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The aim of this paper is to describe some geometrical aspects of Riemannian
manifolds with a pole. A point o of a Riemannian manifold is called a pole, if
the exponential map exp is a diffeomorphism at o. Simply connected complete
Riemannian manifolds of nonpositive curvature (the Euclidean space, the hyper-
bolic space and a simply connected symmetric space of noncompact type, etc.)
and a paraboloid of revolution are typical examples of Riemannian manifolds with
a pole.

We give in 1 a sufficient condition on the existence of a pole in terms of
curvature. Hessian comparison theorem, conformal changes of a metric and a
generalization of Cartan’s fixed point theorem are discussed in 2 (6], 2.
And we argue in 3 the order of a holomorphic function on a Kdhler manifold

with a pole ([7]).

1. As an easy consequence, a Riemannian manifold with a pole is diffeo-
morphic to the Euclidean space. On the contrary, any complete Riemannian
manifold diffeomorphic to the Euclidean space does not necessarily have a pole.

The following proposition gives a sufficient condition on the existence of a
pole.

PROPOSITION 1. Let M be a connected complete Riemannian manifold and N
be a complete surface with a pole p. Assume that M has a point o such that the
sectional curvature K(II,t))<Gaussian curvature of N at a point with distance t
from p for all t>0, every normal geodesic v issuing from o and every plane
II(t) containing 7(t). Then exp, is of maximal rank. If, moreover, M is simply
connected, then o is a pole.

Proor. It is sufficient to show that o has no conjugate point on each geo-
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desic issuing from o ([4]). Let 7 be a normal geodesic from o and J a Jacobi
field along 7 such that J(0)=0 and V./#+0 at t=0. Suppose that J(¢,)=0 for
t,>0. Without loss of generality we may assume that J(#)+#0 for 0<¢<¢, and
that J is perpendicular to 7. Since J satisfies the Jacobi’s equation, <F'}J, J>=
—<R(J, 1)1, I>=—K(JANDIJI%. On the other hand, by Schwarz’ inequality
Pil, J>=1/2a*/de> (W 1=V . JI*=1/2 @*/de* (1 JI1H—(d/dt [ J1)*=I]l(a*/dt* | JID
for 0<t<t,. Then we have
dZ
dt?
Note that |d/dt ||| is bounded for t—+0, since |d/dt || JII| =V ]| for 0<t<t,.
Let 7/ be a normal geodesic issuing from p in N. Since p is a pole, each
nontrivial Jacobi field J/ along 7’ such that J’(0)=0 and J’ | 7’ has no zero point
for ¢t>0. Since N is two dimensional, J'(t)=h(t)E(t) where E is a parallel unit
field along 7’ and h(¢) is a smooth function such that hA(0)=0 and A(¢)>0 for
t>0. By Jacobi’s equation, we have

O+ KO AT A= @

I +EKJOATENNJIZ0. ey

On the other hand, by the curvature condition together with the lemma be-
low, it follows that 4 has a zero for 0<t<t,. Thus we have a contradiction.

LEMMA (Sturm’s Comparison Theorem [3]). Let u; be C3:-functions defined

on [0, al, i=1, 2, which satisfy
dZ

-(Tt?ul(t)_*_/ll(t)ul(t)zo

A u+ AL D=0, @3)

u,(0)=u,(0)=0, #,(00>0 and u#,0)>0,

where A; are C°-functions on [0, a]. Assume that A,(1)<A(t) for 0=t=<a and

u, never vanishes on (0, al. Then u, also never vanishes on (0, a].

PROOF OF LEMMA. Note that u,(#)>0 for t>0 from the initial condition.
Suppose that u,(t,)=0 for some #,&(0, a]. Without loss of generality we may
assume that u,(¢)>0 for 0<t<t#,. From (3), we have, for 0<t<¢,,

0<S: {uo(ily+ Ayuy) —u, (i + Asun} dt
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t
= (Upthy— Usths) | 3_SO(A2_A1>u1u2dt

<uo()iy(t)—u (B)us(t),

hence u,(t)/u.(t)<u,(¥)/u,(t). Then we have, for sufficiently small positive number
¢, og {udt)/uso)} = (i) u(0} dt <[ lau(t)/us()} di=log luws(t)/ux(@)} for e<1<to.

