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ON CONJUGATE POINTS OF A NILPOTENT LIE GROUP

By

Hiroo NAITOH and Yusuke SAKANE

Let $G$ be a Lie group with a left invariant metric. The properties of curva-
ture of $G$ has been investigated by Milnor [3]. In particular, it is known that

if the Lie group $G$ is nilpotent but not commutative then for any left invariant
metric there exists a direction of strictly negative sectional curvature and a

direction of strictly positive sectional curvature [3]. It is also well-known that

there is no conjugate point if the sectional curvature is non-positive. Moreover

0’Sullivan [6] has shown that if $G$ is a nilpotent Lie group but not commutative
then there exists a conjugate point of $G$ for any left invariant metric. In this

note we show that under the same assumption $G$ has a conjugate point in the

center. We consider the relations between first conjugate locus and cut locus

for a simply connected 2-step nilpotent Lie group. Moreover in the case of
Heisenberg group, we prove that first conjugate locus coincides with cut locus

for any left invariant metric. The authors would like to express their thanks to

the refree for his helpful suggestions.

\S 1. Preliminaries.

Let $G$ be a Lie group of dimension $n$ with a left invariant metric $\langle, \rangle$ and
$\mathfrak{g}$ the Lie algebra of left invariant vector fields of $G$ . The Riemannian connec-
tion $\nabla$ for $(G, \langle, \rangle)$ is given by

(1.1) $\langle\nabla_{X}Y, Z\rangle=(1/2)\{\langle[X, Y], Z\rangle-\langle[Y, Z], X\rangle+\langle[Z, X], Y\rangle\}$

for left invariant vector fields $X,$ $Y,$ $Z\in \mathfrak{g}$ .
Take an orthonormal basis $\{X_{1}, \cdots , X_{n}\}$ of $\mathfrak{g}$ and let $C_{ij}^{k}$ be the structure

constants with respect to $\{X_{1}, \cdots, X_{n}\}$ , that is,

(1.2) $[X_{i}, X_{j}]=\sum_{k=1}^{n}C_{ij}^{k}X_{k}$ .

Then we have
1 $n$

(1.3) $\nabla_{x_{i}}X_{j}=_{\overline{2}}\sum_{k=1}(C_{ij}^{k}-C_{jk}^{i}+C_{ki}^{j})X_{k}$

for $i,$ $j=1,$ $\cdots,$ $n$ by (1.1).
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Consider a geodesic $\sigma(t)$ through $\sigma(0)=e\in G$ . We can write

(1.4) $\dot{\sigma}(t)=\sum_{i=1}^{n}a_{i}(t)(X_{i})_{\sigma(t)}$

where $a_{i}(t):R\rightarrow R$ are $C^{\infty}$ functions.
Now

$\nabla_{\neg}\dot{\sigma}=\sum_{J}(\frac{da_{j}}{dt}(X_{j})_{\sigma(t)}+a_{j}(t)\sum_{i}a_{i}(t)(\nabla_{x_{i}x_{j}})_{\sigma(t)})$

$=\sum_{k}\{\frac{da_{k}}{dt}+\sum_{i.j}a_{i}(t)a_{j}(t)\frac{1}{2}(C_{ij}^{k}-C_{jk}^{i}+C_{ki}^{j})\}(X_{k})_{\sigma(t)}$ .

Noting that $C_{ij}^{k}=-C_{ji}^{k}$ , we see that a curve $\sigma(t)$ is a geodesic of $(G, \langle, \rangle)$ if
and only if $a_{k}(t)$ satisfy the following equations:

(1.5) $\frac{da_{k}}{dt}=\sum_{i.j}a_{i}a{}_{j}C_{jk}^{i}$ $(k=1, \cdots, n)$ .

REMARK 1. If the metric $\langle, \rangle$ on $G$ is bi-invariant, a curve $\sigma(t)$ is a geodesic

if and only if $a_{k}(k=1, \cdots, n)$ are constant.

REMARK 2. It is known that a simply connected Lie group $G$ admits a bi-
invariant metric if and only if $G$ is the product of a compact Lie group and a
vector group [3].

