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0. Introduction.

For any metric compactum B, we define categories My, Rp and FRz whose
objects are all maps af compacta to B, respectively. The purpose of this paper is
to study the categories and shape fibrations. In particular, we show the following.

(1) There is a category isomorphism Sz: Mz—Rjs such that Sp(p: E—-B)=
b E—B for each object p: E~B of Ms.

(2) Let p: E—B and p’: E'—B be maps between compacta. Then the follow-
ing are equivalent.

(i) p is isomorphic to p’ in Mp.

(ii) p is isomorphic to p’ in Rs.

(iii) p is isomorphic to p’ in FRj.

(3) Let p: E—~Band p’: E’—Bbe objects of FRp and let J:p—p’ be a morphism
in F'Rp. 1f B has a finite closed cover {Bi}ix1,2,.... such that for each i=1,2,..-n
the restriction f]p="(Bi):p|p " (B)—p'|p/~Y(B) is an isomorphism in FRg, then
f:p—p’ is an isomorphism in FRz where DI~ (Bs): p~(B;)—B; denotes the restric-
tion of p to p~'(B).

(4) Let p: E—»B and p’: E’—B be shape fibrations between compacta. Then
a morphism f:p—p" of FRp is an isomorphism in FRz if and only if f induces a
strong shape equivalence T(f): E—FE'.

(6) Let p: E»B and p’: E’—B be shape fibrations between compacta. Suppose
that B is a connected ANR or B is a continuum with a finite closed cover consist-
ing of FAR’s. Then a morphism f:p—p’ of FRs is an isomorphism in FRjp if
and only if for some b,eB, the restriction TS 57" (Ba)) : o4 (Bo) ="~ (bo) of Tf) to
p7'(bo) is a strong shape equivalence.

Throughout this paper, all spaces are metrizable and all maps are continuous.
By an ANR (resp. AR), we denote an ANR (resp. AR) for the class of metrizable
spaces. We mean by N the set of positive integers, by 7 the unit interval [0,1]
and by @ the Hilbert cube. Let f and ¢ be maps from a space X into the com-
pactum (Y,d). The sup-metric d is given by
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d(f, e)=sup {d(f(x), o(x))|ze X} .

Let E,E’ and B be compacta contained in AR’s X, X’ and Y, respectively.
Suppose that p: X—Y and p’: X’—Y are extensions of maps p: E—B and p': E'—~
B, respectively. A fundamental sequence (see [11) f={fu, E,E'}x,x,, is a fiber
Sundamental sequence over B [7] if for any ¢>0 and any neighborhood U’ of E’
in X’ there is a neighborhood U of E in X and a positive integer #, such that
for each n=n, there is a homotopy F': UxI—-U’ such that Flz, 0)=fy (z), F(z, )=
JSulzx) for zeU and d(p’'Flz, 1), p(x))<e for zeU, tel. A fiber fundamental sequence
over B f={fu E, E'}x 1 is fiber hometopic to a fiber fundamental sequence over B
g={gn, E, E'}x. 5 (f% g) if for any ¢>0 and any neighborhood U’ of £’ in X’ there
is a neighborhood U of £ in X and a positive integer #, such that for each n=mn,
there is a homotopy K:UXI—U" such that Kz, 0)=sfu(2), Klz,1)=g.(x) for zeU
and d(p'K(z, t), p(x))<e for xeU, tel. A map p:E—B is fiber shape equivalent to
a map p': E’—B if there are fiber fundamental sequences over B f={fa, E, E'}x. x-
and g={ga, E’, E}x..x such that gf ~ 1z and _fg%\_flp, where 1z denotes a fiber
fundamental sequence over B inducl;d by the identity 1g: E—E. Such f is called
a fiber shape equivalence. A map p: E—B is shape shrinkable [7] if p induces a
fiber shape equivalence from p to the identity lz: B—B. Note that p:E—B is
shape shrinkable iff p is a hereditary shape equivalence (see [7, Corollary 3.5]).
We denote by Mp the category whose objects are all maps of compacta to B and

whose morphisms are fiber homotopy classes of fiber fundamental sequences over
B.

1. F(p,p’)-maps, F(p, p’)-homotopies and WF(p, p’)-homotopy classes.

For a subset E of a space X, E is unstable in X [13] if there is a homotopy
H: XxI->X such that Hz,0)=xz, Hz,)e X—F for xeX, 0<t=1. Letp:E—~Band
P’ E’—B be maps between compacta and let £ and £’ be subsets of compacta X
and X7, respectively. A map f: X—E—-X —FE’ is an F(p,p’)-map if for each beB
and each neighborhood W’ of p’~'(b) in X’ there is a neighborhood W of p~'(b) in
X such that f(W—E)cW' —E'. F(p,p’)-maps f,¢9:X—FE—~X —FE are F(p,p)-
homotopic (f N g) if there is a homotopy H:(X—E)X [->X’—E’ such that H(z, 0)
= f(z), Hz, 1) g(x) for xeX—FE and for each beB and each neighborhood W’ of
p’7Y(b) in X’ there is a neighborhood W of p~'(b) in X such that H(W—-E)xI)C
W'—FE’. Such a homotopy H:(X—E)XI—X'—E' is called an F(p,p")-homolopy.
Consider Ex I as a closed subset of XX 7 and a map pr: EXI—B, where n: EXI—~
E is the projection. Then a homotopy H:(X—E) X [-»X’'—F’ is an F(p, p’)-homotopy
iff His an F(pr,p’)-map. X—F and X'—E’ are said to be of the same F(p,p’)-
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homotopy tvpe (XMFN X'—FE) if there is an F(p,p’)-map f: X—E—X’~E’ and
an F(p',p)ymap g¢: X’ F’~>X FE such that (f/‘\/ lx—z and fg/\/l(x _ED,
where 1x_z, denotes the identity of X—F. Such an F(p p)-map f: X b—>X’ E’
is called an F(p,p’)-homotopy equivalence. F(p,p')-maps f,g: X—E—>X —E' are
WFE(p, p')-homotopic (fw%)g) if for any finite open cover {Wi'}ici.2... of E in X’
such that for each beBi),pp"l(b)c Wy for some i, there is a finite open cover
{Wiiz12,.m of E in X such that for each be B, p~'(b)c W, for some j and a homotopy
H:(X—E)xI-X'—F’ such that H(z,0)=f(z), H(z,1)=g(z) for ze X—E and for each
i=1,2,-m, H(W;—E)xI)c Wy for some i=1,2,--n. X—FE and X’—E’ are said
to be of the same WF(p, p’)-homotopy type (X —F /\/ X’ —~F7) if there is an F(p,p’)-
map f: X—~FE->X'—F and an F(p’,p)-map g¢: X’ E’—->X E such that gf —~~—

WF(p,p)

lx-m and fg —~ 1x-py. Such an F(p,p')map f: X—E—X —FE is called a

WEp!,p')

WE(p, p")-homotopy equivalence.

