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FIRST ORDER DEFORMATIONS OF CONES OVER PRO-
JECTIVELY NORMAL HYPERELLIPTIC CURVES

By
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Introduction

Let X be a smooth, proper algebraic variety over an algebraically ciosea
field k2, and let L be an ample, projectively normal invertible sheaf on X. ¢
X—P7 denotes the embedding of X corresponding to the complete linear system
|L|, and C denotes the affine cone over ¢, (X). We denote by D. the deforma-
tion functor of C from the category of artin local k-algebras with residue field
k to the category of sets. Then since the affine ring of C has a natural grad-
ing, the k-vector space Th=D.(k[c]) of first order deformations of C has a
natural graded structure

b= @ Te).

veZ

When dim X=2, Schlessinger [6] showed that if L is sufficiently ample on X,
then Ti(v)=0 for all y#0. In the case of dim X=1, Mumford proved that

L(1)=0 for all v+0, if X is non-hyperelliptic of genus=3 and if L is sufficiently
ample on X. Moreover, he showed that if X and L are respectively the rational
curve P! and the invertible sheaf @pi(d) for d=3, then Ti(v)=0 for all v#—1
and dim, Th(—1)=2d —4. Applying Mumford’s techniques to the case of elliptic
curves, Pinkham showed that if X is an elliptic curve and L is an invertible
sheaf on X of degree d=5, then Tt(»)=0 for v>0, dim, T¢(0)=1, dim, T¢(—1)
—d and TL(x)=0 for v<—2. Moreover, he gave a complete description of T¢
in the following cases:

1) X=P?! and L=0pi(d) for d=3,
2) X is the elliptic curve Z3+Z3+Z3=0 in P? and L=0p2(2)| x.

In this paper we shall compute the dimension of the k-vector space of first
order deformations of the affine cone C over a projectively normal hyperelliptic
curve of genus g=2. In the case g=3, our results are only partial. Our main
theorem is the following: let the characteristic of k be different from 2 and let
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X be a hyperelliptic curve of genus g=2 whose function field K(X)=Fk(x, y) 1S
the extension of k(x) determined by the equation

Vi=x(x—=D(x—a)(x—az) - (x—agg-1),

where ay, ay, -+, ayy_y are 2g—1 distinct elements of k different from 0 and 1.
Let m: X—P' be the morphism corresponding to the inclusion map k(x)—k(x, y)
and let L be the sheaf Ox(dQ.) where Q. is the branch point z=-*((0, 1)) on X.
If d=Max{4g—3, 2g+3}, then

D Te=Te—-DBTO0),
2) dim, Te(—1)=(g—1)g(g+1) and dim, Tt(0)=4g—3.
In the case g=2, we get more explicit results: if d=7, then
) Te=Tt(—DPTHO),
2) dim; T((—1)=6 and dim, T£(0)=5,
and if d=6 (resp. 5), then
1) Te=Ti(=2)BTH—DDHTE0),
2) dim, TE(—2)=1 (resp. 2), dim, Tt(—1)=6 and dim, T5(0)=5.

In particular, in the cases d=5, 6 and 7, we will give a k-basis for TL explicitly.
The author would like to thank Dr. T. Sekiguchi for his kind suggestions
useful for proving Proposition 1.4.

Notation.

Throughout this paper we will use the following notation without further
warning.

We denote by %k an algebraically closed field and by P™ the n-dimensional
projective space over k. Moreover, we denote by X a smooth, proper algebraic
variety over k2 and by L an ample, projectively normal invertible sheaf on X.
¢ : X—P" denotes the embedding of X corresponding to the complete linear
system |L| and C denotes the affine cone over ¢,(X). In this paper ¢.(X) is
always identified with X through ¢;. We denote by 1y the normal sheaf of X,
by 'y the tangent sheaf of X and by £y the canonical sheaf on X. For any
Ox-module F and any veZ, we write Fv)=FXL*. X(X, F) denotes the Euler
characteristic of the sheaf F on X and A% X, F) denotes the dimension of the k-
vector space H{X, F). For a scheme C over a field K, we denote by T. the
K-vector space of first order deformations of C.
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1. First order deformations of cones over projectively normal curves.