For a Riemannian manifold $M$ of n-dimension let $R$ denote the curvature of
$M$. A vector field $X(t)$ along a geodesic $\sigma(t)$ is called a Jacobi field if $X$ satisfies
the Jacobi equation

(1.6) $\nabla_{\dot{\sigma}}^{2}X+R(X,\dot{\sigma})\dot{\sigma}=0$ .
It is known that the space of solutions of (1.6) is of $2n$-dimension and the

subspace of solutions with $X(O)=0$ is of n-dimension.
Fix a point $p\in M$ and consider a geodesic $\sigma(t)$ parameterized by arc length

through $p=\sigma(O)$ . A point $q=\sigma(t_{0})\in M$ is said to be conjugate to $p$ along a
geodesic $\sigma(t)$ if there exists a non-zero Jacobi field $J$ along $\sigma(t)$ such that $J(O)$

$=J(t_{0})=0$ . Furthermore let $d(p, q)$ denote the distance between $p$ and $q$ in $M$.
A point $q=\sigma(t_{1})\in M$ is called a cut point along a geodesic $\sigma(t)$ if $d(\sigma(0), \sigma(t))=t$

for $0\leqq t\leqq t_{1}$ and $d(\sigma(O), \sigma(t))<t$ for $t>t_{1}$ .

\S 2. Existence of a conjugate point.

In this section we improve a theorem of 0’Sullivan [6].
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THEOREM 2.1. Let $G$ be a nilpotent Lie group with a left invariant metric.
Let $Z$ denote the center of $G$ and $C(e)$ the first conjugate locus of the identity
element $e\in G$ . If $G$ is not commutative,

$ C(e)\cap Z\neq\emptyset$ .
PROOF.1) Consider the desending central series $\{C^{k}(\mathfrak{g})\}_{k}$ of the Lie algebra

$\mathfrak{g}$ of $G$ :
$\mathfrak{g}\supset C^{1}(\mathfrak{g})=[\mathfrak{g}, \mathfrak{g}]\supset C^{2}(\mathfrak{g}=[\mathfrak{g}, C^{1}(\mathfrak{g})]\supset\cdots\supset C^{k}(\mathfrak{g})\supset\cdots$

with $C^{l}(\mathfrak{g})\neq(0)$ and $C^{l+1}(\mathfrak{g})=(0)$ . By the proof of Theorem 2.4 in [3] (p. 301),
for each unit vector $X\in C^{l}(\mathfrak{g})$ , the Ricci curvature $r(X)$ is positive. Since $C^{l}(\mathfrak{g})$

is contained in the center of $\mathfrak{g}$ , the integral curve $C(t)$ through $e$ of the vector
field $X$ is a geodesic contained in the center $Z$. Since the Riemannian metric is
left invariant, the Ricci curvature $r(\dot{C}(t))$ is positive constant along the geodesic
$C(t)$ . By the proof of a Theorem of Myers ([5], see also [4] p. 104), we see
that the geodesic $C(t)$ has a conjugate point to $e\in G$ . $q$ . $e$ . $d$ .

REMARK. In general a simply connected solvable Lie group does not have a
conjugate point. See [3] example 1.7.

3. Cut locus and first conjugate locus.

In this section we exclusively consider a 2-step nilpotent Lie group. Let $\mathfrak{g}$

be a 2-step nilpotent Lie algebra with an inner product $\langle, \rangle$ and 3 the center of
$\mathfrak{g}$ . Fix an orthonormal basis $\{X_{1}, \cdots, X_{n}\}$ of $\mathfrak{g}$ such that $\{X_{k+1}, X_{l}, X_{l+1}, \cdots, X\}$

is a basis of 3 and $\{X_{l+1}, \cdots, X_{n}\}$ is a basis of $[\mathfrak{g}, \mathfrak{g}]$ . The following ranges
of indices will be used throughout this section.

$1\leqq A,$ $B,$ $\cdots\leqq n$

$1\leqq i,$ $j,$ $\cdots\leqq k$

$k+1\leqq p,$ $q,$ $\cdots\leqq l$

$l+1\leqq\alpha,$ $\beta,$ $\cdots\leqq n$ .
Let $G$ be the simply connected Lie group with the Lie algebra $\mathfrak{g}$ . From

now on let $\sigma(t)$ be a geodesic of $G$ parameterized by arc length through $\sigma(0)$

$=e\in G$ . By (1.5), we have

1) This proof is due to the refree.
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(3.1)

$(_{\frac{da_{p}}{dt}=0}^{\frac{da_{\alpha}}{dt}=0}$

$\frac{da_{i}}{dt}=\sum_{j.\alpha}a_{j}a{}_{\alpha}C_{ji}^{a}$ .

