEGORIES
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Hisao Kato

0. Introduction.

For any metric compactum B, we define categories Mb, Rb and FRB whose

objects are all maps af compacta to B, respectively. The purpose of thispaper is

to study the categories and shape fibrations. In particular,we show the following.

(1) There is a category isomorphism SB:MB-+RB such that SB(p:E-+B)=

p: E-^B for each object p: E~+B of MB.

(2) Let p: E―>B and p': E'-^-B be maps between compacta. Then the follow-

ing are equivalent.

(i) p is isomorphic to p' in MB.

(ii) p is isomorphic to p' in RB.

(iii) p is isomorphic to p' in FRB.

(3) Let p: E^B and p': E'-+B be objects of FRB and letf:p-≫p' be a morphism

in FRB. If B has a finiteclosed cover {Bi}i^1,2,...nsuch that for each i―l,2,---r,

the restriction f＼p~1(Bi):p＼p~1(Bi)-+p'＼p'~1(Bi)is an isomorphism in FRBi, ther

f:p->pr is an isomorphism in FRB, where p＼p~＼Bi)'.p~1{Bi)->Bidenotes the restric-

tion of p to p-＼Bi).

(4) Let p: E^-B and p': E'^-B be shape fibrations between compacta. Ther

a morphism /: p-+pr of Fi?B is an isomorphism in FRB if and only if / induces z

strong shape equivalence T(f): E-+E'.

(5) Let p: E^-B and p': E'^-B be shape fibrationsbetween compacta. Suppose

that B is a connected ANR or B is a continuum with a finiteclosed cover consist

ing of FAR's. Then a morphism f:p-+pf of FRB is an isomorphism in FRB ii

and only if for some boeB, the restriction T(f＼p-＼h)):p-l{bo)^p'-＼bo)of II/) tc

h~l(h îs a strong shane. eauivalence.

Throughout this paper, all spaces are metrizable and all maps are continuous.

By an ANR (resp. AR), we denote an ANR (resp. AR) for the class of metrizable

spaces. We mean by N the set of positive integers, by / the unit interval [0,1]

and by Q the Hilbert cube. Let / and g be maps from a space X into the com-

narhim (Y. d). The. suh-matric d is piven bv

Received February 25, 1981.



248 Hisao Kato

d(f,g)= sup ＼d{f{x),g(x))＼xzX}.

Let E,Ef and B be compacta contained in AR's X, X' and Y, respectively.

Suppose that p : X-> Y and p': X'-+ Y are extensions of maps p: E-+B and p': E'->

B, respectively. A fundamental sequence (see [1]) f―{fn,E,E'}x,x; is a fiber

fundamental sequence over B [7] if for any e>0 and any neighborhood U' of E'

in X' there is a neighborhood U of i? in X and a positive integer n0 such that

for each n^n0 there is a homotopy F: UxI-^-U' such that i^a;,O)=/no(a7),F(x,Y) =

fn{x) for # £/and d{p'F(x,t),p{x))<s. for # £/,̂ /. A fiber fundamental sequence

over B f={fn,E,Er}x,x> is fiber komotopic to a fiber fundamental sequence over B

g = {gn,E, E'}x,x- (f £^L g) if for any s>0 and any neighborhood U' of E' in X' there

is a neighborhood £7of Z? in X and a positive integer n0 such that for each n^n0

there is a homotopy K: Uxl-+U' such that K(x,Q)=fn(x), K(x,l) = gn(x) for x f/

and d(p'K(x,t),p(x))<£ for x<=£/,̂g/. A map p:E->B is 7?ter sAff/>eequivalent to

a map ^': E'-+B if there are fiber fundamental sequences over B f={fn,E,E'}x,x'

and g ―{gn,E',E}X',x such that gf c^lIe and fgc^.Ie>, where 1E denotes a fiber
" B ' ~ B

fundamental sequence over B induced by the identity 1E: E->E. Such / is called

a fiber shape equivalence. A map p: E->B is s/?≪/>eshrinkable [7] if /> induces a

fiber shape equivalence from p to the identity Is: B->B. Note that p: E->B is

shape shrinkable iff p is a hereditary shape equivalence (see [7, Corollary 3.5]).

We denote by MB the category whose objects are all maps of compacta to B and

whose morphisms are fiber homotopy classes of fiber fundamental sequences over

B.

1. F(p, p')-maps, j^p.p^-homotopies and TyjP(p,p')-homotopy classes.

For a subset E of a space X, E is unstable in X [13] if there is a homotopy

HiXxI^X such that H(x,0)=x, H{x,t)£X-E for xqX, 0<^l. Let p: £->£and

p': E'-+B be maps between compacta and let Z? and E' be subsets of compacta X

and X', respectively. A map f:X―E-+X' ―E' is an F(p,p')-map if for each & i?

and each neighborhood W of p'~＼b)in X7 there is a neighborhood W of p~'(6)in

X such that /(PT-^cPF'-E'. F(p,pf)-maps f,g:X-E-+X'-E' are F(p,p')-

homotopic (/ £^=£g)if there is a homotopy if: (X-E)xI-^Xf―E' such that H(x,0)
FCP.P')

=f(x), H(x,l) = g(x) for xgX―E and for each £>i? and each neighborhood PF7 of

p'-1^) in X' there is a neighborhood PF of p-＼b) in Z such that H((W-E)xI)cz

W'-E'. Such a homotopy H:(X-E)xI-+X''~E' is called an F{p,p')-homoiopy.

Consider Ex I as a closed subset of Xxl and a map^w :ExI-^-B, where n: ExI-*

E is the projection. Then a homotopy //:(X―E)XI-+X'―FJ is an i^p.p^-homotopy

iff H is an F(pK,p')-ma.p. X―E and X' ―E' are said to be of the same F(p,p')-
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homotopy type (X-E' ' Xf-E') if there is an F(p,p')-map f:X-E-+X'-E' and
Fip.p')

an F(p',p)-map g:X' ―E'-+X―E such that g/^^l(j_^ and fg ^^iI(x>-eo,
f(_p,p) Hp',p'~)

where Ux-Ei denotes the identity of X-E. Such an F{p,p')-mzpf:X-E-+Xl-E/

is called an F(p,p')-homotopy equivalence. F(p,p')-ma.ipsf,g: X―E-*X''―E' are

WF(p,p')-homotopic (f - " g) if for any finiteopen cover {W}i=i,2i...≫of E' vnX'
WF(p,p')

such that for each beB, p'~l{b)c:Wi for some i, there is a finite open cover

{Wj}j=U2, -m of E in Xsuch that for each bzB, p~＼b)<zWj for some j and a homotopy

H: {X-E)xl-+X'-Ef such that H{x,0)=f(x), H{x, l)=g{x) for xeX-Eand for each

i=l,2,-ro, F((Pf;-£)x/)cW for some ≫=l,2,-≫. X-£ and X'-E' are said

to be of the same WF{p,p')-homotopy type(X-F <^-s X'-E') if there is an F(p,pr)-
WFdp.p')

map f:X-E-*X/-Ef and an F(p',p)-mai> g:X'~-E'-+X-E such that gf ^^

Icx-E) and fg ^^
WFip.p)

l(x>-E->- Such an i^,/>')-map f＼X-E-+X'-E is called a
WF(p'.p')

WF{p, p')-homotopy equivalence.