Since u;(c)>0, i=1, 2, ug(to):tlilrrloug(t)<tlitn30 {u(c)/u,(c)} u,(t)=0. This leads a
contradiction. ’ ’

2. Let M be a Riemannian manifold with a pole 0. The distance function
p(:)=d(-, o) has singularity only at o. By comparing the radial curvatures, Siu
and Yau [6] and also Greene and Wu [1] showed the comparison theorem on
Hessian of the distance functions. By radial curvature K(t) for a normal geodesic
7: [0, o0)—M, 7(0)=0, we mean the sectional curvature of a plane which contains
the tangent vector 7 at 7(¢). Hessian of a smooth function f is defined by
Hess (f) (X, Y)=X¥ f)—F x¥)f, where ¥ is a local extension of Y.

By using Schwarz’ inequality again, we have a description of the comparison
theorem in a free manner on any dimensional condition.

PROPOSITION 2 (Hessian Comparison Theorem). Let (M, o) and (N, p) be Rie-
mannian manifolds with poles o and p respectively. Assume that for all t>0, the
radial curvatures satisfy Ky(t)SKy(t) for each normal geodesics v and o issuing
from the poles. Then

Hessu(pu)(X, X)=Hessy(pn)(Y, Y),

where X and Y are unit vectors at 7(t) and o(t) such that X17(t) and Y 1 a(t),
1>0, respectively.

Note that if f is an increasing smooth function on (0, o), then
Hessy(fo puX(X, X)=Hessy(fopn)Y, Y),
since Hess (fo p)=/f"+Hess(p)+f"d p®dp.

PrROOF. We shall prove this by following [6] Since o is a pole, there is a
global vector field X on M such that (1) X(0)=0, (2) XG(t)=X, (3) [X, 8/8p]=0
and (4) X is a Jacobi field along 7| . perpendicular to 7. Then we have

Hessu(pu)(X, X)={ {17315, X ()"~ K X() AHMIZ ()1 s

=I4X).
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There is also a global field g satisfying the similar condition and Hessy(pwx)(Y, Y)
=I$()~’). Let Z(s) be a vector field along ¢ defined by Z(s)=|X(s)|E(s), where
E is a unit parallel field along ¢ such that E(#)=Y. Then |Z|=|X]|, Z(0)=0
and Z(t)=Y. By Schwarz’ inequality, we have |V33,,ZI|=IV 3304, X 1. From the
curvature condition, Ky(X(S)AFSHIXG)IEZKn(Z(S)N(SHIZ(s)]|?, hence

Hessu(pu)(X, X)=I{X)=I¥Z).

From the property of the quadratic form I}, we have Iﬁ(f)g[ﬁ(?):HessN(pN)(Y, Y).

A (C?-function f is called convex (strictly convex) if and only if Hess(f)=0
(>0). Note that f is convex (strictly convex) if and only if (fo7)”=0 ((foy)">0)
for every geodesic 7. The Hessian comparison theorem gives an estimation on
the (strictly) convexity of a radial function. A function f on M is called radial
if and only if f is a composition of p, and a function defined on R*.

COROLLARY 3. Let (M, o) and (N, p) be as in Proposition 2. If the curvature
assumption in the proposition is satisfied and there is an increasing function

F:R*—R, f">0 such that fopy is (strictly) convex, then fopy is also (strictly)
convex.

The Hessian of a radial function of a manifold with a pole is not necessarily
positive definte. The above corollary gives an estimation of the convexity. By
construction of a surface of revolution with Gaussian curvature K(s), the follow-

ing theorem is obtained [1]: Suppose S:s K(s)ds<1, where K(s)=max {0, radial
curvature at x with p(x)=s}. Then (u/t)(g—dpQdp)(X, X)=<Hess (p)(X, X) at
x with p(x)=t, t>0 for a positive constant g such that I—S:s R(s)ds<p=1.

Since Hess (p*)=2p- Hess (p)+2d p®dp, we have a crucial estimation for the
strictly convexity of p2.