Since $exp:\mathfrak{g}\rightarrow G$ is diffeomorphism, we can define coordinates $x_{A}$ on $G$ (with

respect to the basis $\{X_{1}, \cdots, X_{n}\}$ ) by

$\exp(\sum_{A}x_{A}(g)X_{A})=g$ $(g\in G)$ .

Since $\exp X\exp Y=\exp(X+Y+(1/2)[X, Y])$ for $X,$ $Y\in \mathfrak{g}$ , we have

(3.2) $\left\{\begin{array}{l}x_{i}(gh)=x_{i}(g)+x_{i}(h)\\x_{p}(gh)=x_{p}(g)+x_{p}(h)\\x_{\alpha}(gh)=x_{a}(g)+x_{\alpha}(h)+\frac{1}{2}\sum_{j.k}x_{j}(g)x_{k}(h)C_{jk}^{a}\end{array}\right.$

for $g,$ $h\in G$ . Since $X_{A}(A=1, \cdots, n)$ are left invariant, we get

$X_{i}=\frac{\partial}{\partial x_{i}}-\frac{1}{2}\sum_{\beta,j}C^{\beta_{tj}}x_{j}\frac{\partial}{\partial x_{\beta}}$

(3.3) $X_{p}=\frac{\partial}{\partial x_{p}}$

$X_{\alpha}=\frac{\partial}{\partial x_{\alpha}}$

Let $\sigma(t)=(x_{A}(t))$ be a geodesic through $e$ . By (1.4) and (3.3), we get

(3.4) $\left\{\begin{array}{l}\frac{dx_{i}}{dt}=a_{i}(t)\\\frac{dx_{p}}{dt}=a_{p}\\\frac{dx_{\alpha}}{dt}=a_{\alpha}-\frac{1}{2}\sum_{i.j}C_{ij}^{\ell t}a_{i}(t)x_{j}(t).\end{array}\right.$

LEMMA 3.1. Suppose that $x_{i}(t_{0})=0$ for all $i$ with $t_{0}>0$ . Then we have

(3.5) $\sum_{p}x_{p}^{2}(t_{0})+\sum_{\alpha}x_{a}^{2}(t_{0})\geqq t_{0}^{2}$

and the equality holds if and only if the geodesic $\sigma(t)$ is contained in the center
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of $G$ .
PROOF. Since

$x_{\alpha}(t)=a_{\alpha}t-\frac{1}{2}\sum_{i.j}\int_{0}^{l}C_{ij}^{\alpha}a_{i}(s)x_{j}(s)ds$ ,

$\sum_{\alpha}x_{\alpha}^{2}(t)=(\sum_{\alpha}a_{\alpha}^{2})t^{2}-\sum_{\alpha,i,j}a_{\alpha}t\int_{0}^{l}C_{ij}^{\alpha}a_{i}(s)x_{j}(s)ds+\frac{1}{4}\sum_{\alpha}(\sum_{i,j}\int_{0}^{l}C_{i}^{a_{j}}a_{i}(s)x_{j}(s)ds)^{2}$

By (3.1), we see that

$\sum_{\alpha,i,j}\int_{0}^{t}a_{\alpha}a_{i}(s)C_{ij}^{\alpha}x_{j}(s)ds=\sum_{j}\int_{0}^{l}\frac{da_{j}}{dt}(s)x_{j}(s)ds$ .

By integrating in part, we have

$\sum_{J}\int^{t}0^{\frac{da_{j}}{dt}(s)x_{j}(s)d(\sum_{j}a_{j}(t)x_{j}(t))-\sum_{j}\int_{0}^{l}a_{j}(s)\frac{dx_{j}}{dt}(s)ds}s=$

$=(\sum_{j}$ a $j(t)x_{J}(t))-\sum_{j}\int_{0}^{t}a_{j}^{2}(s)ds$

by (3.4). Since $x_{i}(t_{0})=0$ by assumption and

$\sum_{j}a_{j}^{2}(s)=1-\sum_{\alpha}a_{\alpha}^{2}-\sum_{p}$ a $p2$

we get

$\sum_{\alpha}x_{\alpha}^{2}(t_{0})=(\sum_{\alpha}a_{\alpha}^{2})t_{0}^{2}+\{1-(\sum_{\alpha}a_{\alpha}^{2}+\sum_{p}$ a $p2)\}t_{0}^{2}+\frac{1}{4}\sum_{\alpha}(\sum_{i,j}\int_{0^{0}}^{l}C_{ij}^{\alpha}a_{i}(s)x_{j}(s)ds)^{2}$

$\geqq(1-\sum_{p}$ a $p2$) $t_{0}^{2}$ .