We first recall the natural grading on T}t due to Schlessinger in terms
of cohomology on X. We have the standard exact sequences of Ox-modules:

00— 0y —> LoD — 5 Tpply —>0 (1.1)
and

0——>3‘X———>Q‘pnl_y——>mx"‘—‘>0. (12)
Then Schlessinger showed that the following sequence is exact.

3 HUX, Lo —> 5 HYX, T1x() —> Ts —> 0.

y=—00

This gives a natural grading on 7% by
c(v)=coker (H°(X, (L**")®™*+D) —> HUX, T1x(v))) . (1.3)

In this section, we are concerned with the 1-demensional case. g and d are

respectively the genus of X and the degree of L. The following remark is due
to Mumford [2].

REMARK 1.1. If the degree d of L is larger than 4g—4, then we have
L(v)=0 for all v>0.

In the case v=0, using the standard exact sequences (1.1) and (1.2) we can
compute the dimension of the k-vector space T4(0).

PROPOSITION 1.2. If g=2 and d=2g—1, then we get dim, T(0)=4g—3.

PrROOF. The exact sequences (1.1) and (1.2) induce the long exact sequences

f
0 —> H'(Ox) —> H(L®*"*D) —> HTpnl| x) —> H'(Ox) —>

HHL™9) —> H{(T pn| x) —> 0
and

h
0 —> HY I x) —> HYTpnlx) —> H'(Tx) —> H (Tx) —> H'(Tpalx) —>
H'(91x) —> 0,
respectively. Two equalities H* (I x)=0 and H¥L®"*V)=(0 come from our as-

sumption g=2 and d=2g—1. Since the dimension of Im f is (n+1)*—1, we get

h'(Nx)=(n+1)*4+4g—4. The formula leads us to the following commutative
diagram :
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H(L®™*V) —e HYJ1x) — TH(0) —= 0

N/

HTpn|x)

such that the row is exact and % is injective where f and 4 are the maps in
the above long exact sequences. Therefore we get

dim, THO0)=h*(T1x)—dim, Im f=4g—3. Q.E.D.

Now we recall Mumford’s results in [2]. Let p;: XXX — X be the i--th
projection for i=1, 2, and let 4 be the diagonal of XX X. Mumford showed that

t()=coker (H(X, R'p[ p¥(QxQL HIQL"*") —>
HYX, R'p4[ pF(2xQL R0 x x x CAIRQL**Y)) ,

for all veZ. If d=2g+1, then Rp[ p¥(2xQRL-)]1=0 and R°p.[pF(2xRL™)
RO x.x(24)]1=0, hence using the Leray spectral sequence for p, we get

a(y)
t(w)=coker (H'(XX X, pf(2xQL HQpsL**") —>

HY( XXX, p¥(2xQL NQpFL' R0 xxx(24))),

for all veZ.

LEMMA 13. If g=1 and d=2g-+1, then a(v) is injective for all v=-—1,
where a(y) is the map in the above formula.

Proor. It suffices to check that the composite of the maps
H(X, (L*1)®* D) —> HYX, Tpn| xQL*) —> HY(X, T1x(v))

is injective for all y<—1. The standard exact sequences (1.1) and (1.2) induce
exact sequences

H(X, L*) — H*(X, (L**)®™*D) —> HYX, Tpn| xQL”)
and
H(X, Tx(v) —> HY(X, Tpa| xQL) —> HY (X, T1x(v)),

respectively. If g=1 and d=2g+1, we get HY(X, Tx(v))=0 for all y<—1. On
the other hand, for any v<—1 we have H%(X, L*)=0. Hence the map

HY(X, (L)) — HYX, T1x(v))
is injective. Q. E.D.
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Manipulating the Leray spectral sequence for p,;, we can give an upper
bound for dim, TL(—1) when X is hyperelliptic.