2. Categories RB and FRB.

In this section, we define categories RB and FRB. We show that there is a

category isomorphism SB "MB-+RB and some applications are given.

Lemma 2.1 ([10, Lemma 3]). Let X and X' be compact AR's containing E as

an unstable closed subset. Then there is a map <p(X,X'): X->X' such that

(*) <p(X,Xf)＼E=lE and <p(X,X')(X-E)czXf-E.

If <pi,<pz:X-*-X'satisfy the condition(*), then there is a homotopy H: XxI->X' such

that H(x,0)=<pi(x), H(x,l)=<p2(x) for x X and H{x,t)=x for xeE, tsl and H((X―

E)Xl)czX'-E. In particular, for any map p: E-*B <p(X,X')＼X-E:X-E-*X'-E

is an F{p,p)-map and H＼(X-E)xI:(X-E)xI-+Xf-E is an F(p,p)-homotopy.

For any compactum B, we shall define categories Rb and FRB as follows.

For a compactum E, we denote by m{E) the set of compact AR's containing E

as an unstable subset. Let p: E~+B and p': E'-+B be maps between compacta

and let XuXtem(E) and X/, Xz'sm(Ef). An F{p,p')-m^ f:Xx-E^Xx'~E' is

WF{p,p')-equivalent to an F(p,p')-map g:X2-E-+X2'-E' if <p(Xi',Xt')＼Xif-E*<>

f /^-≫-ĝ°<p(X＼,X?)＼X,―E, where <p(Xi,X2) and (p(Xi,X2) are maps satisfying the

condition (*) of Lemma 2.1. An F＼p,p')-mapf'.X1―E-^X/―E/ is F＼p,pf)-equivalent

to an F(A^)-map g:Xi-E-+Xt'-E/ if ^X1f1X2f)＼X1'-E/of ^^.g^XuXi)^-

E. Objects of RB are maps of compacta to B. For objects p: E-^-B and p': E'->L

of RB, morphisms from p top' in RB are pyFi^/O-equivalence classes of collections

of FXptp')-raza& f:X-E-*X'-E＼ Xem(E), Xr£m(Er). Obviously, RB forms a
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category. Similarly,Objects of FRB are maps of compacta to B and for objects

p:E->B and p':E'^-B of FRB, morphisms from p top'in FRB are F(/>,//)-equiva-

lence classesof collectionsof F{p,p')-mw?sf:X-E-+X'-E', X m(E), X'Gm(E').

Then FRB forms a category.

The proof of the following theorem is analogous to one of [10, Theorem 1],

but more informations will be used.

Theorem 2.2. There is a category isomorphism Sb '.Mb-^-Rb such that Sb(P 'E->

E)=p: E^B for each object p: E-+B of MB.

Proof. Let p: E-^B, p': E'-*B be objects of MB and consider E, E' and B as

closed subsets of the Hilbert cube Q. Suppose that p: Q^Q and p': Q-+Q are ex-

tensions of p and p', respectively. Choose a sequence £i>£2>£s>,･･･,of positive

numbers such that lini£i=:0and decreasing sequences {Un},{Vn} of compact ANR-

neighborhoods of E, E' in Q, respectively such that P＼Un=E, f＼Vn~E'. LetU=

71=1 72=1
{Uk, it+i,k£N＼J {0}} be an inverse sequence such that Uo is a one point set, i＼:Ui->

Uo is the constant map and $+1: f/t+i―>■£/*(&i?l) is the inclusion. Similarly, we

obtain an inverse sequence Y = {Vk,iV＼k£N＼J{Q>}}.Consider the infinite telescope

(e.g. see [10, p. 74]) TXU)―＼JMk(U), where Mk{U) denotes the mapping cylinder
fc=o

obtained by z|+I: Uk+i-^Uk, i.e., Mk(U) is obtained by identifying points {x, l)£Uk+iX

{1} and ii+＼x)―xQ.Uk for xeUk+1 in a topological sum £4+1X/U Uk, and T(f/) is

obtained by identifying each point of UkX{0} in Mk-i{U) and the corresponding

point of Uk in Mk(U). Let N(U)=T(U){JE be an AR having the same topology as

in [10, p. 74]. Note that T(U) s 2v(L/')= C(C7,)uy UjX[llj + l, l//]cQx(0,l] and

(iV(J/),^s(7v(C/')U£x{0}, £x{0})cQx[0,l], where C(C/≫)is a cone over Z7,x{l/2}

with a vertex (y,l), vgQ in Qx[1/2,1]. Similarly, we obtain T(V) and A/"(F).

Suppose that f―{fn,E, E'}q,q is a fiber fundamental sequence over B. Inductively,

we can find a sequence 0=no<ni<n2<n3<,-'-, of integers such that for n^ni7

there is a homotopy Hni,n: Unixl-+Vi such that Hni,n(x,0)=fni(x), Hni,n(x,l) =

fn(x) for xg UrH and d(prllni,n(x,t),p(x))<Si for xz Uni, tsl. Define a map s(/): 7＼U)-+

T{Y) as follows. For each &=0,l,2, ―, consider the subset
＼j
Af<([/) and Mk(V)

of 2＼£/)and T{V), respectively. Define a map s(f)k:k(j Mi(U)-≫Mk(V) by

fnjllKx), for (x,t)£Mj(U), j=nk,nk+l,--,nk+1-2

(fnk+1(x),2t), for 0^*^1/2, (x,t)eMnk+1-i(U),

Hnk,nkAx,2-2t), for 1/2^^1, (ar.OeM^^-iCJ/),
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where f0: U0-+V0 is the constant map. Define $(/) by s(/)| ＼J Mi(U)=s(f)k for

each &=0,1,2, ･･･. By the construction of s(/),it is an F(p,/>')-map. Note that

N(U) m{E), N(V)em(E'). To complete the proof, we need the following lemma.