Moreover the equality holds if and only if

$\sum_{i,j}\int_{0^{0}}^{t}C_{ij}^{\alpha}a_{i}(s)x_{j}(s)ds=0$ for all $\alpha$

and thus $x_{\alpha}(t_{0})=a_{\alpha}t_{0}$ for all $\alpha$ . This implies that $\sum_{\alpha}a_{\alpha}^{2}+\sum_{p}a_{p}^{2}=1$ and $a_{i}(t)=0$

for all $i$ , and hence the geodesic $\sigma(t)$ is contained in the center of G. $q.e$ . $d$ .

COROLLARY 3.2. Fix a point $x\in G$ which is contained in the center of $G$ .
If $\sigma(t),$ $C(t)$ are geodesics parameterized by are length through $\sigma(0)=C(0)=e\in G$ ,
$\sigma(t_{0})=C(t_{1})=x$ and $C(t)$ is contained in the center of $G$ but $\sigma(t)$ is not contained
in the center of $G$ , then we have $t_{1}>t_{0}$ , that is, length of $C(t)$ from $e$ to $x$ is
longer than the one of $\sigma(t)$ .
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COROLLARY 3.3. There is no closed geodesic in a simply connected 2-step

nilpotent Lie group $G$ with a left invariant metric.

PROOF. If there is a closed geodesic $\sigma(t)$ in $G$ , then there exists $t_{0}>0$ such

that $\sigma(t_{0})=e\in G$ . In particular, $x_{A}(t_{0})=0$ for all $A$ . But this is impossible by

(3.5).

Now we consider the cut locus of $G$ . Since $G$ has a conjugate point and $G$

acts itself as an isometry group, the cut locus of each point $g\in G$ is not empty.

THEOREM 3.4. Let $G$ be a simply connected 2-step nilpotent Lie group with

a left invariant metric. If $x\in G$ is a first conjugate point to $e\in G$ along a
geodesic $C(t)$ contained in the center of $G$ , it is also a cut point of $C(t)$ with

respect to $e\in G$ .

PROOF. If $x\in G$ is not a cut point of $C(t)$ with respect to $e$ , there is a point
$y\in G$ such that $y\neq x$ and $y$ is a cut point of $C(t)$ with respect to $e$ . Since $y$ is
not a first conjugate point to $e$ along $C(t)$ , it is known that there exist at least

two minimizing geodesics ([1], [2]). Since $C(t)$ is the unique geodesic from $e$ to

$y$ which is contained in the center of $G$ , there exists a minimizing geodesic $\sigma(t)$

from $e$ to $y$ which is not contained in the center of $G$ and has the same length

as $C(t)$ . This contradicts Corollary 3.2. $q.e.d$ .

\S 4. Heisenberg group $H$ of dimension 3.

In this section we consider the Heisenberg group of dimension 3, that is,

$H=\{\left(\begin{array}{lll}1 & y & z\\0 & 1 & x\\0 & 0 & 1\end{array}\right)|x,$ $y,$ $z\in R\}$ .

Let $\mathfrak{h}$ be the Lie algebra of $H$ and fix a left invariant metric on $H$. Note that
$\mathfrak{h}\supset C^{1}(\mathfrak{h})=[\mathfrak{h}, \mathfrak{h}]\supset C^{2}(\mathfrak{h})=(0)$ . Take an orthonormal basis $\{X_{1}, X_{2}, X_{3}\}$ of $\mathfrak{h}$ in such

a way that

$[X_{1}, X_{2}]=C_{12}^{3}X_{3},$ $C_{12}^{3}\neq 0$ , $[X_{1}, X_{3}]=[X_{2}, X_{3}]=0$ .
From now on put $C=C_{12}^{3}$ for simplicity. Note that $\mathfrak{h}$ is a 2-step nilpotent