2. Categories Rz and FR3z.

In this section, we define categories Rz and FRy. We show that there is a
category isomorphism Sz: Mz—Rg and some applications are given.

Lemma 2.1 (10, Lemma 3)). Let X and X’ be compact AR’s containing E as
an unstable closed subset. Then there is a map o X, X"): X> X" such that

() oX, XNE=1g and oX, X' X~E)cX —E.

If @1, 01 X=X’ satisfy the condition (x), then there is a homotopy H: XX I—-X' such
that H{z,0)=p:(x), Hx,1)=0:(x) for xeX and Hlz,t)=x for zcE, tel and H((X—
EYXI)cX'—E. In particular, for any map p: E—~B o(X, X)|X~E: X—E—>X —
is an F(p,py-map and H(X—E)XI:(X—E)XI+>X —E is an F(p, p)-homotopy.

For any compactum B, we shall define categories Rz and FRjs as follows.
For a compactum [, we denote by m(E) the set of compact AR’s containing £
as an unstable subset. Let p: E—B and p’: E’—B be maps between compacta
and let X, Xoem(E) and X/, X’ em(E’). An Fp,p')-map f: Xi—E—-X/—F is
WE(p, p')-equivalent to an F(p,p')-map ¢:X,—F—X'—E if o Xy, X)X —E
fwm)g°w(X1,Xz)le—E, where ¢(Xi, X;) and ¢(X//, X;) are maps satisfying the
condition (x) of Lemma 2.1. An F(p,p’)-map f: X,—E—X,'—E' is F(p, P')-equivalent
to an F(p,p')-map ¢: X, —E->Xy'—F' if o(Xy/, X)X —E'of f\/g o Xi, Xo)| X1 —
E. Objects of Rp are maps of compacta to B. For objects p: E—»B and p': E'—B
of Rp, morphisms from p to p’ in Ry are WF(p, p’')-equivalence classes of collections
of F(p,p'ymaps f:X—FE—->X'—FE, Xem(E), X'em(E"). Obviously, Rz forms a
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category. Similarly, Objects of FRp are maps of compacta to B and for objects
p:E—Band p': E'—>B of FRp, morphisms from p to p’ in FRp are F(p,p’)-equiva-
lence classes of collections of F(p,p’)-maps f: X—E—-X —F', Xem(E), X em(E").
Then FRz forms a category.

The proof of the following theorem is analogous to one of [10, Theorem 1],
but more informations will be used.

THEOREM 2.2. There is a category isomorphism Sg: Mp—Rg such that Sg(p: E—~
B)=p: E—B for each object p:FE—B of Ms.

Proor. Let p:E—B, p': E'—B be objects of Mg and consider £, E’ and B as
closed subsets of the Hilbert cube @. Suppose that p:Q—Q and p’':Q—Q are ex-
tensions of p and p’, respectively. Choose a sequence ¢, > e3>, -, of positive
numbers such that lime;=0 and decreasing sequences {U,}, {V.} of compact ANR-

neighborhoods of £, E’ in @, respectively such that F\ U,=F, (oi\ Ve=F'. LetU=
{Uy, &', ke NU{0}} be an inverse sequence such thatﬂbo is a oﬁé‘ point set, #4: U—
U, is the constant map and &' : Uy, Uy (k=1) is the inclusion. Similarly, we
obtain an inverse sequence V ={V4,j¢*', ke NU{0}}. Consider the infinite telescope
(e.g. see [10, p. 74)) T(U)=ng(U), where M) denotes the mapping cylinder
obtained by #*' : Ugr1— Uy, ie., My(U) is obtained by identifying points (x, 1)e Uk X
{1} and #*Y(x)=zcU: for xzeUs:: in a topological sum Ugy.XIU Uy, and T(U) is
obtained by identifying each point of Upx{0} in M, (U) and the corresponding
point of Uy in My(U). Let NU)=T(U)UE be an AR having the same topology as
in [10, p. 74]. Note that T(U)”:‘T’(_U):C(UI)U@ U;x[1/j+1,1/j1c@x(0,1] and
(N, E)y=(T"(U)U Ex{0}, EX{0})cQx[0,1], wheri:C(U;) is a cone over U, x{1/2}
with a vertex (v,1), ve® in @x[1/2,1]. Similarly, we obtain T(V) and MYV).
Suppose that f={fn, E, E'}q.¢ is a fiber fundamental sequence over 5. Inductively,
we can find a sequence O0=n,<#n,<n:<ms<,--, of integers such that for n=wn,,
there is a homotopy Hpyn: UnXI->Vi such that Hy, a(x, 0)=frn(x), Hpynlz,1)=
Fo(x) for ze Uy, and d(p’ Hyu,, oz, 1), p(x))<e; for ze Un,, tel. Define a map s(f): T(U)—
k171

T(V) as follows. For each £=0,1,2, -, consider the subset \J M;U) and Mx(V)

i=ny

7 1—-1
of TU) and T(V), respectively. Define a map s(f )k:kC) M{(U)—M(V) by
4

fﬂkler;l(x) , for (=, t)eMj(_U) , J=nk, netl, e mp—2,
(@, =3 (fngy,(2), 28), for 0=t=1/2, (x,8)eMy,,,«(U),
f[nk,nkﬂ(m,Z—ﬁl‘), for 12=t=1, (=, i)GMnk+l_1(U),



Fiber Shape Categories 251

where fy: Us—V, is the constant map. Define s(f) by s(f )| U M(U) s(f)e for
each £=0,1,2,---. By the construction of s(f), it is an F(p, p)map Note that
NU)em(E), N(Y)em(E’). To complete the proof, we need the following lemma.
By the lemma, we can define Sg([f]) as the WF(p, p’)-equivalence class containing
s(f), where [f] denotes the fiber homotopy class containing f and we can conclude
that Sg is a category isomorphism from Mg to Rz. The proof of the lemma is
similar to one of [10, Lemma 5], hence we omit it.