By the lemma, we can define SB([fJ) as the W.F(/>,.^-equivalence class containing

s(/), where [/] denotes the fiber homotopy class containing / and we can conclude

that Sb is a category isomorphism from MB to RB. The proof of the lemma is

similar to one of [10, Lemma 5], hence we omit it.

Lemma 2.3. Let [p: E->B, p': E'-*E＼ be the set of fiber homotopy classes of

fiberfundamental sequences from p top' and[T(U), T(V)~＼wf<;p,po the set of WF(p,p')-

homotopy classes of F{p,p')-maps from T(U) to T(V). Then s induces a 1:1

correspondence from [p: E-+B,p': E-+B] onto [T(U), T(V)]Wfcp,p-).

Theorem 2.4. Let p: E-^-B and p': E'-+B be maps between compacta and let

Xsm(E), X'smHE'). If an F{p,p')-map f:X-E-+X'-Ef is a WF(p,p')-homotopy

equivalence, then there is an F(p,p')-map g:X―E-+Xf―Ef such that f'―-^ g and g
WFQP.P')

is an F(p,p')-homotopy equivalence. In particular,the following are equivalent.

(1) p is isomorphic to p' in Mb.

(2) // Xzm{E) and XrQm(E'), then X-E^^Xf-E'.
WFCp.p')

(3) There are X£m{E) and X'em(E') such that X-E^-^X'-E'.

WF(p.p')
(4) p is isomorphic to p' in Rb-

(5) // X£m{E) and X' e m{E'＼ then X- E ^^ X' - Ef.
F(.P,P')

(6) There are X£m(E) and Xfem(Ef) such that X-Ec^=±X'-E'.

Fip.p')
(7) p is isomorphic to p' in FRB.

Proof. Suppose that an F(p,p')-ma.pf:X-E-+X'-E' is a WF(p, pf)-homotopy

equivalence. Embed E and E' into the Hilbert cube Q as Z-sets, respectively. By

Lemma 2.1, Theorem 2.2 and the proof of [7, Theorem 3.1], there is a homeo-

morphism h:Q-E-+Q-Ef which is an F(p,p')-mapand <p(Q,X')＼Q-Eoho<p(X,Q)＼X

―E^^Lf, where <p(Q,X') and <p(X,Q) are maps satisfying the condition (*) of
WF(.p,pr)
Lemma 2.1. Set g=<p(Q,X')＼Q-Eroh°<p(X, Q)＼X-E. Clearly g satisfiesthe condition

of Theorem 2.4. The rest of the proof follows from this result, Lemma 2.1 and

Theorem 2.2.

Corollary 2.5. A map p: E->B between compacta is shape shrinkableif and

onlyif for any X£m(E), Y m(B) and for any extensionp:X-*Y of p such that

p(X―E)cY--B,p＼X―E:X~-E-^Y―B is an F(p,lB)-homotopyequivalence,where

1b denotesthe identityof B.
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Remark 2.6. Note that If B is a one point set, the categories Mb and FRB

are the same as shape category (see [1]) and strong (or fine) shape category (see

F51.Ffiland HOIY resnertivelv.

3. The Category FRB.

Let p:E~~>Band p': Er~+B be objects of RB (resp. FRB) and let f:p-+P' be a

morphism in RB (resp. FRB). For any closed subset C of B, we shall define a

morphism f＼p-＼C):p＼p-＼C)-*p'＼p'-＼C)in Rc (resp. Fi^), where p＼p~＼C)is the

restriction map of p, i.e.,p＼p~~＼C):p~＼C)-+C.We need the following lemma. We

nmif fliprvrnnf

Lemma 3.1. Let A be a compactum and B be a closed subset of A. Suppose

Xzm{A) and Ysm{B). Then there are maps r{X,Y):X~+Y and i(Y,X):Y-+X

such that

(**) r{X, Y)＼B=U and r{X, Y)＼{X-A)cY-B,

(***) i(Y,X)＼B=U and i{Y,X)＼{Y-B)(zX-A.

If r,r' :X-+Y satisfy the condition (**), then there is a homotopy II: XxI-*Y such

that

H{x, 0) = r(x) and H{x ,I)―r'(x) for x g X,

H(x,t)=x for x£B and Ul, H((X~A)Xl)cY-B.

Similarly, if i,i': Y-+X satisfy the condition (***), then there is a homotopy K: Yx

I-*-X such that

K{y,0) = i{y), K{y,l) = i'{y) for ytY,

K{y,t)=y for ysB and tel, K((Y-B)xI)cX~A.

Suppose that X m(E), X'£m(E'), Yzm(p-＼C)) and Y'£m(p'-＼C)) and an F(p,p')-

map f:X―E-+X'―E' determines the morphism f'-p~*pr. Then the composition

riX＼r)＼X'-E'ofoi(Y,X)＼Y-p-＼C)-.Y--p-＼C)-+T-pr-＼C) is an F(p＼p~＼C),p'',

p'~l(C))-map, where r(X', Yf) and i(Y,X)
are maps satisfying the condition (**) anc

(***) of Lemma 3.1, respectively. We define the restriction f＼p~＼C):p＼p-＼C)-*

p'＼p'-＼C) by the WF{p＼P'＼C),p'＼p'-＼C))-Q.QL＼x^a＼&!i^
class (resp. the F{p＼p~＼C),p'

/>/-'(C))-equivalence class) containing r{X', Y')＼X'-E'°f°i{Y,X)＼ Y-p-＼Q.

Proposition 3.2. Let p: E^B and p': E'~*B be objects of RB {resp. FRB). Ij

a morphism f: p-*p' in Rb {resp. FRB) is an isomorphism, then for any closed subse,

C of B. f＼i>~HC)is an isomor-bhism, in Rn (rest). FRn).
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Theorem 3.3. Let p : E-^B and p': E'~>B he objects of FRB and let f:p-*p'

be a morphism in FRB. If B has a finite closed cover {Bi}i=U2,-n such that for each

z = l,2, ---n the restriction f＼p~l(Bi):p＼p~＼Bi)-+p'＼p'-＼Bi)is an isomorphism in FRm,

then f: p~>p/ is an isomorphism in FRb.

To prove Theorem 3.3,we need the following lemma.

Lemma 3.4. Let E and E' be closed subsets of compacta X and Xr, respectively

and let p: E~>B and p': E'-+B be maps between compacta. Suppose that A is a

closed subset of X, X'&m(E') and G :(A-E)xl-+Xf-E' is anF(p＼A{＼E,p')-homotopy,

where p＼AnE:Af]E->B. If there is an extension g:(X-E)X{Q}-+X'-B of G＼(A~

E)x{0} which is an F{p,p')-map, then there is an extension G:(X―E)xI->Xf―E'

of G and g such that G is an F{p,p')-homotopy.