Lie algebra. By (3.2) and (3.3), we have
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$\left\{\begin{array}{l}x_{1}(gh)=x_{1}(g)+x_{1}(h)\\x_{2}(gh)=x_{2}(g)+x_{2}(h)\\x_{3}(gh)=x_{3}(g)+x_{3}(h)+(1/2)C(x_{1}(g)x_{1}(h)-x_{1}(h)x_{2}(g))\end{array}\right.$

for $g,$ $h\in H$ and

(4.1) $\left\{\begin{array}{l}X_{1}=\frac{\partial}{\partial x_{1}}-(1/2)Cx_{z^{\frac{\partial}{\partial x_{3}}}}\\X_{2}=\frac{\partial}{\partial x_{2}}+(1/2)Cx_{1}\frac{\partial}{\partial x_{3}}\\X_{3}=\frac{\partial}{\partial x_{3}}.\end{array}\right.$

Let $\sigma(t)$ be a geodesic through $e\in H$. By (1.5) we have

(4.2) $\left\{\begin{array}{l}\frac{da_{1}}{dt}=-a_{3}a_{2}C\\\frac{da_{2}}{dt}=a_{3}a{}_{1}C\\\frac{da_{3}}{dt}=0.\end{array}\right.$

Since $a_{3}$ is constant and

$\{\frac{da_{2}}{dt}\frac{da_{1}}{dt}]=a_{3}C[01$ $-10$ $[_{a_{2}}a_{1}]$

,

(4.3) $\left\{\begin{array}{l}a_{1}(t)\\a_{2}(t)\end{array}\right\}=[\sin aCt\cos a_{3^{3}}Ct$ $-\sin aCt\cos a^{3_{3}}Ct$ $\left\{\begin{array}{l}a_{1}\\a_{2}\end{array}\right\}$

is the solution of (4.2) with the initial condition $a_{1},$ $a_{2}\in R$ . Put $\sigma(t)=(x_{1}(t), x_{2}(t)$ ,
$x_{3}(t))$ . Since $\dot{\sigma}(t)=\sum_{l}a_{i}(t)(X_{i})_{\sigma(t)}$ , $x_{i}(t)(i=1,2,3)$ are a solution of ordinary

differential equations

(4.4) $\left\{\begin{array}{l}\frac{dx_{1}}{dt}=a_{1}(t)\\\frac{dx_{2}}{dt}=a_{2}(t)\\\frac{dx_{3}}{at}=a_{3}-(1/2)C(a_{1}(t)x_{2}-a_{2}(t)x_{1})\end{array}\right.$

by (4.1). It is easy to see that if $a_{3}\neq 0$
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(4.5) $\left\{\begin{array}{l}x_{1}(t)=(a_{1}/a_{3}C)sina_{3}Ct+(a_{2}/a_{3}C)(cosa_{3}Ct-1)\\x_{2}(t)=(a_{2}/a_{3}C)sina_{3}Ct-(a_{1}/a_{3}C)(cosa_{3}Ct-1)\\x_{3}(l)=a_{3}t+(1/2a_{3})(a_{1}^{2}+a_{2}^{2})t-(1/2a_{3}^{2}C)(a_{1}^{2}+a_{2}^{2})sina_{3}Ct\end{array}\right.$

is the solution of (4.4) with the initial condition $\frac{dx_{i}}{dt}(0)=a_{i}(i=1,2,3)$ and $x_{i}(0)$

$=0(i=1,2,3)$ , and if $a_{3}=0$

(4.6) $\left\{\begin{array}{l}x_{1}(t)=a_{1}t\\x_{2}(t)=a_{2}t\\x_{3}(t)=0.\end{array}\right.$

Now we consider Jacobi fields $J$ along a geodesic $\sigma(t)$ such that $J(O)=0$ and
$(\nabla_{\dot{\sigma}}J)(0)=w$ . Let $T_{e}(H)$ denote the tangent space of $H$ at the identity element
$e\in H$ and $Exp_{e}$ : $T_{e}(H)\rightarrow H$ the exponential map. Consider the variation field of
the l-parameter family of geodesics $Exp_{e}(t(\dot{\sigma}(0)+sw))$ . By (4.5), for a geodesic
$\sigma(t)$ with $\dot{\sigma}(0)=(a_{1}, a_{2}, a_{3}),$ $a_{3}\neq 0$ , a basis of Jacobi fields along the geodesic $\sigma(t)$