LeMMmA 23. Let [p: E—B,p' : E'—B] be the set of fiber homotopy classes of
Jiber fundamental sequences from p to p’ and [T(U), TV )lwrcp, p» the set of WEp,p")-
homotopy classes of F(p,p')maps from TU) to TV). Then s induces a 1:1
correspondence from [p: E—B,p’ : E-B] onto [T(T), TV )lwrp, p-

THEOREM 24. Let p: E—B and p’: E'—B be maps between compacta and let
Xem(E), X'em(E'"). If an F(p,p"ymap f:X—E-X'—E' is a WE(p,p')-homotopy
equivalence, then there is an F(p,p')-map g: X—E—-X' —E' such that f ~ g and g

WF(p,p")
is an F(p, p’)-homotopy equivalence. In particular, the following are equivalent.

) p is isomorphic to P’ in Mg

(2) If Xem(E) and X' em(E"), then X—EW%)X’—E’.

3) There are Xem(E) and X' em(E’) such that X_EW;_;/TEX,—EI'
(4) p is isomorphic to p’ in Rp.

6) If Xem(E) and X' em(E"), then X—E%X’—

6) There are Xem(E) and X' em(E’) such that X—FE —~ X'—F".

F(p,p’)
(7) p is isomorphic to p' in FRp.

Proor. Suppose that an F(p,p’)-map f: X—F—X'—E’ is a WF{(p, p’)-homotopy
equivalence. Embed £ and £’ into the Hilbert cube Q as Z-sets, respectively. By
Lemma 2.1, Theorem 2.2 and the proof of [7, Theorem 3.1], there is a homeo-
morphism %:Q—E—Q—FE’ which is an F(p, p’)-map and ¢(Q, X")|Q — Eoheo(X, Q)| X
-FE W/;(;; f, where (@, X”) and (X, @) are maps satisfying the condition () of
Lemma 2.1. Set g=¢(Q, X")|Q—E h-o(X, Q)| X—E. Clearly g¢ satisfies the condition
of Theorem 2.4. The rest of the proof follows from this result, Lemma 2.1 and
Theorem 2.2.

COROLLARY 2.5. A map p: E—B between compacta is shape shrinkable if and
only if for any Xem(E), Yem(B) and for any extension p:X—Y of p such that
HX—-E)CY-B, p|JX—E: X~E-~>Y—B is an Fp,1s)-homotopy equivalence, where
1z denotes the identity of B.
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Remark 2.6. Note that if B is a one point set, the categories Mz and FRp
are the same as shape category (see [1]) and strong (or fine) shape category (see
[5],[6] and [10]), respectively.

3. The Category FR.

Let p: BB and p’': ’-B be objects of Ry (resp. FRp) and let fip—p’ be a
morphism in Rp (resp. FRg). For any closed subset C of B, we shall define a
morphism f|p7(C): p|p~"(C)—p'|p'~/(C) in Ry (resp. FR;), where Plp~(C) is the
restriction map of p, ie, p|p I(C):p~(C)—»C. We need the following lemma. We
omit the proof.

LemMMA 31. Let A be a compactum and B be a closed subsel of A. Suppose
Xem(A) and Yem(B). Then there are maps "X, Y): X>Y and (Y,X): Y>X

such that
(#x) (X, Y)|B=1p and rX,Y)(X—-A)cCY-B,
(eex) iV, X)|B=15 and i(Y,X)|(Y-BcX—A.
If r,v" : X=Y satisfy the condition (xx), then there is a homotopy H: XX I—Y such
that
H(x,0)=r(x) and H(x,)=v"(z) for zeX,
Hx,t)=x for zeB and tel, H(X-AXI)cY-B.

Similarly, if i,i’: Y—>X satisfy the condition (xxx), then Lhere is a homotopy K: VX
I-X such that

K(y,0)=i(y), Ky,1)=i'(y) for yeY,
Ky, )=y for yeB and tel, K(Y-BxI)cX-A.

Suppose that Xem(E), X'em(E"), Yem(p~'(C)) and Y'em(p'~%(C)) and an F(p, p)-
map f: X—FE—+X'—~E’ determines the morphism f:p—p’. Then the composition
X, Y X' = E' o foi( Y, X)| Y~ p7(C): Y—p=(C)—»Y'— p'~/(C) is an F(plp~1(C), p']
p'7Y(C))-map, where »(X’, ¥”) and (Y, X) are maps satisfying the condition (+*) and
(#xx) of Lemma 3.1, respectively. We define the restriction SN O): plp~(C)—~
P'|p'7HC) by the WF(p|p=(C), | p'~(C))-equivalence class (resp. the F(p|p~(C), 2’|
P’7Y(C))-equivalence class) containing (X, Y")| X' —E'o foi(Y, X NY —p=Y(C).

PrOPOSITION 32. Let p: E—B and p': E'—B be objects of Rg (resp. FRg). If
a morphism f:p—p’ in Ry (resp. FRg) is an isomorphism, then for any closed subset
C of B, flp~YC) is an isomorphism in Rg (resp. FRo).
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THEOREM 3.3. Let p: E—~B and p': E'—B be objects of FRp and let f:p—p’
be a morphism in FRp. If B has a finite closed cover {Bi}i-1,s...n SUch that for each
1=1,2, --n the restriction f|p~(B:):plp~ " (B:)—p'|p'~'(Bs) is an isomorphism in FRg,,
then f:p—p’ is an isomorphism in FRp.

To prove Theorem 3.3, we need the following lemma.

LEemMA 3.4. Let E and E' be closed subsels of compacta X and X', respectively
and let p: E—B and p':E'—>B be maps between compacta. Suppose that A is @
closed subset of X, X'em(E’) and G : (A—E)xI—-X'—FE'" is an F(p|ANE, p')-homatopy,
where PIANE: ANE—DB. If there is an extension §: (X—E)x{0}>X" —E’ of G|(A—
E)X {0} which is an F(p,p’)-map, then there is an extension G: (X—-E)XI->X'—F’
of G and § such that G is an F(p, p")-homotopy.