Proof. Since X' ―E' is an ANR, there is a neighborhood U of A―E in X―

E and an extension G':(X-£)x{O}Ut/x/->JP-F of G such that G'|(X-£)x{0}

= g. For each ^A-fi1, choose a neighborhood Ux of x in U such that

(1) Uxcz{yeU＼d(y,x)<d(x,E)l2} and

Uxa{yeU＼d(G(x,t),G'(y,t))<d(x,E) for each £e/}.

Set F"=＼J*6^-b^t. Then V is a neighborhood of A―E in X―E. Choose a map

r:X-E^I such that r(≫= 0 for xs(X-E)-V and r(ar)= l for xqA-E. Define a

homotopy G :(X-E)xI->X'-E/ by G(ar,0=G/(ar,r(a?)0 for xeX-E and ^/. To

complete the proof, we must show that G is an F(p, pr)-homotopy. Suppose that

bzB and W is a neighborhood of pr~＼b)in X'. Choose a neighborhood W" of

p'-＼h)in X' such that C＼z.W"<zWf. Let ei=rf(Clz.IF",.X'/-W')>0. Since gis an

FlPiP'ymap and G is an F(p＼Ar＼E,p')-homotopy, there is a neighborhood Wi of

/･-･(ft)in Z such that

(2) g(W1-E)<zW"-E/ and G(((An Wl)-E)xI)aW"-E'.

Let £2=Min {d(X- Wup-＼b)),£l}>0. Choose a neighborhood W2a W, oip~＼b)in X

such that d(y,p-＼b))<£zl2for all yeW2. Then we show that G{{Wt-E)xI)(zW

-E'. If ye Wi-E- V, by the construction of G and by (2),G(y, t)= g(y)c.W"-E'a

W' ―E'. Suppose y£(W2 ―E)f＼V. Then there is Ux for some x£A-E such that

UxBy. By (1) we have

(3) d(x,y)^d{x, E)/2^d(y, E)^d{y,p-＼b))<e^2 .

By (3) we have

(4) d(x>P'l(b))^d(x,y) + d(y,p-＼b))<eJ2+e2/2=e,.
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Therefore xeWi. By (2), G{x,t)sW"-Ef for tsl. By (1) and (4),

(5) d(G(x, t),G'(y,t))<d(x, E)^d{x,p-＼b))<e^Bl.

Hence G'(y,t)eW'-E'. By the construction of G, we conclude that G(y,t)£W'-E'

for each tel. Thus G is an F(/>,//)-homotopy. This completes the proof.

Proof of Theorem 3.3. It is enough to give the proof of the case n=2. The

case n^3 is proved by induction. We may assume BidBz―Bo^^. If Ba=<j>, the

proof is trivial.

Embed E and E' into the Hilbert cube Q. For each i=l,2, choose a decreasing

sequence Ui={U/}j=uz,.: of compact ANR-neighborhoods of p~x{Bi)in Q such that

(1) p-^B^-fSUj* and Ujo=U/nUf is a compact ANR for each i=1,2

and j―1,2,-".

Set Uj=Ujl＼jUf, U = [Uj}j=i,t,...and U°={Ujoh=1,t.....LThen £" is a decreasing

sequence of compact ANR-neighborhoods of £"in Q such that

(2) MLO=>Wf) for each 2=1,2 and

(2) N(U)£tn(E), NO/^emip-KBi)) for each *= 1,2 and

N(Ua)=N{Ul)nN(W)zm{p-＼B0)) (see the proof of Theorem 2.2).

Similarly we obtain iV(F),MF*) for each i=l,2 and JV(F°)such that

(4) 7V(F)=)A/(Fi) for each ≫=1,2 and

(5) N(V)£m{E'), NiV^mip'-XBi)) for each i=1,2 and

By Lemma 2.1,there is an F(p,p')-map f:T(U)=N(U)-E->T(Y)=N(V)-Ef which

is contained in the F(^,//)-equivalence class f:p-*-p'. Now by the following lemma

(Lemma 3.5),we may assume that

(6) /(TW^cTIF*) for each i=l,2.

By Proposition 3.2, f＼T(U°):T(U0)-+T(Y0) is an F(p＼p-1(Bo),p/＼pf-1(B0))-homotopy

equivalence. Hence there is an F(pf＼p'-＼BQ),p＼p~＼B0))-m2Rga: T(V°)-+T(U0) and

an F(/>/|^-1(5o),^!/)/-1(5o))-homotopy Ho: 7＼Y0)xI-^T(y°) such that

(7) gof＼T(U°) ^Z==^ Mmy and
F(pb-KBo),pIp-l(Bo))~

(8) Ho(x,0)=fg0(x) for xeT(Y°) and Ho(x,t)=x for x£T＼Y°)and

1/2^*^1.

By Lemma 3.4 and the same way as in Brown [2,7.4.1],for each i―1,2 there is
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an fiXp'＼pf-l(Bi),p＼p-l(Bi))-ma.psgi-.TXY'h+lXU*) and an FWlp'-'iBilp'lp'-^Bi))-

homotopy HiiTXY^xI-t-TXY') such that

(9) gt＼7＼y)= go,

(10) Hi(x,0)=fgi{x) for xeTXY*), Hi(x,t)=x for xeTiV*) and

l/2^t^l and

(11) Ht＼T(Y°)XI=H0.

By (9) we can define a map g: T(V)~>T(U) by

(flfi(ar)for xzTiY1)
(12) g(x)=＼

[gz(x) for x T(Y*).

Then g is an F(^/,/>)-map and by (10) and (11) we have

(13) /flr^~W>.

Note that glity*) -TiY^TdJ1) is an F{p'＼p'-＼Bi),p＼p-＼Bi))-homotovyequivalence.

By the same argument as above, there is an F(p,p')-mz$ f: T＼U)->T(Y) such

that

(14) gf s-s

F(P.P')

By (13) and (14),

(15) f^L
F(.V,V'~>

lrcF)

F(P,P')

Hence fa <~^~/lrrvy and of --"*■―'Iran, which implies that / is an i^/>,/>0-homotopy

equivalence. Thus the morphism /: p-+pr is an isomorphism in FRB. This com-

pletes the proof.

Lemma 3.5. Let f: 1＼U)-^T{V) be an F(p,p')-map. Then there is an F(p,p')-

map g:T(JJ)->T{V) such thatg{T＼Ut))^T(yi)for each i=l,2 and s^^f.

Proof. Since iV(F*) is an AR for each i―0,1,2, there is a retraction n': N(V)

-+N(Y*). Choose a map ai:N(Y)-+I such that ar1(0)=iV(Fi) for each ≫=0,l,2.