is given by

(4.7) $(_{J_{3}^{1}=(\frac{a_{1}^{1}C}{a_{3}C}(\cos a^{3}{}_{\epsilon}Ct-1),\frac{1}{a_{3}C}\sin a_{3}Ct}(I=t\dot{\sigma}(t)=(t\frac{dx_{1}}{dt},t\frac{dx_{2}}{dt},t\frac{dx_{3}}{dt})_{\frac{a_{2}}{a_{3}}t-\frac{\frac{}{3}a_{a_{2}}^{a_{2}}C1}{a_{3}^{2}C}\sin a_{3}Ct)}I_{2}=(\frac{}{3}\sin aCt,\frac{-1}{a_{3}C}(\cos a_{3}Ct-1),\frac{a_{1}}{a_{3}}t-\sin a_{3}Ct)$

.

By (4.5) and (4.6), for a geodesic $\sigma(t)$ with $0(0)=(a_{1}, a_{2},0)$ , a basis of Jacobi
fields along the geodesic $\sigma(t)$ is given by

(4.8) $\left\{\begin{array}{l}J_{1}=(a_{1}t,a_{2}t,0)\\J_{2}=(-a_{2}t,a_{1}l,0)\\J_{3}=(0,0,l).\end{array}\right.$

From (4.8) we see that there is no conjugate point along a geodesic $\sigma(t)=(a_{1}t, a_{2}t, 0)$ ,

Now we compute the first conjugate point along a geodesic $\sigma(t)$ with $\dot{\sigma}(0)$

$=(a_{1}, a_{2}, a_{3}),$ $a_{3}\neq 0$ , where $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$ .
We need the following Lemma.

LEMMA 4.1. We define a function $f:R\rightarrow R$ by
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$\sin\theta$ $\cos\theta-1$ $ a_{1}\cos\theta-a_{2}\sin\theta$

$ 1-\cos\theta$ $\sin\theta$ $ a_{1}\sin\theta+a_{2}\cos\theta$

$f(\theta)=$

$a_{1}(\theta-\sin\theta)$ $a_{2}(\theta-\sin\theta)$ $\frac{1+a_{3}^{2}}{2}-\frac{1-a_{3}^{2}}{2}\cos\theta$

Then $f(\theta)=\{2(1-\cos\theta)-(1-a_{3}^{2})\theta\sin\theta\}$ , $f(\theta)=f(-\theta)$ and $f(\theta)>0$ for
$ 0<|\theta|<2\pi$ .

PROOF. Our first claim is a straightforward computation. Note that

$ f^{\prime}(\theta)=(1+a_{3}^{2})\sin\theta-(1-a_{3}^{2})\theta\cos\theta$

and
$ f^{\parallel}(\theta)-2a_{2}^{2}\cos\theta+(1-a_{3}^{2})\theta\sin\theta$ .

For $0<\theta<\pi/2f^{\parallel}(\theta)>0$ and hence $f^{\prime}(\theta)>0$ for $0<\theta<\pi/2$ since $f^{\prime}(O)=0$ . Obvi-
ously $f^{\prime}(\theta)>0$ for $\pi/2<\theta<\pi$ and hence $f(\theta)>0$ for $ 0<\theta<\pi$ . It is clear that
$f(\theta)>0$ for $\pi\leqq\theta<2\pi$ . $q$ . $e$ . $d$ .

From (4.7) and Lemma 4.1, by putting $\theta=a_{3}Ct$ , we see that the first conjugate
point along a geodesic $\sigma(t)$ with $\dot{\sigma}(0)=(a_{1}, a_{2}, a_{3})a_{3}\neq 0$ is given by $\sigma(2\pi/|a_{3}C|)$

$(0,0, \pi(1+a_{3}^{2})/|a_{3}C|a_{3})$ . Now we can summarize as follows.

THEOREM 4.2. For a left invariant metric on the Heiseeberg group $H$, the

first conjugate locus of the identity element of $H$ is contained in the center of $H$

and given by

$\{(0,0, \pm\pi(1+a_{3}^{2})/a_{3}^{2}|C|);0<a_{3}^{2}\leqq 1\}=\{(0,0, \pm s\pi/|C| ; s\geqq 2\}$ .