Consider a paraboloid of revolution, 2z=x24y%. Then the origin is a pole.
The Gaussian curvature K(p) at p=(x, y, z) and p(p) are written as K(p)=
1/{0+121»% and p(p)=1/2{|p|VI+[p[>+log (|p|+~T+[p]®, | p|?=x+ y"
p%(») is not convex, on the other hand Hess (| p|*)=2/(1+|p|®)-(d x2+d y?), that
is, | p|*® is strictly convex, Note that K(p) has the same order as 1/{p(p)?} at

infinity (p(p)—co). Hence S:s-ﬁ(s)ds diverges.

We observed that p? is not always strictiy convex. However, we can find a
new metric g* from a conformal change of the given g such that p*? is strictly
convex.



Some geometrical aspects of Riemannian manifolds 295

PROPOSITION 4. Let (M, g, 0) be a Riemannian manifold with a pole. Assume
that the radial curvature K is bounded above by a suitable smooth function of p.
Then there is a continuous function f: R—R such that fopeC*(M) and (1)
(M, g*, o) is also a Riemannian manifold with a pole o, where g*=e%*’°?g, (2) the
radial curvature of g* is nonpositive and hence (3) the square of the distance
Sfunction p** is strictly convex with respect to g*.

Before proving this, we show following two statements by considering geo-
metrical aspects of a metric g* defined by g*=e?/°°g.

PROPOSITION 5. Let 7 is a normal g-geodesic issuing from o. Then a curve:
s—y(t(s)) is a normal g*-geodesic, where t(s) is the inverse function of s(t)=

Scef“"du.
0

Proor. We apply the formulae of the covariant derivative with respect to a
conformal change g*=¢*/°?g ([5]) to the curve c(s)=7(t(s)):

PY=F yY+do(X)Y+deo(Y)X—g(X, Y)grad o,

4)
> Y= 4 Y+ d (c(sNY+(Ya)e(s)—g(é(s), Y) grad
ds ° ds ds ¢ gleis), r)grada

(e6=fop).

Since g*(¢(s), ¢(s))=1, we have (F*/ds)¢l¢ by covariantly differentiating both
sides. Let Y, 1=<i=<n, be orthonormal g-parallel vector fields such that Y,=7.
We shall show (F*/ds)é(s) LY i(t(s)), 1=i=n—1. By covariantly differentiating
g*(e(s), Y (t(s))=0, we have

0=g*(-7e(9), Vil (D) +85(e69), o= Ylt(sD).

From (4) together with the relations ¢(s)=(dt/ds)f and grad p(s(t))=7(t),
V*
ds

Hence we derive that g*((F*/ds)é(s), Yi(s)=—g*(é(s), F*/ds)Y(s))=0. Thus,

we have (F*/ds)é(s) L Y(s), 1<i<n, that is, F*/ds)c(s)=0.

Y ()=~ (fo p)(NYLS)

NotTe. If ltim S:ef W du=-4co, c(s) is defined on the whole R and therefore

exp: ToM—M is a diffeomorphism with respect to g*, thatis, (M, g*) has a pole
o. The distance function p*(-)=d*(-, 0) with respect to g* is given by
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oro)=("" e wdu,  peM.

Now we shall consider the radial curvature of g*. Let R and R* be the
curvature tensors of g and g* respectively. Then we have ([5])

g R¥X, V)Y, X)=¢e*"?g(R(X, Y)Y, X)+2S;,,(X, Y)g*(X, Y)

®)
_Sfop(yy Y)g*(Xr X)—Sfcp(X) X)g*(Yy Y)

where
Ss=Hess (a)——da@da—k%—llgrad ol’g, osC*(M).

The radial curvature K*(Y Agrad p) at p (Y Lgrad p) with respect to g* is
written as
K¥YNgrad p)=e™*’°° {K(Y Ngrad p)—f"(p(p))
(6)
—Jf"(p(p)) Hess (p)(Y, Y)/|Y*.
The above formula is obtained as follows. Since Y | grad p,

1

K*(Y Agrad p)= e | Y2 | grad ol £

*(R*(Y, grad p)grad p, V)
=e P {K(Y Ngrad p)—Sy..(grad p, grad p)/|grad p|*
—Sr. LY, Y)/IIY|%.