Since NiY^emip'-^Bt)) for each z=0,l,2, there is a homotopy Hi:N(Yi)xI-+N(Vi)

such that #i(a?,0)=ar for xeWY') and fli(ar,0 2TF') for xeWV') and 0<^l. Define

a map r*:iV(F) -≫･JV(F') for each f=0,l,2 by n(x)=i7i(n/(x),ai(x)) for xeMF)-

Then n|iV(Fi)=l^cFi) and n(7＼F))c:7XF*) for each i=0,l,2. Similarly, for each

j=0,1,2 there is a homotopy Kt:N{Y)Xl^N{Y) such that Ai(a;,0)=a;,/&(ar,l)=

nU) for xeNCV), Klx,t)=x for a? MF*) and tel and iTi(r(F)Xi)c7i:F). Define
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a homotopy <p0: T(W)xI^T{V) by <pQ(x,f)=K<if(x＼t) for xeT(U°) and HI. Then

<po(x,0)=f(x), <p0(x,l)= rof(x)£T(＼°)for xeT(U°) and <pois an /5＼/>|^-1(5o),/>/)-homo-

topy. By Lemma 3.4, there is an FXp,pf)-razp g': T(U)->T(V) such that g'＼T(U0) =

rof＼T(U°) and a' <―~-f. Note g'(T(U°))c:T(Y0). Define a homotopy <pt:TdJ^xI-^

T(V) for each i=l,2 by <pi(x,t)=Ki(g＼x),t) for xsTilJ1) and /e/. Then $*(:&,0)=

g'(^), ^(x,l)=ng'We?1(Fi) for xeTXtf*) and ^(x,0=g'U) for x T(U°) and * /.

Also ci is an FCp＼p-HBi),p')-homotovy. Define a homotopy ≪: T(U)xI-+T(V) by

<Pi(x,t) for xeTXU1) and tel

<p2(x,t) for x£T(U2) and tel.

Then <p(x,O)= g'(x) for x£T(U) and y>(r(^))c?IF*) for each i=l,2 and <p

F{p, ^0-homotopy. Define a map g: 7＼t/)-≫-7＼F)by g(x) = <p(x,1) for ^g T(^).

o satisfies the condition of Lemma 3.5.

is an

Then

By Corollary 2.5 and Theorem 3.3, we have the following.

Corollary 3.6. Let p: E->B be a map between compacta. If there is a finite

closed cover {Bi}i=U2, ..,of B such that p＼p~＼Bi):p~＼Bi)->Bi is shape shrinkable for

each 2= 1,2, ･･･n, then p:E-≫B is shape shrinkable.

Corollary 3.7. Let p: E->B and p': E'^-B be maps between compacta and let

f: E-+E1 be a fiber map over B {i.e.,P'f―p). If there is a finite closed cover {Bi}i=U2,..≪

of B such that for each i=l,2,---n, f＼p~＼Bi)＼p~＼Bi)-^p'~＼Bi)is a fiber homotopy

equivalence over B%, then f induces an isomorphism f: p-+p' in FRb- In particular,

f is a fiber shape eauivalence over B.

Remark 3.8. In the statement of Corollary 3.7, we cannot conclude that / is

a fiber homotopy equivalence over B. Define a map p:[0,3]->[0,2] by p＼[0,1]=

l[o.i],/>(PL2])= 1 <indp(t) = t-l for fe[2,3]. Let 5, = [0,1] and 58 = [1,2]. It is clear

that p is a fiber map from /> to the identity l[0,2]and for each £=1,2, p＼p~＼Bi):

p~l(Bi)^Bi is a fiber homotopy equivalence over I?*. But there is no fiber map

a: TO,21-40, 3] over [0,21

4. Shape fibrations and Strong shape equivalences.

We denote by s-Sh the strong (or fine) shape category (see [5],[6] and [10]).

Let p: E-+B and p': E'-+B be objects of FRB and /: />-*/>'be a morphism in FRB.

Choose Xem(E), Xf£ni{E')and an F(p,pf)-niaps f:X-E-*X'-Ef contained in the

F{p,p'')-equivalenceclass f:p->p'. Since every F(p,p')-map is a proper map, the

morphism T(f);E-±E' of s-Sh induced by the proper map f:X―E-+X' ―E' is
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independent of the choices of Xsm(E), X'£m(E') and f:X―E-+X―E'. Clearly there

is a functor T: FRB~>s-Sh such that Tip: E-+B)=E for each objectp: E-+B of FRB.

In this section, we show the following theorem which is a more general result

than T7, Theorem 2.31

Theorem 4.1. Let p: E-+B and p''.E'―>B be shape fibrationsbetween compacta

(see [11])- Then a morphism f: p->p' of FRb is an isomorphism in FRb if and only

if T(f): E->Er is an isomorphism in s-Sh.

First, we need the following.

Lemma 4.2. Let p: E-+B be a shape fibration between compacta and let p : X->

Y be an extension of p, where X and Y are AR's containing E and B, respectively.

Suppose that s>0 and U (resp. V) is a neighborhood of E (resp. B) in X {resp, Y).

Then there is d>0 and a neighborhood U＼ {resp. Vi) of E {resp. B) in X {resp. Y)

satisfying the following property; for any space Z and a closed subset A of Z, any

maps h : {Zx {0}) U (Ax /)-> Ux and H: Zx /-> V, such that d{ph, H＼{Zx {0}) U {AX /))<

d, then there is an extension H :ZxI-^U of h such that d{pH,H)<e. Such a pair

{Ui, Vi',8) is called a lifting pair for {U,V; e).

Sketch of the proof of Lemma 4.2. Observe [11, Theorem 2] and [12,

Proposition1]. The lemma is proved by the same way as in Allaud and Fadell

[A fiber homotopy extension theorem, Trans. A.M.S. Soc. 104 (1962), 239-251,

Theorem (2.1)and Theorem (2.4)]and shape theoreticconsideration.

Lemma 4.3. Let X be a compact ANR. Then for any e>0 there is a(e)>0

such that for any space Z and a closed subset A of Z, any a(e)-nearmaps f, g: Z―>

X and a homotopy H:AxI-+X such that H(z,Q)=f(z), H{z,l)-g{z) for zsA and

diamH({z}xl)<a(e) for zzA, then there is an extension F:ZxI->X of Hsuch that

F(z,O)=f(z), F(z,l)=g(z) for zeZ and diamF({z}x/)<e for zsZ.

