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ON SOME SYSTEMS OF LINEAR OPERATORS CONNECTED
WITH ARITHMETICAL INVERSION FORMULAS

By

M. 1. PuraTova

1. In the paper of W.P. Romanov [1] and the present author’s work [2] the
following operators played an important role:

Lnf(x)=%;\;: f<x+£—> n=1,2,3,--). @

These operators are defined on the class of periodic functions f(z) with period 1.

In this paper we shall investigate operators (1) from another point of view
and establish their connection with the harmonical components of the function
f(z). We shall use the formal method of arithmetical inversion of series, mentioned
by P.L. Cebysev in 1851 (cf. [3; pp. 229-236]): If

3 c=A, (n=1,2,3, ) @)
k=1
then
ew=3, ) A (m=1,2,3, ), ®
=1

where u(k) is the Mobius function.

éeby§ev (3] was not based on this formal transformation. In fact the matter
is quite difficult—equalities (3) are not always true even if the solution ¢m of the
system (2) does exist; they are true on the assumption

I lenl <0, @

In case where the inequality (4) does not hold, the equations (2) may be solved
in ¢ but not uniquely.

2. A sufficient condition for the correctness of formulas (3) will be given by

THEOREM L. If ¢n and A, (m,n=1,2,3, ) satisfy (2) and if there holds the
inequality

2 2|on| <oo ®)

m=1i
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where vom) denotes the number of different prime divisors of m, then the formulas
(3) are true, and the series in these formulas are absolutely convergent.

Proor. We have, by (2) and a well-known property of p(k), formal trans-
formations

’i:l ,u(k)Amk: él ﬂ(k) g}l Cmel= li:l 12 ﬂ(k)é‘mm

-z

n=1

Cm'nl; #(k)zrm »

since the intermediate double series is majorized by the series

Me

5 |it)ema] = 3, Icwnl 33 1)

=1 L=

=
il
-

co )
=21 2%emal = 20 2 |omal
n=1 n=1

which is convergent by the assumption (5).

Note that if in Theorem I the condition (5) is replaced by (4), then the theorem
analogous to Theorem I cannot hold any longer. In this case we shall prove the
following result (cf. [4]).

TuaeoreMm L. If the numbers cm and A, (m,n=1,2,3, ) satisfy (2) and if
the condition (4) is fulfilled, then

Cm :Igl—{g d%:v]/‘(d)Amd (n=1,2,3,-), )

where [N] denotes the least common multiple of the numbers 2,3, ---, N.

Proor. Formal transformations will give

Y i d)Ana= Y pd) i Cmat= z )

altv] alfv? n
4\[N]
=Cm+ 2, Cn- N
n=N+1
(. [ND=1
By (4) we have now that
| 2 cml= 2 lemel >0 (N — o0).
n=N+1

n=N+1
(@, [ND=1

This with (7) proves our Theorem IIL
If we repeal the assumption (4) then in general the numbers c¢» are not
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uniquely determined by the numbers A,.
In this circumstance we have

THEOREM Ill. There exist numbers ci, cy, -+, Cm, - which arve not all equal to
0 and such that the series (2) are convergent and their sums A.=0 for all n.

To prove this we put cn=/(m)/m. Verification of the statement of the theorem
is based on the famous formula of Euler-von Mangoldt

x H @®

As is well known, the convergence of the series in (8) is quite a deep fact which
is equivalent to the prime number theorem (cf. [9]). We have

A5 ﬂ("k) pn) = plk)
" k=1 n k=1 k-
(&, n)=1
On the other hand we have

Rl R ) ) §

oln m=1 p pln

_ Z #(k)_

(k n) 1

Therefore A,=0 for all », and among the numbers ¢, there are infinitely many
of them that are not equal to 0. This proves the theorem.

3. Let us use the results of §2 in the theory of “arithmetical means with
displacements,” i.e. in the theory of operators L,f(x) defined by (1).

THEOREM 1V. If for arbitrary z the formula
f(x)=a, »+-§:]1 (@ cOS 2 4 b SIN Zama)
is vight, then we have
Luf(z)—ao= él (dui COS 270k + b sin 2enkez)
for n=1,2,3, -

Proor. We have by a simple calculation
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n—1 co

Lnf(x)—aoz% > 25 (@mcos 2nm<x+§—) + by sin 27rm<x +%) )

k=0 m=1

= > (@ncos2mmz+ by sin 2amax).

m=0 (mod n)
If we put
Cm=Am COS 20T -+ by, SN Zmx
An=L,f(x)—a,
then, on the basis of Theorem I, the statement of Theorem V follows from the

formula (10).

THEOREM V. If for arbitrary ¢>0 the series

il(!ani +1ba| ) (11)

converges, then for n=1,2,3, --- the formulas
@, €08 210z +bpsin 2nnz =3, pu(d)(Lanf(x)—ao) (12)
d=1
are true. The series in (12) are absolutely and uniformly convergent for all x.