Proor. Since X’—FE’ is an ANR, there is a neighborhood U of A-F in X—
E and an extension G’ :(X—E)X{0}UUXI->X"—E’ of G such that G'|(X—E)x {0}
=§. For each xeA—F, choose a neighborhood U, of x in U such that

(1) UsclyeUld(y, x)<d(=, E)|2} and
Uz, {yeU|d(G(x, 1), G'(y,1))<d(x, E) for each fel}.

Set V=\Usesa-rU,. Then V is a neighborhood of A—FE in X—FE. Choose a map
r: X—FE—I such that »(z)=0 for ze(X—E)—V and 7(z)=1 for z¢ A—E. Define a
homotopy G~:(X—E)><I—>X’—E’ by 6(3:, H=G"(x,r(x)t) for xeX—F and tel. To
complete the proof, we must show that G is an F(p, p")-homotopy. Suppose that
beB and W’ is a neighborhood of p’~'(b) in X’. Choose a neighborhood W’’ of
P7Nb) in X’ such that Cly. W/ W’. Let ¢,=d(Clxy. W, X' —W")>0. Since §is an
F(p,p')-map and G is an F(p|ANE,p’)-homotopy, there is a neighborhood W, of
p74(b) in X such that

@) §{Wi—E)CW’—E and G((ANW)—E)XI)CW'—F'.

Let e;=Min {d(X—W,,p7(b)), &1} >0. Choose a neighborhood W,c W, of p~'(b) in X
such that d(y,p (b)) <e/2 for all ye W,. Then we show that G(We—E)xI)C W’
—F. If yeW,—E—V, by the construction of G and by (2), G(y, )=d(y)c W' —E'C
W’'—E’. Suppose ye(W,—FE)NV. Then there is U, for some zeA—FE such that
U,3y. By (1) we have

@) dz,y)=d(z, E)2=d(y, E)=d(y, p"(b))<es[2 .

By (3) we have

(4 dz, pO)=d(w, v)+d(y, p (D)< ef2+ef2=¢, .
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Therefore zeW,. By (2), G(z,)e W' —E’ for tel. By (1) and (4),
®) dGlx, D), Gy, ))<d(x, E)=d(z,p7' (D) <er=e; .

Hence G'(y,t)e W' —E’. By the construction of 5, we conclude that 5(@/, HeW'—FE’
for each tel. Thus G is an F(p, p’)-homotopy. This completes the proof.

Proor or TueorEM 3.3. It is enough to give the proof of the case n=2. The
case #z3 is proved by induction. We may assume BN By=B,%¢. If By=¢, the
proof is trivial.

Embed £ and E’ into the Hilbert cube Q. For each i=1,2, choose a decreasing
sequence U?={U,};-.,s... of compact ANR-neighborhoods of p~'(B;) in @ such that

1) p“(Bz-)=jF\ Ujf and Upf=UNU; is a compact ANR for each i=1,2
=1
and j=1,2, ..

Set Uj=U;'UU, U={Ugj-1.s. and U°={U};eys... Then U is a decreasing

sequence of compact ANR-neighborhoods of E in @ such that
(2) NU)DNU?% for each i=1,2 and

(2) NU)em(E), NU»Hem(p™*(B;)) for each i=1,2 and
NUY=NU"YNNU*em(p~(B,)) (see the proof of Theorem 2.2).

Similarly we obtain MV), N(V?) for each i=1,2 and MV") such that
4) NYV)DNY? for each i=1,2 and
(5) NV)em(E'), NV%Hem(p' '(B;) for each i=1,2 and
NY°)y=NV")NNY*)em(p' - (By)).

By Lemma 2.1, there is an F(p,p’)-map f: T(WU)=NU)—-E—->T(V)=NYV)—E’ which
is contained in the F(p, p")-equivalence class f: p—p’. Now by the following lemma
(Lemma 3.5), we may assume that

6) f(MUHNCTW? for each i=1,2.

By Proposition 3.2, fIT(U°): TW,)—~TY") is an F(p|p~(Bs), 2’|’ ~"(Bs))-homotopy
equivalence. Hence there is an F(p'|p'~'(By), p|p~'(Bo))-map go: TV )—TU°) and
an F(p'|p'~(B,), p'| p'~(Bs))-homotopy H, : T(V*) x I-T(V®) such that

(M) @fITU® =~~~ 1p(y»y, and
F(plp—i(Bp), plp—1(By))  ~

(8) Hy(x,0)=fgo(x) for zeT(V®) and Hy(z,H)=z for zeT(V°®) and
1/2=t=<1.

By Lemma 3.4 and the same way as in Brown [2,7.4.1], for each i=1,2 there is
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an F(p'|p"~'(B:), p| p~(By))-maps gi: TVH)~>T(U?) and an F(p'|p""Y(Bo),p'|p'~(Ba))-
homotopy H;: T(VH) X I—-T(V?) such that

(9) alTV")=go,

10) Hi(x,0)=fgi(x) for zeT(V?), Hix, )=z for xeT(V? and
1/2=t=1 and

A1) H|TWxI=H,.
By (9) we can define a map g: T(V)->T(U) by
gi(x) for xeT(VY)
(12) g(x)=
go(x) for zeT(V?).
Then ¢ is an F(#’, p)-map and by (10) and (11) we have
(13) fo _/E/_lr(y) .
F(p',p"
Note that ¢|T(V?): T(VH)—-TW?) is an F(p'|p’~(By), p| p~(B:))-homotopy equivalence.

By the same argument as above, there is an F(p,p’)-map f: XU)—~T(V) such
that

14) of ~1Lrw>.
F(p,p)
By (13) and (14),
(15) f

o~ fof —~f".
F(p,p" F(p,p")

Hence fgf(\/ lrw, and gf f(\/) 1ran, which implies that f is an F(p, p’)-homotopy
F(p',p’) T F(p,p -
equivalence. Thus the morphism f:p—p’ is an isomorphism in FRg. This com-

pletes the proof.

LeMMA 3.5. Let f: TWU)>TYV) be an F(p,p")-map. Then there is an F(p,p')-
map g: TU)->TY) such that g(TUD)CTV?) for each i=1,2 and g%f.