Proof of Theorem 4.1. It is enough to give the proof of sufficiency. Choose

Xzm(E), Xr m(E') and Few(5) which are convenient AR's (i.e.,An AR X is con-

venient if for each compactum A in X and each neighborhood U of A in X there

is a compact ANR Me U with Aclnt M). Let p: X->F and p': X'-+Y be exten-

sions of p and p', respectively. Since Yem(B), we may assume p(X―E)c:Y―B

and p＼X'-E')<zY-B. Suppose that f :X-E-+X'-E' is an F{p,p')-md^ which

is contained in the F(^,/>')-equivalenceclass/:/>->/>'. Since / is a proper homotopy

equivalence, there is a proper map g: X' ―E'-^X―E and a proper homotopy H: (X' ―
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E')xl-+X' ―E' such that gf is properly homotopic to ＼X-e and H(x',0) = x',II{x',l)

=fg(xf) for x'zX'-E'.

We will construct decreasing sequences {Cm}n=i,2,...and {Z?n}B=i,2,...of compact

ANR's, a decreasing sequence {sra}M=i,2,...of positive numbers and sequences {gn}n=i,2,...,

{Gr,}n=i,2,...and {i?w}≫=i,2.-of maps satisfying the following properties (1)~(9).

(1) ZZ)C,DlntC;,I3C9D-D£. I'Di),DllltZ),DDO"O£'

and E=(＼cn

(2) lime*

71―>OO

=0

Ev=r＼Dn
n-i

(3) gZn-i: Dzn-Int A≪+i->C!b.i-jB for n=l,2, ･■･,

^n: Ath-i ―Int A≪+2->C2w_s―£" for ≪=2,3, ･･･.

(4) G2B_, :(An-IntAn+i)x/->CSB_,-E for n=l,2, ■･･,

G2n: (A≫+1 ―Int An+2) X /-*C2ra_3―£ for w=2,3, ･･･.

(5) i?iB-,:(A≫-Int A≪+.)x[0,2]->A≫-i-£' for ≫= 1,2, - ,

^2≫:(A≫+i-IntA≫+≪)x[0,2]->A≫-8-^ for ≫=2,3,-.

(6) G2re-i(.r/,O)= g27l-iU/)≫ G2M_i(j7',l) = g(a;/) for a:'eA≫-IntA≪+i

and G2K(x/,0) = g2nU/)> G2n(x', l)-g(x') for jj'eAw+i ―Int A≫+2

and G2≫-,|(BdA≫+i)x/=G2≫|(BdA≫+i)x/,

G8B|(BdAn+2)x/=G2B+,|(BdZ)2B+2)x/.

(7) 2?2B_1(a?',0)= a;', i?8B_i(a?/>2)=/flr2B_1(a;/)for a;/ AB-Int A≫h ,

i?2n(^/,0) = x/, RZn{x',2)=fg2n(x') for aj'eZ?2n+i―Int A≫+i

and i?8B_1|(BdA≫+i)X[0,2] = i?2B|(BdA≫fi)x[0,2], i?2re|(BdZ?2B+2)x[0,2]=

i?2n+i|(BdA≫+2)x[0,2].

(8) d{pg2n-y{x'), p＼xf))<£2n^ for a;'6A≫-IntA≫+i

and d(pg<,n(x'),P＼x'))<e.2n-i for x'eA^+i-Int A≪,+2.

(9) d(^RZn-l(x',t),pf(x'))<a2n_l for x'eD2n-IntD2n+i, ^6[0,2]

and d(pfR2n(x/, t),p'(x'))<etn-3 for x'eD8B+1 -Int Z>2B+2, ^ [0,2].

Let D, (resp. 5i) be compact ANR-neighborhood of E' (resp. B) in X' (resp. F)

such that p'(Di)czBi and £i>0. Since p': E'->B is a shape fibration, by Lemma

4.2, there is a compact ANR-neighborhood ZV (resp. Z?/) of 51' (resp. B) in X'

(resp. Y) and di>0 such that

(10) D1dD1', 5,d5/ , p'(D,')(zBx' and (A', fl/ ; 5,) is a lifting pair for

(Dl,Bl;eil2), 5,<s,/2.
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Since i?/ is a compact ANR, there is a positive number a(8i) satisfying the con-

dition of Lemma 4.3 and 5i>a(3i)>0. Since f:X-E^X'-E' is an F(p,p')-map,

we can easily see that there is a compact ANR-neighborhood Ci of E in X such

that

(11) RCJcBS, f(Cl-E)aD1>-E' and d(p>J{x),/≫(ar))<a(5,)/2

for x Ci-~E.

Since ^>:£"->5is a shape fibration,by Lemma 4.2 there is a compact ANR-neighbor-

hood C2 (resp. B2) of Zs(resp. 5) in X (resp. F) and a positive number e2<a(5i)

such that

(12) p(C2)aB2, CxZiCt, Bt'DBt, (C2,B2;e2) is a lifting pair for (&, B/;

a(3i)/2) and d{p'f{x),p{x))<e2 for x£C2-E.

Since y and // are proper maps respectively, we can choose a compact ANR-

neighborhood A of E' in X' such that

(13) DiDlntPiDA,

(14) g(D2-E')aC2-E and pg(D2-E')aB2-B,

(15) H((D2-E/)xI)aD1'-E' and p'H{(D2-E')xI)aB2-B.

By (12) and (14), we have

(16) d{p'H{x',l),pg{x'))= d{p'fg{xf),pg{x'))<zz ior x'zD2-E'.

Choose a compact ANR-neighborhood A of £Yin X' with Aclnt A. By (12),(16)

and X m(E), there is a homotopy Gi: (A-Int D3)xI-+d-E such that

(17) Gi(a;M) = flr(a;/)for x'eA~Int A

and d{pGx,p'H＼{D2~lnt A)x/)<a(5j)/2<ei.

Define a map gi: A-Int D>-*Ci-E by flfi(a?/)=Gi(ar/,O)for ^'eA-MA- Then

we have

(18) dipglx'lp'ix'^dipG^MP'Htx^^Xa^VKe, .

Define a homotopy Li: (A-Int A)x[0,2]-^A'-ii/ by

fi7(^,s) for a/eA-IntA, O^s^l,

(19) L^)S)=
l/Gi(a?',2-s) for x'eA~IntA, 1^5^2.

By (11),(17) and (19),

(20) d(p'Lix', s),p'Ll(x',2-s)) = d(p'H(x>,s),pffGl{xf,s))

^d(p'H(x', slpG^x', s))+d(pG1(x', s),p'fGlx', s))

<a(5i)/2+cr(5.)/2= a(3i), where O^s^l.
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By the choice of ≪(<?,),there is a homotopy /<",:(Dt-Int D3)x[0,2]x/->/?,' such

that

(21) /C,(a:/,s,/)=^/L,(a;/,s) for f^l-s or *:gs-l and

^'(a;').W,s,l))<3i<si/2 for xr£D2-~lntDs, 0^s^2.