The proof is immediate from the estimate
2™ <z(n)=0x°) for any fixed >0
and Theorem 1. Here, r(z) denotes the number of positive divisors of 7.

Analogously, from Theorem II follows

THeorem VI. If

Z_l([an|+|bn|)<oo (13)
then we have for every x
@ COS 212 + by Sin 2rma =1im %} () (Lanf(x)—as) (14)
N-oo dI[N]

uniformly for all n.

We note that the condition (11) of Theorem V is satisfied in the following
two cases (cf. [15]):
1) f(z) is a function of bounded variation in [0,1] and belongs to Lipa, a>0;
2) f(x) belongs to Lip a, a>1/2.
Sufficient conditions for (13) can be found in [5], [6], and [7].
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If we substitute in (12) —x for x, then we get

@y, COS 2Nz ———E o(d )Ldn( ﬁ@jé‘ﬂ—_—ﬂ - ao). (15)

(16)

by sin 2znx= i w(d)Lan (W) .

These formulas can be used in harmonic analysis. For instance, if we put =0
in (15) we obtain

avmy 5 PO (S 5 ()~ s@ras). an

n di=1

If we substitute in (14) —x for x, then we find

p=li S@+f(=2)
@y COS 271 —Il\gg dlZU]V]p(d)Ldn( 5 ao>, (18)
o @)= f(==z)
by, sin 2z —}\}E d%] [l(d)Ldn( 5 > 19)
Taking xz=0 in (18) we obtain
L s AA) RN (g
tnmoptim 2 FPHE () re). @

The formulas (18), (19) and (20) hold true for every f(x)eL(0,1) with absolutely
convergent Fourier series.

4. There exist some other systems of linear operators which are also con-
nected with arithmetical inversion formulas. For instance consider for odd =

Lif0) = 7@+2 5 (-0 (w45 )~ fa+D)). e
We have

TraeoreM VII. If the function f(x+t)—f(x+1—1) is expanded for te[0,1] in
the series

fla+t)—fla+1-H=3 culf)cosnat, 22)
then
L¥ f()= }“j clf)  (1=1,3,5,-). (23)

We note that
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cn(f)=ZS;(f(x+t)—f(x+lmt)) cos nt di

0 for even n,
[ 4§1 Fla+tycosnztdi  for odd n. @4
JO
Proor. Let us introduce a 2-periodical even function ¢(¢) such that
o)=fz+t)—f(x+1—1) for #€[0,1].
We have then
2l ([ 2k s 7ol 2nk
= g(—>=2 en(£)Y, cos T =p cn(f).
k=0 n m=1 k=0 n m=0 (mod »)
On the other hand we have for each odd #
n—1 2k (n—-1)/2 2k
(5 )02 25
(n—1)/2 o°%k —2k
=f@-fa+b+2'y (r(e+y)=r(s+222))
k=1 n n
n—1
=f(x)—f(.r+1)+2§(—1)”f<x+—;—>
=nLyf(x). (26)

Comparing (25) and (26) we obtain the formulas (23). The formulas (23) have the
same structure as those in (2). Therefore, by the theorems in §2, we get formulas
expressing ¢,(f) through L¥f(x).

Tueorem VIIL. If for the function f(x) we have the formulas (23) and if for
some ¢>0 the series

I lentln'<eo @7)

nodd

then we have for every odd n

elf)= 3 Ud)LES (@), (28)
& oda

and the series in (28) is absolutely convergent.

Replacing (27) by the assumption

3 lealf)] <00 @9)

n=1
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we get

Tnreorem IX. If for the junction f(z) (29) is true, lhen the numbers c.(f)
are uniquely determined by

ea(f)=lim 23 p(d)L3f(x), (30)
N—oo d|Upn
where Uy=3-5-----p is the product of all odd prime numbers =N.
5. The analogues of Theorem I for L,f(x) and L¥f(n) are given by

THEOREM X. There exists a continuous function fi(x)#0 such that for x=0
we have

L. f1(0)=0 n=1,2,3,--),
and
L¥f(0)=0 (n=1,3,5, ).

For this function we take

flm=5 fﬁ”’:’—) cos 2ema. 31)

It is evident that fi(z)s0. The uniform convergence of the series (31) follows
from a result of H. Davenport [8].
By the theory of prime numbers [9] we know that

Using (23) and (24) we get

- 2k—1) ©(n) pm)
L¥f(0)=2 a =2 2 ~o.
fl( ) 2k—1=0 (mod n) Zk—l n (m,zZn)zl m
This proves the theorem.

From this theorem it follows that an arbitrary continuous function f(z) is
not uniquely determined by the values of the operators L,f(x) and L¥f(z) at the
point z=0.
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