Proor. Since NMYV?¥) is an AR for each i=0,1,2, there is a retraction »;" : N(V)
—NV?%. Choose a map a;: MV )—I such that «;~'(0)=MV? for each ¢=0,1,2.
Since MV #¥em(p'~'(B:)) for each i=0,1,2, there is a homotopy H;: NV )X [->NV?)
such that Hyz, 0)=x for ze N(V?) and Hy(z, )e T(V?) for xe N(V*) and 0<¢=1. Define
a map 7:;: MV) - NV for each i=0,1,2 by riz)=H{r/(x), aix)) for xeNYV).
Then 7|NV)=1yws, and r(T(V)cT(V?) for each i=0,1,2. Similarly, for each
i=0,1,2 there is a homotopy K;: NV)XI->NYV) such that Kz, 0)=x, Ki(z,1)=
ri(x) for xeNV), Ki(x,t)=x for zeN(V?) and tel and K(T(V)XI)cT(V). Define
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a homotopy ¢o: U)X [=T(V) by @o, £)=K(f(x),¢) for ze (U and tel. Then
po(@, 0)=f(x), ooz, 1)=rf(x)e T(V?) for xe TIU®) and ¢, is an F(p|p~"(B.), p')-homo-
topy. By Lemma 3.4, thereis an F(p,p’')-map ¢’: T(U)—~>T(V) such that ¢’| XU,)=
rof | TXU®) and ¢’ —~ f Note ¢’(TWU*)c T(V°). Define a homotopy ¢;: T{U?)x I—
T(V) for each zﬁl 2 by oi(x, )=Ki(g'(x), ) for zeT(U?) and tel. Then ¢i(x,0)=
9'(z), oi(x, )=rig(x)e T(V?) for zeT(U? and iz, H)=¢(z) for ze TWU°) and tel.
Also ¢; is an F{p|p~'(B;), p’)-homotopy. Define a homotopy ¢: T\U)x I—T(V) by

oz, ) for xeT(U'") and tel
oz, )=
oz, ) for xeTWU* and fel.
Then ¢(x,0)=¢'(z) for 2eT(U) and o(TUH)cT(V?) for each i=1,2 and ¢ is an
F(p,p')-homotopy. Define a map g: XU)—~>T(V) by g(x)=¢(x,1) for ze T(U). Then
g satisfies the condition of Lemma 3.5.

By Corollary 2.5 and Theorem 3.3, we have the following.

COROLLARY 3.6. Letf p: E—~B be a map between compacta. If there is a finite
closed cover {Bi}i_1 2. of B such that p|p=\(B;):p "(B:i)—Bi is shape shrinkable for
each i=1,2,---n, then p: E—B is shape shrinkable.

COROLLARY 3.7. Let p: E—B and p': E'—B be maps between compacta and let
[ E—E be a fiber map over B (i.e., p'f=p). If there is a finite closed cover {Bi}i_, 2. .m
of B such that for each i=1,2,---n, f|p~\(B;):p~'(B:)—p'"(B:) is a fiber homotopy
equivalence over By, then f induces an isomorphism f:p—p’ in FRp. In particular,
f is a fiber shape equivalence over B.

RemARK 3.8. In the statement of Corollary 3.7, we cannot conclude that f is
a fiber homotopy equivalence over B. Define a map p:[0,3]-[0,2] by p|[0,1]=
1,15, p((1, 2])=1 and p()=t—1 for #¢[2,3]. Let B,=[0,1] and B,=[1,2]. It is clear
that p is a fiber map from p to the identity 1y, and for each i=1,2, p|p~'(B:):
P Y(Bi)—B; is a fiber homotopy equivalence over B;. But there is no fiber map
9:[0,21-[0, 3] over [0,2].

4. Shape fibrations and Strong shape equivalences.

We denote by s-Si the strong (or fine) shape category (see [5],[6] and [10]).
Let p: F—»B and p’: B be objects of FRp and f:p—p’ be a morphism in FRj.
Choose Xem(F), X’em(FE’) and an F(p,p')-maps f: X—E-—>X'—FE’ contained in the
F(p, p')-equivalence class f:p-»p’. Since every F(p,p’)-map is a proper map, the
morphism T(f): E—FE’ of s-Sh induced by the proper map f: X—E->X'—E' is
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independent of the choices of Xem(FE), X’ em(E") and f: X—E—-X'—FE’. Clearly there
is a functor T': FRz—s-Sh such that 7(p: E—B)=F for each object p: E—~B of FR5.

In this section, we show the following theorem which is a more general result
than [7, Theorem 2.3].

THEOREM 41. Let p: E—~B and p': E'—B be shape fibrations between compacta
(see [11)). Then a morphism f:p—p’ of FRy is an isomorphism in FRg if and only
if T(f): E—E is an isomorphism in s-Sh.

First, we need the following.

Lemma 4.2. Let p: E—~B be a shape fibration between compacta and let p . X—
Y be an extension of p, where X and Y are AR’s containing E and B, respectively.
Suppose that ¢>0 and U (resp. V') is a neighborhood of E (resp. B) in X (resp. ).
Then there is 6>0 and a neighborhood U, (resp. V) of E (vesp. B) in X (resp. Y)
satisfying the following property ; for any space Z and a closed subset A of Z, any
maps h:(ZX{ONUAXD)-U, and H: ZX 1>V, such that d(ph, H|(Zx<{0))UAX D)<
3, then there is an extension H:ZxI-~>U of h such that d(ﬁl—NI JH)<e. Such a pair
(U, Vi3 0) is called a lifting pair for (U, V;e).

SKETCH OF THE PROOF OF LEMMA 4.2. Observe [11, Theorem 2] and [12,
Proposition 1]. The lemma is proved by the same way as in Allaud and Fadell
[A fiber homotopy extension theorem, Trans. A.M.S. Soc. 104 (1962), 239-251,
Theorem (2.1) and Theorem (2.4)] and shape theoretic consideration.

LemMA 4.3. Let X be a compact ANR. Then for any >0 there is a(e)>0
such that for any space Z and a closed subset A of Z, any a(e)-near maps f, g: Z—
X and a homotopy H: AXI-X such that H(z, 0)=f(2), H(z,1)=¢g(z) for zeA and
diam H{{z} X [)<a(e) for zeA, then there is an extension F.ZXI->X of H such that
F(z,0)=1(2), F(2,1)=g(z) for zeZ and diam F({z} xI)<e for zeZ.