Define a map L,/:(A-IntD8)x({0}x/U[0,2]x{0}U{2}x/)->Z)i/-£v by

rLi(a?',0) for s=0, O^f^l,

(22) L/(a;',s,O =
]l.i(ar/,s)

for 0^s^2, *=0

L,(a?',2)
for s=2, O^t^l.

By (21) and (22), p'Ll'=Kl＼(Di-In.tDt)x({0}xI＼Jl0,2]x{0}V{2}xI). By (10), there

is a homotopy Mi:(D2-lntDs)x[0,2']xI-+D1-E such that

(23) M1|(A"IntZ>s)X({0}x/U[0,2]x{0}U{2}x/) = L/ and d(p>'Mu iT1)<£1/2.

Define a homotopy #,:(D2-IntZ?,)x[0,2]-≫I>1-E' by

(24) Rl{x',s)=Mi{x',s,l) for ^ A-IntA, 0^s^2.

Then i?,(^',0)=a;/s R1(x/,2)^fgl(xf) for a?'eD2-IntZ>8. By (21), (23) and (24), we

have

(25) d{p'Ri{x',s),p＼x>))

^d{$'Mx{x', s,I), K,(xr, s,l))+d{Kx{x', s,1),p'{x'))

<61/2+£,/2=£l for x'eA-IntA, 0^s^2.

If we continue the process as above, then we can construct decreasing se-

quences {Cn}, {Dn} of compact ANR's, a decreasing sequence {£,,}of positive numbers

and sequences {g2n_i}≫=i,2,...f{G2n-i}n=i.2.- and {i?2n_i}n=i,2...of maps satisfying the

conditions (1)~(9).

Next, for each n=2,3, ■･･,we will construct maps g2n,G2n and i?2≪ satisfying

the conditions (3) ―(9). Define a map G'M : (D2n+1 - Int Din+2) X {1} U(Bd D2n+l U

BdA≫+2)x/-≫C2≫-i-E by

g(x') for ^'eAw+i-Int A≫f2, t=＼

(26) G'2n{x',t)=G2n-i{x',t) for x'eBdA≫f., ^ /5

■Gin+i(x',t)for ar'eBdAn+2, tsl.

By (16) and (17), we have

(27) d(P'H＼(Dzn+l-Int D2n+Z)X {1} U(Bd D2n+1 UBd £>,,+.)X/,PG'2n)

<a(8Zn~i)l2<£2n~l<£2n-2■

By (12),(27) and Xem(E), there is a homotopy G2≫:(£>2≫+i-IntD2niz)xI-≫C2n-*-~E
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such that

(28) G2n|(Z)2n+,-liitI>2n+2)x{l}U(BdAn+iUBdZ?2B+2)x/=G^ and

d(pG2n,P'H＼(D2n+1-lnt D2n+2)xl)<a(d2n-s)l2.

Define a map g2n:A≪+i-Int A≪2->C2s_3-E by g2n(x')= G2n(x',0) for x' D2n+1 ―

Int D2n+2. Clearly, gZn and G2n satisfy the conditions as we wanted. Similarly, we

obtain R2n'-(D2n＼i-lntA≫+2)X[0,2Y+D2n-3-E' which fulfillsour requirement.

Clearly we obtain maps g':X'-E'->X-E, G:(X'-E')xI-+X-Eand R＼(X'-

E')X＼Q,2']-+X'-E' such that

gf＼D2n--lntD2n+i = g2n-i for ≫=1,2, ･･-,

g'lDzn+i-Int D2n+2 = g2n for n=2,3, ― ,

G|(Z>in-IntD2B+,)x/=G2n-t for ≪=1,2,-,

G|(A≪4i-Int Din+2)xI=Gin for ≫=2,3, ■■･,

i?|(D2≫-IntD2n+1)x[0,2] = i?2n-i for ≪= 1,2,-,

i?|(D2≫+i-IntD2≫+2)x[0,2]=2?2≫ for ≫=2,3, - .

and r;(x-',0)= yV), G(x',l)= g(x') for ^e^'-^', i?U',0)=x', R(x',2)=fg'(x') for

x'sX'―E' (because XemiE), X'zmiE')). By (1)~(9),we can conclude that g'is an

F(p',p)-maT) such that g' is properly homotopic to g and fa''*-*―'lx'-E Note that

g' is a proper homotopy equivalence. To complete the proof, we apply the same

process to g': X'-E'-^X-E instead oif'.X-E-+X'-Et. Thus there is an F(p,p')-

map /': X- E-~>Xf-E' such that g'f ^^ Us. Then / ^^L

implies fg' ^2^L 1x--e- and g'f c^L

fa'f /-^ p. which

Fdp.p) F(p,p') F(p,p')
1x-e- Hence the morphism f :p-+P' is an

tXp'.p') fXp,p)
isomorphism in FRB. This completes the proof.

As a special case of Theorem 4.1,we have the next corollary

Corollary 4.4. Let p;E->B be a map between cumpacta. Then the following

are equivalent.

(1) p is a shape fibration and a strong shape equivalence.

(1) p is shape shrinkable.

Proof. (l)->(2)follows from Theorem 4.1. (2)->-(l)follows from [7, Corollary

3.6] and Corollary 2.5.

For a map p:E-+B, S*(p) denotes the morphism of s-Shinduced by p. By the

similar way as the proof of Theorem 4.1, we have the following proposition.
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Proposition 4.5. Let p: E->B and p': E'-≫Bbe maps between compacta and

let f:E-+E' be a morphism in s-Sh such that S*{p)=S*{p')f. If p': E'-+B is a

shape fibration,then thereis a morphism g'.p->p'in FRB such that T(g)=f.

By Theorem 4.1and Proposition4.5,we have

Corollary 4.6. Let p: E-^B and p': E'―*B be shape fibrations between com-

pacta. If a morphism f'.E-+E' in s-Sh is an isomorphism such that S*{p)=S*{p')f,

then there is an isomorphism g:p-+p' in FRb such that T(g)―f.

5. Applications.

In this section, some applications are given. First, we obtain the following

theorem bv Theorem 3.3 and Theorem 4.1.

Theorem 5.1. Let p: E―>B and p': E'-*B be shape fibrations between compacta

and let f'.p-^-p' be a morphism in FRB. If there is a finite closed cover {Z?i}i=i,2,...≫

of B such that T(f＼p~＼Bi)):p~l{Bi)-+p'~1(Bi)is an isomorphism in s-Sh for each

i = l,2,---,n, then f:t>-*fif is an isomorphism in FRr.