PROPOSITION 1.4. If X is a hyperelliptic curve of genus g=2 and if the
degree d of L is larger than or equal to 3g—1, then we have

dim, Tt(—1)=(g—Dg(g+1).
In particular, if g=2 and d=5 then we get
dim, TH(—1)=6.

PROOF. Let @4 be the cokernel of the natural inclusion map Oxxx(—4)—
Oxxx. For any veZ we have an exact sequence of Ox,xy-modules

0 —> pHRxQLHRO0((v—1)4) —> pF(2xRL HRQO(vd) —>
PHR2xQLHR0WHROs —> 0. (1.4)

Using this exact sequence (1.4) inductively, we see

UXX X, pFRxQL HR0(gH=ANXX X, pH2xQL™ ")+

XX, pH2xBRLHROCNHRO,) -
Since we have
HY(XX X, pHR2xQL HR0wHR0HN=H 4, p¥(2xQL™ )| sQ0(D)| 1)
=H'(X, Q5*®L™),

we get
UXX X, pHRxQL HROHRON=UX, Qx*QL™)

=—2g—y+g—d—1 (1.5)
for all y=1. Since the Kiinneth formula shows
UXXX, pHR2xQL ))=(g—1)Nd+1—g),
combining this with (1.5) we get
UXXX, pF(R2xQL HR0(gd))=—(g—Dg(g+D)—(d+1—2).
On the other hand, we have
UXXX, pHRxQL HR0(gd)=—h (XXX, pF(L2xQL HR0(gd) .

Indeed, P+ p¥(Q2xRL HR0O(gd)1=0, because by the assumption d =3g—1 one sees
that for any closed point x of X

H(p7%(x), (pH2xQL HRO(gM)| ps1020)=HXX, 2xQL'Q0x(gx)=0.
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Hence we get

HY(X %X, p¥2xQL HRO(gMN)=H"(X, pox[pF(2xQL HR0O(gAH1=0.

Moreover, the support of R!p[pF¥(2xRL HR0(gd)] is a finite set, because we
have

dim, R'pi[ pH(2x QL NRQ0(gd) 1RO, z/Mmx, z)=
R (T (x), (PHLxQRL HRO(gM)| pr1ca)=h' (X, Ox(gx))=
1 if x is a branch point for the double

ho(X, xR0 x(—gx))= { covering 7 : X —> P
0 otherwise.

Therefore we get
HY(X, R'pu[pH(R2xQLHR0(gd)])=0.
Let us consider the Leray spectral sequence
E%=H?(X, Rp[pH(2xQLHQ0(gd]) =
HP (XXX, pH2xQL HR0(gd))=EP*

for p, and pF(R2xRL HXRO(gd). Since X is l-dimensional we get E3°=FE%2=0.
Hence by the exact sequence of terms of low degree we have E*=0. Since
Ei=0 for i=0 or i1=2, we get

XXX X, p¥R2xQLHRQ0(gd)=—h (XXX, pH(RxQL HR0(g4)) .
Now the exact sequence induces the following exact sequence:
HY(XX X, pF(2xQL HQ0WwH R0 s) —> HI(XX X, p¥(L2xQL HQO0((v—1)4)) —>
HY XXX, p¥(2xQL HQ0(wA)).
Since for any v=1
HY(XX X, pH(Q2xQL MHRQ0wHR0N=H(X, 25*QL =0,
we get
R(XX X, pH2xQL HRQ02ZA)=h(XX X, pH(2xQL HR0(gd) .
By Lemma 1.3, we see
dim, TH(—1)=h (XXX, pHLxQLHRO02A)—h (XX X, pF(LxQL™)
= XXX X, pHR2xQLMNR0(gd)—h' (X, 2xQL )=(g—Dglg+D).