Proor or THEOREM 4.1. It is enough to give the proof of sufficiency. Choose
Xem(E), X’em(E’) and Yem(B) which are convenient AR’s (i.e., An AR X is con-
venient if for each compactum A in X and each neighborhood U of A in X there
is a compact ANR Mc U with Aclat M). Let p: X—Y and p': X'—Y be exten-
sions of p and p’, respectively. Since Yem(B), we may assume HX—E)cY—-B
and p'(X’—FE)CcY—B. Suppose that f: X—F—>X'—F’ is an F(p,p’)-map which
is contained in the F(#,p’)-equivalence class f:p—p’. Since f is a proper homotopy
equivalence, there is a proper map g : X' —E’—X— E and a proper homotopy H: (X’ —
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ExI-X'—E such that gf is properly homotopic to l¢. g and Hz’,0)=2a’, [[z’,1)
=fg(z’) for x’e X’ F'.

We will construct decreasing sequences {Cp}uis,.. and {Dp}p-1.s... of compact
ANR’s, a decreasing sequence {en}n-1,2... 0f positive numbers and sequences {gn}no1.z...,
{Gulnor.z,.. and {Ry}n_1,»... of maps satisfying the following properties (1)~(9).

1) XoCoIntCinCo-dFE, X' 2D, oIntD,oD,>--DE
and E:F\Cﬂ,, E’:F\Dn.
n=1 n=1

(2) lime,=0.

n->00

3) gen-1: Don—Int Dyp1y—Cony—E for n=1,2, .-,
02t Dopsr—Int Dy s—Cop s—E  for n=2,3, ..

(4) Goner: (Den—1Int Dopy )X I5Copy—E  for n=1,2, -,
Gen (Depsi—Int Dopio) X [5Cyops—E  for n=2,3, .

(5) Ron-t:(Den—Int Dypyt) X[0,2]-+Dop_y—E’  for n=1,2, -

Ron: (Denyi—Int Doni2)X[0,2}5Dyps—E’  for n=2,3, .-

6) Gona(x", 0)=g2n—1(z"), Ga-i(z’,1)=¢(z’) for 2’€Dyn—1Int Dypy
and  Gon(x!, 0)=gsn(x’), Gaunlz’,1)=g(x’) for z’'€Dspei—I0t Dopss
and  Gaons|(Bd Dant) X I=Gon|(Bd Dins ) X 1,
G2nl(Bd Dypis) X I=Goni1|(Bd Dynye) X 1 .

(7)) Royni(2/,0)=2", Rupi(2,2)=Fgans(z") for x’e€Dusp—Int Dypyy,
Ron(x",0)=2", Ron(x’,2)=Ffgn(z’) for 2'€Dyps—Int Donys
and  Rpn_1|(Bd Dint1) X [0, 2]= Ryn|(Bd Dirn11) X[0,2], Run|(Bd Danys) X[0,2]=
Ronst|(Bd Danye) x[0,2].

(8) d(ﬁan—l(x,)’ ﬁ,(x/))<527l—l for -Z"GDzn—Int D2n+1
and d(ﬁgzn(x’). ﬁ’(.ﬁb‘,))<€2n_s for x’€D2n+| —Int Dzn+2 .

(9 d(P' Reni(z’,8), p'(@"))<eru—1 for x'eDsp—Int Donsy, #€[0,2]
and d(ﬁ’Rzn($’v t)» [”('7;’))\/527»- 3 for -x,GDan —Int Dzm-z s te[O, 2] .

Let D, (resp. B:) be compact ANR-neighborhood of £’ (resp. B) in X’ (resp. Y)
such that p/(D;)c B, and & >0. Since p’: E'—B is a shape fibration, by Lemma
4.2, there is a compact ANR-neighborhood D.’ (resp. B\) of E’ (resp. B) in X’
(resp. Y) and 4,>0 such that

(10) DioD/, BDB/, p(D/)cB/ and (D/,B/;d) is a lifting pair for
(D1, Bi; edf2), 61<eif2.
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Since B/ is a compact ANR, there is a positive number «(,) satisfying the con-
dition of Lemma 4.3 and 6,>a(8,)>0. Since f: X—FE—>X'—FE’ is an F(p,p’)-map,
we can easily see that there is a compact ANR-neighborhood C, of £ in X such
that

(11) pCHcB/, AC—E)cD/—E and dp f(»), px))<ald)/2
for zeC,—FE.

Since p:E-B is a shape fibration, by Lemma 4.2 there is a compact ANR-neighbor-
hood C; (resp. B:) of F (resp. B) in X (resp. Y) and a positive number & <a(d,)
such that

(12) p(C)cB,, CDC,, B’/DB:, (Cp, By;e) is a lifting pair for (Cy, BY;
a(0,)/2) and d(p'f(x), Hx))<e: for xeCo—E.

Since ¢ and / are proper maps respectively, we can choose a compact ANR-
neighborhood D, of £ in X’ such that

13) DioIntD,DD,,

(14) o¢D.—E")cC,—E and pgD,—FE)CB,—B,

(15) H(D,—EXI)cD/—E and pH(D,—E)xI[)CB,—B.
By (12) and (14), we have

(16) d(p'H(x’,1), pg(5"))=d(p'fo(x'), pe(z"))<ex for x'eDy—FE' .

Choose a compact ANR-neighborhood D; of E’ in X’ with DscInt D,. By (12), (16)
and Xem(E), there is a homotopy G,:(D,—Int D;)XI—-C,~E such that

(A7) G, 1)=g(’) for &’eD;~Int D,
and  d(pG,, p’H|(D.~Int Dy x 1)< a(6)/2 <z, .

Define a map ¢.:D,—Int D;—C,—E by g(a’)=G(s’,0) for x’e€D,—Int D,. Then
we have
(18)  d(pgu(x"), p'(x')=d(pG (s, 0), ' H(z', 0)) < a(61)/2 < e .
Define a homotopy L, :(D.—Int D) X[0,2]—D,’—E’ by
H«',s) for 2’eD,—Int D;, 0=s=1,
(19) Ly(a’,s)=
fG(a',2—s) for x’eD,—Int Dy, 1=s=2.
By (11), (17) and (19),

(20) d(F'La,s), B L’ 2= S)=d(p' Ha',5), B fGu(a, )
S H ), DG, )+dBCA, 5), B O, 5)
<a(3,)24a(0,)/2=a(d,), where 0=s=1.