It is well-known that if p: E-+B is a Hurewicz fibrationand B is contractible,

the inclusion i:p~＼b)-*-Eis a homotopy equivalence for each hzB. Note that if

B is an FAR and a Z-set in Q, there is a decreasing sequence Qz)J5i3i?2=)---, of

compact neighborhoods of B in Q such that C＼Bi= B, each Bi is homeomorphic

to Q. The proof of the following proposition is similar to one of Theorem 4.1.

W^p omit it

Proposition 5.2.(cf.[12, Theorem 1]). Let p: E->B be a shape fibration be-

tween compacta. If B is an FAR, the inclusion i:p~＼b)~+Einduces an isomorphism

in s-Sh for each b&B.

Proposition 5.3. Let p: E-+B and p': E'-^B be shape fibrations between com-

pacta and let B be an FAR. Then a morphism f: p->p' of FRB is an isomorphism

in FRb if and only if for some bo£B, the restriction T(f＼p~x(bQ));p~l(bo)-^p'~~＼bo)

of T(f) to fi'Hbo)is an isomorphism in s-Sh.

Proof. It is enough to give the proof of sufficiency. There is a commutative

diagram



Fiber Shape Categories 263

S*(i) S *(≪')

I r(/)

in s-SA, where ? and 2' are the inclusion maps. By Proposition 5.2, i and f induce

isomorphisms in s-Sh. Hence T(f): E-+Ef is an isomorphism in s-Sh. By Theorem

4.1, f'.p-*p' is an isomorphism in FRB.

Theorem 5.4. Let p: E-+B and p': E'->B be shape fibrations between compacta.

Suppose that B is a continuum with a finite closed cover consisting of FAR's. Then

a morphism f'.p->pr of FRB is an isomorphism in FRB if and only if for some bo B,

the restriction T(f＼p~-1(bo)):p~'i(bo)-^-p'-1(bo)of T(f) to p~＼b0)is an isomorphism in

Proof. It is enough to give the proof of sufficiency. Let {Bi} be a finite

closed cover consisting of FAR's. Since B is connected, by Proposition 5.3, we

conclude that the restrictionf＼p-＼Bi):p＼p-＼Bi)-+p'＼pf-＼Bi)of / to p-＼Bt) is an

isomorphism in FRBi for each i. By Theorem 3.3 f:p-+p' is an isomorphism in

Corollary 5.5. Let p: E->B and p': E'―>B be shape fibrations between com-

pacta and let B be a connected ANR. Then a morphism f: p-*P' of FRB is an

isomorphism in FRB if and only if the restrictionT(f＼p~1(bo)):p~＼b0)-*p'~1(bo)is an

isnmnr-hkism.in s-Sk fnr snmp. h*c /?.

Proof. Define mapspxlQ:ExQ-+BxQ,p'xlQ: E'xQ-+BxQ hy (pxlQ)(e,q)=

UKe),Q), (P'xh)(e',<l) = (P'(e'),q)for e£E,ef£E' and qeQ. Note thatpXlQ andp'x

1Q are shape fibrations. Choose an F(p,p')-mdR f ＼X―E-+X'―Ef which is con-

tained in the F(p,/>')-equivalenceciass f:p-*p'. Define a map fxlQ:(XxQ―Ex

Q)-+(X'xQ-E'xQ) by (fxlQXx,g) = (f(x＼q) for xeXxQ-ExQ, qsQ. Clearly,

the map fxlQ: {XxQ-ExQ)-^(X'xQ-E'xQ) determines a morphism fxlQ:px

Iq-*P'x1q of FRBxQ. Since B is a compact ANR, i?xQ is a compact Q-manifold.

Clearly, BxQ has a finiteclosed cover consisting of FAR's. By Theorem 5.4,fx

Iq'.PxIq-^-P'xIq is an isomorphism in FRb^q- By Proposition 3.2,f'.p~+pris an

isnmnrnhism in FRv.

By Theorem 5.4,Corollary 5.5 and [7, Corollary 3.6],we have the following.

Corollary 5.6. Let p: E-+B be a map between compacta. Suppose that B is
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an ANR or B has a finite closed cover consisting of FARJs. Then the following

are equivalent.

(1) p is a cell-likeshape fibration.

(2) p is shape shrinkable.

Remark 5.7. In the statement of Corollary 5.6,the assumption about B can-

not be omitted. Edwards and Hastings [6, pp. 196-200] give an example of a cell-

like shape fibrationwhich failsto be a shape equivalence. Also, we cannot omit

the condition "shape fibration" of (1). It is well-known that there is a map p: /?-≫･

Q of continuum E to the Hilbert cube Q which is cell-likeand not a shape equiva-

lence (see [15]).

Corollary 5.8 (cf.,[8, Theorem 2.1]). Let p: E-+B and p': E'~*B he shape

fibrations between compacta and let B be a connected ANR or a continuum with

a finite closed cover consisting of FARs. Suppose that f={fn,E,E'}x,X' is a fiber

fundamental sequence over B and one of the following properties (1) or (2) is

satisfied;

(1) for some boeB, Fd (p-＼bo))^l.

(2) for some boeB, Fd(/r'(&<)))<°°,P~l(b0)has finite components and each

component is pointed 1-movable.

Then f is a fiber shape equivalence over B it and only if the restrictionf＼p~＼b0)―

{fn,p~＼bo),p'~l(bo)}x,x<of f to p~＼b0)is a shape equivalence.

Proof. It is enough to give the proof of sufficiency. Let f:p->p' be a mor-

phisra in FRB induced by /, i.e.,f:p-*-pf is an F(/>,^^-equivalence class containing

s(f) (see the proof of Theorem 2.2 for the notation s(/)). Then the property (1)

or (2) implies that T(f＼p~1(bo)):p~1(bo)-^pf''l(bo)is an isomorphism in s-Sh (see [5,

Theorem 8.3, Theorem 6.4 and Theorem 7.3] and [4, Theorem 3.6]). Hence / is

an isomorphism in FRB by Theorem 5.4 and Corollary 5.5. Thus / is a fibershape

equivalence over B.

Remark 5.9. Chapman and Siebenmann (Finding a boundary for a Hilbert

cube manifold, Acta Math., 137 (1976), 171-208) have asked the following question:

Is each weak proper homotopy equivalence a proper homotopy equivalence? The

positive answer would give a stronger result than Corollary 5.8;in fact we could

omit the assumptions (1),(2) in Corollary 5.8.
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