If g=2 and d=5, then the above inequality is obviously an equality and we get
dim, T((—1)=6. Q.E.D.
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2. The proof of Ti(—2)=0 using the equations defining hyperelliptic
curves.

In this section, first, when a homogeneous ideal I of a polynomial ring P
and its generators are explicitly given, a natural grading on the space T'% of
first order deformations of C=Spec P/I is defined. Specifically, let P=
K[ X, X;, -+, X»] be a polynomial ring over a field K, and let IC P be an ideal
generated by homogeneous elements f;(1=<i=<N) of degree d,., We set B=P/I
and C=Spec B. Then we will apply the definition of a natural grading on T%
obtained by Pinkham to the above case.

REMARK 21. Let R={(ry, -, 7)€ P¥| 3\ 7,f,;=0} be the relation P-module

for fy, -+, fv and let R,, -+, Ry be a system of generators of the P-module R.

For a fixed N-tuple (g, -, gv)€ PY, a map ¢ from I to B defined by 3} h.f,
N

Hfz_‘,lhigi—f—l with A, -, hye P is well-defined if and only if R;-%(gy, -+, gn)

=0 mod [ for all j=1, ---, M. In this case, a homomorphism 6: I/I*—B of B-

modules is determined by ié h,-fi+12»—>§rl) h;g;+1,and any element of Homg(//I?, B)

is given in this manner.
Now we introduce a grading for the B-module Homg(I/I?, B).

DEFINITION 2.2. Let us take #=Homp(I/I?, B) such that 6(f;+I?)=g;+I
with homogeneous elements g; for all i=1, .-, N. Now we set pi=-+oo if
g:€l and p;=deg g, if g;&I. Then (g4, -, #x) depends only on 6 and does
not depend on the choice of the set {g;} of homogeneous elements. We grade
elements of Homz(//I?B) as follows: the above element 6 is homogeneous of
degree v if p,=v+d; or +oo for any i=1, ---, N. Then v depends only on &
and does not depend on the choice of the system {f;} of homogeneous generators
of the ideal /. This defines a structure of a graded B-module on Homg(//I2, B).

REMARK 2.3. Let D be the B-submodule of Homg(//I?, B) generated by the
homomorphisms d¢y, d¢y, -+, dcny 0f B-modules where d¢,: I/I*—B is defined
by sending hA-+I1*—0h/0X;+I with h<] for all (=0, 1, ---, n. Then we have the
exact sequence of K-vector spaces ([5]):

1/
0 — D —> Homp(I/I?, B) —> Tt —> 0. (2.1)

Since the d, are homogeneous of degree —1, the above exact sequence (2.1)
defines a natural grading on T} as follows:
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DEFINITION 2.4. For any veZ, we denote by Ti(v) the image of the v-th
graded piece of Hompg(I//I?, B) by the homomorphism @ in (2.1). This gives a
grading on T¢.

By this definition we see easily :

REMARK 25. If d=Max{d;|i=1, ---, N}, then we get Tt(»)=0 for all v<—d.

REMARK 2.6 This grading is of course the same one which was obtained
by Schlessinger in the projectively normal case and which was described in
section 1.

Henceforth we specialize ourselves to the situation where C is the affine
cone over a projectively normal hyperelliptic curve X over k. We are in the
following situation :

NOTATION 2.7. Let the characteristic of 2 be different from 2, let X be a
hyperelliptic curve of genus g=2 whose function field K(X)=~k(x, y) is the
extension of k(x) determined by the equation