260 Hisao KaTo

By the choice of «a(d:), there is a homotopy K, :(D,—Int D;)x[0,2]x[—B, such
that

21) K(a',s,)=p'Li(z’,s) for t=1—s or i=s—1] and
dp'(x"), Ki(x',s,1))<8:<ef2 for x’eDy—Int Ds, 0=5=2.
Define a map L./ :(D.—Int D;)x ({0} X TU[0, 21x {0} U {2} X I)—~D,\" —E’ by
L(z’,0) for s=0, 0=¢=1,
22) L/(z',s,)={L(z’,s) for 0=s=2, ¢=0
Lyx',2) for s=2, 0=¢<1.

By (21) and (22), §’L/=K|(D.—Int Ds)x ({0} X TU[0, 2] {0} U {2} X I). By (10), there
is a homotopy M, :(D.—Int D;)x[0,2]X I-~D,— E such that

(23) M(D.—Int Dy)x ({0} x TU[0, 2]1x {0} U 2} X I)=Ly and d(p'M,, K))<e /2.
Define a homotopy R, :(D,—Int D;)x[0,2]->D;—E’ by

(24) Ry(o,s)=M(a’,s,1) for x’eD,—Int D;, 0=5=2.
Then Ri(z’,0)=x", Ri(z’,2)=fg(z") for ’eD,—Int D,. By (21), (23) and (24), we

have

(25) d(p'Ri(a’,5), p'(x"))
=d(p'M(z’, s, 1), Ki(z', s, ) +d(Ki(x', 5, 1), p'(x"))
<e&f2+ef2=¢ for x'eD,—Int D;, 0=s=2.

If we continue the process as above, then we can construct decreasing se-
quences {C.}, {D.} of compact ANR’s, a decreasing sequence {e,} of positive numbers
and sequences {gen_1)n=1,2..s {Gan-t}noi.2, .. and {Ren_i}n_1,2. .. of maps satisfying the
conditions (1)~(9).

Next, for each #=2,3, -, we will construct maps ¢., G2»n and R, satisfying
the conditions (3)~(9). Define a map Gh: (Dene1 — Int Dyyys) X {1JUBA Dens it U
Bd Dpi2) X [5Con_y—E by

g(x’) for x'€Dypyy—Int Dopys, t=1,
(26) G’ 6)=1Gan_s(x’, ) for z'eBd Donyy, tel,
Gonii(z’,t) for x'€Bd Dypys, tel.
By (16) and (17), we have

(27)  d(p'H|(Dzns1—Int Danv2) X {1} U(BA Dansr UBA Danse) X I, pG3n)
< a(azn—-l)/z <eon-1<E2m-2 -

By (12), (27) and Xem(E), there is a homotopy Gay,: (Dear1—Int Donyo) X I5Conoy— 1%
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such that

(28)  Gau|(Dans1 —Int Dagr2) X 11U B Dyt UBA Dyni2) X I=GY,  and
d(ﬁGzn, _[),H‘(Dzn-(»l _lnt D2n+2) X I)<a(6zn43)/2 .

Define 2 map gen: Denvi—Int Dyniy—>Cons—E by gen(@")=Goal2’,0) for z'€Dopii—
Int Dynye. Clearly, ¢un and Ga, satisfy the conditions as we wanted. Similarly, we
obtain Run:(Danii —Int Do) X[0, 2] Dz — E’ which fulfills our requirement.

Clearly we obtain maps ¢’ : X' —E'—-X—F, G:(X'—E)xI-X—FEand R:(X'—
EX[0,2]»X' —FE’ such that

¢’ | Den—Int Depri=gan— for n=1,2, .-,

¢'| Dansr—Int Doio=gen for n=2,3, -,
Gl(Den—Int Dinir) X [=G2p-y for n=1,2,--,
G|(Dynvi—1Int Dopr2) X [=Gyy for v=2,3, -,
R|(Dy—1Int D3y ) X[0,2]= Ry for n=1,2, .-,
R|(Dsnyi—Int Dypia) X[0,2]=Ryy  for n=2,3, .

and G(z', 0)=¢'(z’), Gla’,D=g¢(z’) for z'eX'—FE', R, 0)=2a’, Rx’',2)=fg'(x") for
2’ €X' —E' (because Xem(E), X’em(E")). By (1)~(9), we can conclude that ¢’ is an
F(p’, p)-map such that ¢’ is properly homotopic to ¢ and f¢’ %)1;(,,13,. Note that
¢’ is a proper homotopy equivalence. To complete the proof, we apply the same
process to ¢’ : X' —F'—»X—F instead of f: X—E—X’'—E’. Thus there is an F(p,p’)
map f’: X—E-»X'—FE" such that ¢'f/ —~~1x_p. Then f —~ f¢'f’ ~—~ ', which
F(p,p) F(p.p" F(p,p")
implies fg¢’ %)1X,_E, and ¢'f T(/';;/p_) 1x_z. Hence the morphism f:p—p" is an
isomorphism in FRg. This completes the proof.

As a special case of Theorem 4.1, we have the next corollary.

CoroLLarY 4.4. Let p: E—B be a map between compacta. Then the following

are equivalent.

(1) pis a shape fibvation and a strong shape equivalence.
(1) p is shape shrinkable.

Proor. (1)—(2) follows from Theorem 4.1. (2)—~(1) follows from {7, Corollary
3.6] and Corollary 2.5.

For a map p: E—B, S*(p) denotes the morphism of s-Sk induced by p. By the
similar way as the proof of Theorem 4.1, we have the following proposition.
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PrOPOSITION 4.5. Let p: E—B and p': E'—B be maps between compacta and
let f:E—~E' be a morphism in s-Sh such that S(p)=S*(p")f. If p' :E'—>B is a
shape fibvation, then theve is a morphism g:p—p’ in FRy such that T(g)= 1.

By Theorem 4.1 and Proposition 4.5, we have

COROLLARY 4.6. Let p: E—B and p': E'—B be shape fibrations between com-
pacta. If a morphism f: E—~E' in s-Sh is an isomorphism such that S*(p)=S*(p"f,
then theve is an isomorphism g:p—p’ in FRy such that T(g)=f.

5. Applications.

In this section, some applications are given. First, we obtain the following
theorem by Theorem 3.3 and Theorem 4.1.

THEOREM 5.1. Let p: E—B and p’': E'—B be shape fibrations between compacta
and let f:p—p’ be a morphism in FRg. If there is a finite closed cover {Bi}iz1.0,.m
of B such that T(f|p~"(B)):p~(B:)—=p'"\(B:) is an isomordhism in s-Sh for each
i=1,2,-,m, then f:p—p’ is an isomorbhism in FRy.