REMARK. Let $\sigma(t)$ be a geodesic and $q=\sigma(t_{0})$ a conjugate point to $\sigma(0)$ .
The dimension of Jacobi fields $J$ such that $J(O)=J(t_{0})=0$ is called the order of
the conjugate point $q$ of the geodesic $\sigma(t)$ . The order of the first conjugate point

of a geodesic $\sigma(t)$ in $H$ with $\sigma(0)=(a_{1}, a_{2}, a_{3})a_{3}\neq 0$ is given as follows:

$\left\{\begin{array}{l}1 if a_{3}\neq 1\\2 if a_{3}=1.\end{array}\right.$

THEOREM 4.3. Let $H$ be the Heisenberg group with a left invariant metric.
For each $g\in H$ the cut locus of $g$ coincides with the first conjugate locus of $g$ .
Moreover the cut locus of the identity element of $H$ is contained in the center of
$H$.

PROOF. Since $H$ acts as an isometry group via left translations, it is enough
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to see our claim at the identity element $e\in H$. Let $C(t)$ be a geodesic through $e$

which is contained in the center of $H$ and let $x$ be the first conjugate point to
$e$ along $C(t)$ . Then the point $x$ is also a cut point of $C(t)$ with respect to $e\in H$

by Theorem 3.4. Now we consider a geodesic $\sigma(t)$ with $\dot{\sigma}(0)=(a_{1}, a_{2}, a_{3})$ through
$e$ which is not contained in the center of $H$ and let $x$ be the first conjugate
point to $e$ along $\sigma(t)$ . We claim that $\sigma(t)$ realizes the distance between $e$ and $x$ .
By Theorem 4.2, the first conjugate point $x$ is contained in the center of $H$.
Put $x=(O, 0, s\pi/|C|)$ . We may assume that $1>a_{3}>0$ . Then $s>2$ . By (4.5) we
have

$a_{3}Ct_{0}=2\pi m(m\in Z),$ $s\pi/|C|=a_{3}t_{0}+\frac{1}{2a_{3}}(a_{1}^{2}+a_{2}^{2})t_{0}=\frac{1}{2a_{3}}(1+a_{3}^{2})t_{0}$ .

Since $x$ is the first conjugate point to $e$ along $\sigma(t)$ , that length of $\sigma(t)$ from $e$ to
$x$ is given by $t_{0}=(\sqrt{s-1}2\pi)/|C|$ . Since $\sqrt{s-1}2\pi/|C|<s\pi/|C|$ , the length $\sigma(t)$

from $e$ to $x$ is less than that of the geodesic $C(t)=(O, 0, t)(0\leqq t\leqq(s/|C|)\pi)$

contained in the center of $H$. Let $\tau(t)$ be a minimal geodesic from $e$ to $x$ .
Then $x$ is also a conjugate point to $e$ along $\tau(t)$ by (4.5) and Lemma 4.1. Since
$\tau(t)$ is minimal, $x$ is also the first conjugate point to $e$ along $\tau(t)$ . In this case
we have $t_{2}=\sqrt{s-1}2\pi/|C|$ where $x=\tau(t_{2})$ by the same computation as above and
hence $\sigma(t)$ and $\tau(t)$ have the same length. This implies that if $x$ is the first
conjugate point to $e$ along $\sigma(t)$ then $\sigma(t)$ realizes the distance $d(e, x)$ , and hence
the point $x$ is also a cut point to $e$ . $q$ . $e$ . $d$ .

References

[1] Cheeger, J. and Ebin, D. G., Comparison theorems in Riemannian geometry, North.
Holland, Amsterdam, 1975.

[2] Kobayashi, and Nomizu, K., Foundamation of Differential geometry, vol. 2, Inter-
science, New York, 1969.

[3] Milnor, J., Curvatures of left invariant metrics on Lie group, Advances in Math.,
21 (1976) , 293-329.

[4] Milnor, J., Lectures on Morse Theory, Ann. Math. Studies No. 51, Princeton Univ.
Press, Princeton, New Jersey, 1963.

[5] Myers, S. B., Riemannian manifolds with positive mean curvature, Duke Math. J.,
8 (1941), 401-404.

[6] O’Sullivan, J. J., Manifolds without conjugate points, Math. Ann., 210 (1974), 295-
311.

Yamaguchi University
Osaka University


	ON CONJUGATE POINTS OF ...
	\S 1. Preliminaries.
	\S 2. Existence of a conjugate ...
	3. Cut locus and first ...
	\S 4. Heisenberg group ...
	References