V=x(x—Dx—a)(x—as) - (x—asg-1),

where a,, a,, -+, @,;_; are 2g—1 distinct elements of k different from 0 and 1,
and let 7: X—P! be the morphism corresponding to the inclusion map k(x)—
k(x, y). L is the invertible sheaf Ox(dQ.) with d=2g+1 where Q. is the
branch point 7~%((0, 1)) on X. Since dim, (X, L)=d+1—g, we see easily that
y, xy, -, xl@728-D/2y 1 .. x04/2 form a  k-basis of I'(X, L), where [ ] is
the Gauss symbol. ¢p: X— P? #=Proj k[ X,, Xi, -, Xa-z] 18 the embedding
such that L=¢¥(Opa-,(1)) and that the sections y, xy, -, xtd-2e-L/2y 1 x, ---,
x%4/21 correspond to ¢¥(X,), ¢F(X)), -+, ¢¥(X4-,) respectively under this isomor-
phism. Let I be the largest homogeneous ideal defining the subvariety o(X)

of P¢-¢ with the decomposition /= EBOI,, into the direct sum of homogeneous
vz

pieces. If we set

2g+1
x(x—D(x—a)(x—a) = (x—s-)= 2 a:x’,
then we have a,;+;=1 and a,=a,a; - @z, #0.
Now we give a system of generators of the ideal I. If we apply the results

in and to our case, we see:

REMARK 2.8. For any d=2g-+2, the ideal I is generated by I, and dim, I,
=(d*—Q2g+1)d+g*—g)/2.
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PROPOSITION 2.9. Set fi;=X;X;— X, X;., for 0=5i=d—g—2 and i+2=<j=
d—g, and set |=[(d—2g—1)/2]. If d=2g-+2, then the ideal I is generated by

(A) fi0=i=1-2, i+2<5<)),

(B) fil+1=i<d—g—2, i+2<j<d—g),

(C) [fi;00=i=1—1, I+2=5j=d—g),

(D) gn(0=m=d—(2g+2), where for 0=m=l—g—1

2g+1
ngXoXm-—XzH 1_21 aiXi+m+L+1;
Jor [—g=m=l
2g+1 l-m+g

gm:XOXm_Xd—g_ > aiXi+m—g+(1—(—1)d)/2_Xl+1 21 @i Xivmare1s
=

t=l-m+g+1
for I+1=m=1+g—1
2g+1 l-m+g
ngXm-lXt_Xd-g_ > GiXi+m-g+(1—<—1>d)/2"XL+1 iZl Qi Xirm+i+1s

i=l-m+g+1

and for l+g=m=d—Q2g+2)

2g+1

gm:Xm—LXz'*Xd—g 21 aiXi+7n—g+(1—(—1)d)/2 .
i=

PrROOF. Trivial relations among y, xy, -, x{¢-28-Di2ly 1 x ... —x[4/2
2g+1

induce (A), (B) and (C). The equation y?= iZ_)l a;x* induces (D). It is easy to

check that the above polynomals are linearly independent and that the number

of them is equal to (d®*—(2g+1)d+g?—g)/2. By Remark 2.8, they generate the

ideal I. ' Q.E.D.
Applying Definition 2.4 to our case, we get the following:

ProrosiTION 2.10. (0) If d=2g+2, then we have Tt(v)=0 for all y<—3.
(1) Movreover if d=2g—+3, then we get TE(—2)=0.
PrROOF. If one combines Remark 2.8 with Remark 2.5, T:(v) is zero for all
vy=—3. In the proof of (1) we will use the notation in Proposition 2.9. Since
R =X, [ ie1—Xifr, 7+ XS, ;=0

for all 0=k<i<j—1=d—g—1, we have the following relations:
a) for 0=i=/—2 and i+2=;7=I

R§-1,z+z:Xz+1fi,j’—Xj—1fi,z+z+Xifj-1,z+z:O,
b) for [+1<i<d—g—2 and i+2<j<d—g
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R} ;= j-xfo.i+1—Xifo.j+Xofi,j:0,
c¢) for 0=i=</—1 and [+2=<;<d—g—1
Ri v a-g=Xg-g-1S1.;—XjorS1.a-g+Xif j-1.4-2=0.