It is well-known that if p: ¥~ B is a Hurewicz fibration and B is contractible,
the inclusion i:p"%(b)—~FE is a homotopy equivalence for each beB. Note that if
B is an FAR and a Z-set in @, there is a decreasing sequence QDB DB,D-, of
compact neighborhoods of B in @ such that ﬁ B;=B, each B; is homeomorphic

to @. The proof of the following proposition‘is similar to one of Theorem 4.1.
We omit it.

ProposiTiON 5.2. (cf. [12, Theorem 1]). Let p: E—B be a shape fibvation be-
tween compacta. If B is an FAR, the inclusion i:p=Y(b)—~E induces an isomorbhism
in s-Sh for each beB.

ProposiTION 5.3. Let p: E—B and p': E'— B be shape fibrations between com-
bacta and let B be an FAR. Then a morphism f:p—p’ of FRg is an isomorbhism
in FRp if and only if for some byeB, the vestriction T(f|p (b)) : p " (bo)—p""(bo)
of T(f) to p~*(be) is an isomorphism in s-Sh.

Proor. It is enough to give the proof of sufficiency. There is a commutative
diagram
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T(f1p' (b))

7' (bo) 27 '(bo)
S *(i)J S*(i)
T
Dk

in s-Sh, where i and ¢ are the inclusion maps. By Proposition 5.2, i and i’ induce
isomorphisms in s-Sh. Hence T(f):F—E’ is an isomorphism in s-Sh. By Theorem
4.1, f:p—p’ is an isomorphism in FR.

THEOREM 5.4. Let p: E—B and p’ : E'—B be shape fibralions between compacta.
Suppose that B is a continuum with a finite closed cover consisting of FAR’s. Then
a morphism f: p—p’ of FRp is an isomorphism in FRy if and only if for some b,eB,
the restriction T(f|p(be)) : =" (bo)—0""(bo) of T(F) to p='(bs) is an isomorphism in
s-Sh.

Proor. It is enough to give the proof of sufficiency. Let {B:} be a finite
closed cover consisting of FAR's. Since B is connected, by Proposition 5.3, we
conclude that the restriction f|p~'(B;):p| D (Bi)—=p | P Bs) of f to p~'(By) is an
isomorphism in FRp, for each i. By Theorem 3.3 f:p—p’ is an isomorphism in
FRp.

CorOLLARY 5.5. Let p: E—B and p': E'—B be shape fibrations between com-
pacta and let B be a connected ANR. Then a morphism f:p—p’ of FRg is an
isomorphism in FRg if and only if the restriction T(f)p~'(by)): D7 (bo)—p" " (bo) is an
isomorphism in s-Sh for some b,eB.

Proor. Define maps pX1¢: EXQ—BXQ, p'X1g: E'XQ—BXQ by (pX1oXe, @)=
(Be), @), (D' XL)e', )=(p(¢’), @) for ecE,e’c¢E’ and geQ. Note that pX1gand p’ X
1o are shape fibrations. Choose an F(p,p’)-map f:X—E—X —E which is con-
tained in the F(p,p’)-equivalence class f:p—p’. Define a map fx1lg: (XXQ—EX
(X' XQ—-E"XQ) by (fXle)z,9)=(f(2),q) for 2eXXQ—-EXQ, qeQ. Clearly,
the map fX1lo:(XXQ—-FEXQ)—(X'XQ—E’'XQ) determines a morphism fX1g:pX
lg—p'X1q of FRp.. Since B is a compact ANR, BXQ is a compact Q-manifold.
Clearly, BX®Q has a finite closed cover consisting of FAR’s. By Theorem 54, fx
lo:pX1e—p’X1q is an isomorphism in FRy.o. By Proposition 3.2, fip—p is an
isomorphism in FRz.

By Theorem 5.4, Corollary 5.5 and (7, Corollary 3.6], we have the following.

CoROLLARY 5.6. Let p: E—>B be a map between compacta. Suppose that B is
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an ANR or B has a finite closed cover consisting of FAR's. Then the following

are equivalent.

(1) p is a cell-like shape fibration.
(2) p is shape shrinkable.

ReEMARK 5.7. In the statement of Corollary 5.6, the assumption about B can-
not be omitted. Edwards and Hastings [6, pp. 196-200] give an example of a cell-
like shape fibration which fails to be a shape equivalence. Also, we cannot omit
the condition “shape fibration” of (1). It is well-known that there isa map p: E—
@ of continuum E to the Hilbert cube @ which is cell-like and not a shape equiva-
lence (see [15]).

CorOLLARY 5.8 (cf., [8, Theorem 2.1)). Let p: E—B and p':E'—B be shape
fibrations between compacta and let B be a connected ANR or « continuum with
a finite closed cover consisting of FAR’s. Suppose that f={fu, E,E'}x x is a fiber
fundamental sequence over B and one of the following properties (1) or (2) is
satisfied;

(1) for some boeB, Fd (p7'(bo))=1.
(2) for some byeB, Fd(p~'(bo))<oo, p'(by) has finite components and each
component is pointed 1-movable.

Then [ is a fiber shape equivalence over B it and only if the restriction [l (bo)=
(Fr D71 (Bo), 0 YD)y x, x0 0f [ to p~'(be) is a shape equivalence.

Proor. It is enough to give the proof of sufficiency. Let f:p—p’ be a mor-
phism in FRz induced by f, i.e., f:p—p’ is an F(p,p’)-equivalence class containing
s(f) (see the proof of Theorem 2.2 for the notation s(f)). Then the property (1)
or (2) implies that T(f|p~'(bo)): p~'(bo)—p’'(bo) is an isomorphism in s-Sk (see [5,
Theorem 8.3, Theorem 6.4 and Theorem 7.3] and [4, Theorem 3.6]). Hence f is
an isomorphism in FRz by Theorem 5.4 and Corollary 5.5. Thus f is a fiber shape
equivalence over B.

Remark 5.9. Chapman and Siebenmann (Finding a boundary for a Hilbert
cube manifold, Acta Math., 137 (1976), 171-208) have asked the following question:
Is each weak proper homotopy equivalence a proper homotopy equivalence? The
positive answer would give a stronger result than Corollary 5.8; in fact we could
omit the assumptions (1), (2) in Corollary 5.8.
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