On the other hand, S,.,=f Hess(p)+{f"—f*dpQdp+1/2(f'*)g, hence we
have (6).

PROPOSITION 6. There is a function fop&C (M) such that the radial cur-
vriure is nonpositive eveywhere with respect to g*=e*/°fg.

PrROOF. By the assumption of [Proposition 4, we can choose smooth functions
K(t) from R* to R which satisfies

K(#)=max {0, radial curvature at x, p(x)=t}.
Set I?(t):—g:f('(t)d t, then A is also smooth and satisfies that
H(t)<min {Hess (o)XY, Y) at x, p(x)=t, YeM,, |Y|=1}.

The nonnegative function #(t)=exp (—-S:H'd t)-S:K(t) exp(Sﬁdt)a’t is a solution
of di/dt+Ha—K=0. Then we have for i,
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%<t)+ﬁ<t> Hess (p)(Y, Y)/IIY|IP—K(Y ANgrad p)
=a(t){Hess (o)XY, V)/IY|*~H(t)} + {K(t)—K(Y Agrad p)} =0,

t
for each YeM,, o(x)=t. Therefore, if we set f(t):Soﬁ(t)dt, then (M, g*), g*=
e*/°¢ g has nonpositive radial curvature from (6).
From these propositions, we have a required function fop in

t
since 11mS e/ Ydg=oc0 by f'=u#=0. Thus [Proposition 4 is proved.
o

t—oco

At the last part of 2, we find a necessary condition for the existence of a
strictly convex radial function, by a group-theoretical version. The following
proposition is a generalization of E. Cartan’s fixed point theorem [2].

PROPOSITION 7 (Fixed Point Theorem). Let (M, o) be a Riemannian manifold
with a pole o. Let K be a compact Lie group which acts on M as isometries. If
there is a strictly convex increasing radial function fop, then K has a common
fixed point.

REMARK. If M is of negative curvature, then p® is strictly convex by com-
paring M with a Euclidean space. Thus we have the well known E. Cartan’s
fixed point theorem [2]: A compact Lie group which acts as isometries on a
simply connected complete Riemannian manifold of negative curvature has a com-
mon fixed point.

PROOF. Let dk denote the Haar measure on K, normalized by Sde:I.
Consider the real function F on M given by F(x):SKfo o(k-x)dk. Then Fis a

nonnegative continuous function. Since fop is exhaustion and the orbit of o is
compact, there is a ball B,(0) such that F(x)>F(o) for all x= B,(0). The closure
of B,(0o) contains a minimum point x, for F. The point x, is also a minimum
for F on M. Since F(k-x,)=F(x,) for k=K, in order to prove the existence of
the fixed point, it is sufficient to show that F(x)>F(x,) if x#*x, But this is

derived by the strictly convexity of F, since F(T(t))”:SK{fop(k-r(t))}”dk for
every geodesic 7.

3. Let M be a complete open Kidhler manifold. As in function theory, the
order y(f) of a holomorphic function f is defined by

r(f)=lim sup log M(, r)/log 7,
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where M(f, r)=sup{|f(x)|; x€M, d(o, x)=r, 0 is a fixed point} [7]. The defini-
tion of 7(f) does not depend on the choice of o. If y(f) is positive finite, then
for each ¢>0, there are C>0 and »>0 such that y()Sv<y(f)+e¢ and |f(x)|=
C(1+p(x)) for all xe M (p(x)=d(x, 0)).

We discuss some aspects of 7(f).

Let (M, 0) be a Kihler manifold with a pole 0 and (W, p) a model space,
dim M=dim N=n, which satisfy the radial curvature K,(#)<the radial curvature
Ky« for all t>0. By a model we mean a Riemannian manifold (&, p) with a
pole p such that every linear isometry ¢: N,—N, is realized as the differential
of an isometry @: N—N ([1]). Let Vu(r) and Vx(r) be the volumes of the open
balls By(r) and By(r) of radius » around o and p in M and N respectively. Note
that by the sub-mean value property, Vyu(r)=Vy().