Moreover, we have the relations

2g+1

T(r)n, m+1:’—X1gm+Xogm+1“Xofo, mr1+ X141 ;2:1 aifo, s+met+2=0

for all 0=m=[—g—2. Similarly, we get the relations 79 n., forall [—g—1=m
<d—2g—3. We write an element r< PV as
(ri0=i1-2, i+2<j<[; |+1<5i<d—g—2, i+2<j<d—g;
0=i=l—-1, I+25j=d—g), ra(0=m=d—2g-2)),
where P=Fk[X,, X;, -, X4-,] and N=(d*—(2g+1)d+g*—g)/2. For any relation
H=3hi;fij+ X hngn=0, we call h=(h;; hn) the element of P¥ corresponding

to the relation H. Let r%;(resp. th m+1) be the element of P¥ corresponding to
the relation R% ;(resp. TS, m+1)-

For any element £=T4(—2), there exists a homogeneous element fe
Homg(I/I?, B) of degree —2 such that £ is the image of # by the homomorphism
@ in Since elements of Homg(//I? B) are given by N-tuples of elements
of B, which we write as row vectors, we can think of 6 as (c¢c;;+/; cn+I)
whose entries are homogeneous of degree 0. If we set c¢=(ci;; cm)E PV, then
by Remark 2.1 we get the following:

ri s 14e°fc= mod /] for 0=i=/—-2 and :+2=j5=!,

7} ;+%¢=0 mod [ for [+1=i<d—g—2 and i+2=5;=d—g,
riya-g-f¢=0 mod [ for 0=i</—1 and [+2=5j=Sd—g—1,
t% me1-c=0 mod I for 0=<m=d—2g—3.

Hence we get ¢;;=0 and if d=2g+3 we have c,=0. Therefore 6 is the zero
map, that is to say, £=0. Hence we have T}(—2)=0. Q.E.D.
By Remark 1.1 and Propositions 1.2, 1.4 and 2.10, we get

THEOREM 2.11. Let the notation be as in Notation 2.7. If d=Max{4g—3,
2g+3}, then we have

1) Ti=Tt(—-DDTO0),

2) dim, TH(—1=(g—1)g(g+1) and dim, T(0)=4g—3.

In particular, if g=2 we get dim, T{(—1)=6.
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REMARK 2.12. In the case g=3, the estimate dim, TH{—D=(g—1) g(g+1)
given in Theorem 2.11 is not sharp. For example, if g=3 and d=9, 10, by
calculation we get dim, Th(—1)=8<24.

3. A Fk--basis for T} in the cases g=2 and d=>5, 6, 7.
In this section we use the notation in Notation 2.7 and assume that g=2.
Looking at a k-basis for T} we compute its dimension in the cases d=5, 6.
3.1. A system of generators of the ideal I.
1) The case d=5. I is generated by f,, f, and fs, where
Fi=— X3 X+ Xo X3+ a, X, X3+ a0, X0 Xo X+ 0, X3 X+ a,. X3 X,, fo=X Xs— X},
Fi=X3X,—X3—a, Xo X3 —a: X, X3— a, X, Xo Xs— a, X2 X, .
If we apply Proposition 2.9 to the cases g=2 and d=6, 7, we get the following :
2) The case d=6. I is generated by f,, f2 fs and f,, where
F[1=X1X— X3, fi=XX,—X: X, , fo=Xo X, — X3,
Ff =X =X X — a0 X X — 0 X, X — 0. X: Xs— 0, X, X, .
3) The case d=7. I is generated by f1, fo -+, fs, Where
H1=XX— X5, f:=XXs— X X, fi=X,X,— X2, fe=Xo Xs— X, X, ,
=X X— X1 X5, fe=Xo Xs— X, X4,
Fri=X3— X X~ 0, Xe Xs— 03 X X5— 02X X, — 0, X, X,
fs::XoXl——XE—a4X4X5—a3X3X5——a2X2X5—~a1X2X4.