Now we show the following

PROPOSITION 8. Assume that Vyu(r)~r®, Vy(@r)~rf, =1 (r—oo). If a holo-
morphic function f has 7(f)<1+(B—a)/2, then df=0 at o.

REMARK. If (M, o) is of nonpositive curvature and a<2n-+2 in the above
proposition, then a bounded holomorphic function is constant, since every point
gives a pole. Note that Vy(r)~r?* for (N, p)=(C™", o) with a flat metric.

Before the proof of the proposition, we have some lemmas.

LEMMA (Sub-mean-value Property). Let ¢ be a continuous nonnegative sub-
harmonic function on M, then

S $=Va()glo)  for all r>0.
By ()
For the proof, see Theorem B, [1].

LEMMA (Integral Inequality of the Laplacian). Assume that (d/dr)Vy(r)is an
increasing function. Let f be a nonnegative subharmonic function. Then for all
A, 0< A<, there is a constant y=7;>0 such that

7
S.BM(Z‘I')[’](é _7’_2—SBM(T)f. (7)

PROOF. Since /=0, we have, from (3,6) in [1]

SBM")[Af(S:; vizt) )]dvé—v—;l(;)—gsﬁlmfdm(r),

which implies
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(T ds 1
< d ,
Sogt(gsw"f delt) - Ty di= vN(r)Sstf w(r)
where vy(r)=v(r) denotes the volume of the r-sphere Sy(r) around p in N.

By using Fubini’s theorem with respect to s and ¢ on the left hand side, we
have

S Vaod 40 =] 510, 47 dot0)ar] 5

:S:(—v%)&SB(s)Af)ds )

Multiply by v(r) and integrate relative to ». Then

SB(u)fégz U(?’)[S:( U%S) SB(”Af>dS:|d‘r' .

Since 4f=0,

S: v(ls) <Ss<s>df)dsgg:§r vgs) <S3c¢§r>df)dsz<gﬂcvir> Af)' S:/Zr vd(z)
and that
(et 4zl (., 0, e

2[00 ) (o )20V DA=DE], 27,

where the last inequality follows from vx(») being increasing. Hence we obtain
the inequality (7).

LEMMA (Cauchy’s inequality for derivatives of holomorphic functions). For
each holomorphic function f on M,

2 T 2
e e ML

PrROOF. Since 4|f|2=|df||* and 4||df|*=|IF df]? from above lemmas,

1

1f PO ol ld]

_ . _
- VN(?’/Z)T'z SB(T) |f| ’ Where T 7’1/2 .

PROOF OF PROPOSITION 8. Since 7(f)<1+41/2(8—a), there is »>0 such that
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7(f)<v<l+(B—a)/2, hence we have |f(x)| <C(1+p(x))* for some C>0. Then,
from the above,
7C*

T LD Ve teashy,

2 T 2
e I L

Letting r—co, we have df=0 at o.
As an application of the proposition, we have the following

COROLLARY 9. Let F=(f', ---, f¥); M—C" be a holomorphic mapping. If
Jér(fif)<n——n(a—,8)/2 for each 1=i,< - <i,=N, then F is not of maximal

rank at o.
Movreover, if M is a Stein manifold and F; M—C" is a proper holomorphic

imbedding, then ji}lr(fif)?__n—n(a—-ﬁ)/Z for some 1=1,< -+ <i, <N.

PRrROOF. Consider the holomorphic n-forms df 1A --- Adfir, 151, < -+ <ip,<N.
From the proposition, we have an estimate of the norm of df“A --- Adfirn;

n

IA in)|2 [T 11df ]2 T :
Idf A - Adf IS T 1S T Do | e

__ e
= Vot Wy 7

(L+7)T5- V()"
V[

=r"I1Cj-

where v;>0, j=1, ---, n, satisfy 7(f*)<y;<p(f')4e; and X p;<n—nla—pB)/2.
By letting r—oo, we have df*1A - Adfir=0 at o.

The last statement is easily derived from the above argument, since the F is
of maximal rank everywhere.
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