We set N=3 if d=5 and N=(d*—5d+2)/2 if d=6,7. Let R= {(gy, -, gw)
e P¥| iégifi=0} be the relation P-module, where P is the polynomial ring
k[ X,, X,, -+, X4-»] over k. Then elementary computations show the following :
3.2. A system of generators of the relation P-module.
1) The case d=5. 7, and », form a system of generators of R, where
n=(Xe, Xi+a:XiXs+a, X3, X)), r,=(Xs, X2—a,X2—a, X, X,, X,).
2) The case d=6. r,, ---, r; form a system of generators of R, where
n=(Xs, —X,, Xi, 0), r:=(X,, —X;, X, 0), re=(—f4, 0, 0, ),
7=, —f4, 0, f2), 75=(0, 0, —f4, fs).



328 Jiryo KOMEDA

3) The case d=7. r,, -+, r;, form a system of generators of R, where
=X, —Xs X5, 0, -+, 0), 7.=(Xs, —X,, X,, 0, ---, 0),
rs=(X,, 0, 0, X5, —X,, 0, 0, 0), »,=(X,, 0, 0, X,, — X5, 0, 0, 0),
rs=(0, Xo, 0, X,, 0, — X3, 0, 0), re=(0, X;, 0, X;, 0, — X5, 0, 0),
r.=(0, 0, X,, 0, X,, — X5, 0, 0), rs=(0, 0, X}, 0, X;, —X,, 0, 0),
79=(0, 0, 0, a:X;, a,Xs+a.X;, a. X+ X5, —X;, Xo),
ro=(a: X+ a.Xs, a.X:+X;, 0, X,, 0, 0, —X;, Xo),
ru=(—asX; 0, a.X,+X;, 0, X,, 0, —X,, Xj),
r1:=(0, —a3X;s, —a:X:—a.X;, 0, 0, X,, —X;, X,).

Let @: Homp,(I/1?, P/I)—T¢ be the homomorphism in (2.1} Elements of
Homp, (I/I?, P/I) are N-tuples of elements of P/I, which we write as row
vectors. Then using Remark 1.1 and it is easy, albeit tedious, to
check the following :

3.3. A k-basic for T¢.

1) The case d=5. We have T{(=TL—2)DTL—1)PBTE0). The images of
6, and 6, by @ form a k-basis of T&—2). The images of X0, X .0, X.0,, X0,
X.0,, and 6, by @ form a k-basis of T —1). The images of X, X.0,, X,X.0,,
X, X.0,, X.X:0, and X,0; by @ form a k-basis of T§0). Here

0,=(—X,, 0, Xs), 0.=(X,, 0, —X3), 0,=(0, X,, —Xi+a,Xi+a.X,X,).
Therefore we get dim,7T}=13.
2) The case d=6. We have Ti=Ti—-2)PTL—1DPTL0). The image of
6, forms a k-basis of T¢(—2). The images of X0, X.0,, X0, X0, 6, and
0; form a k-basis of T{((—1). The images of X, X.0,, X,X.0,, X260, X,0,and X,0,
form a k-basis of T§(0). Here
01:(0’ 0’ 0; l)} 02:(le O! _XS) 0): 03:(X2) X3) 0) O) .

Therefore we get dim,7T4=12.

3) The case d=7. We have T{(=Ti—1)PTEO0). The images of 6., 6,, G,
0, 6; and 6, form a k-basis of T§(—1). The images of X,0,, X0, X.0,, X0,
and X,0; form a k-basis of T4(0). Here

01:(X3, O) _XB, 0, Xl: 0) adXE; _alXS)J 62:(0) X3y XA? O’ Or Xl, XS’ _asz)p
03:(0» T 0) XO) Xl)) 04:(01 Ty 0, X2’ XS): 05:(0: 5 0, X3y X4);
06:(()) Tt 0’ Xb Xﬁ)'
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Therefore we get dim,T¢=11.
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