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1. Introduction.

In [1], P. E. Bland has studied the strongly M-projective module and the
strongly M-projective cover. As their general notions, we define the strongly
$\eta$-projective module and the strongly $\eta$ -projective cover for any class $\eta\subset Mod- R$ ,

(for the definitions, refer to section 2) and by considering the pre-torsion theory

associated with the radical $t_{\eta},$ ( $t_{\eta}(K_{R})=\cap\{Ker(f)|f\in Hom_{R}(K_{R}, M_{R}), M_{R}\in\eta\}$ for

any right R-module $K_{R}$), we shall show that the above notions can be translated
into the new notions weakly codivisible module and weakly codivisible cover
with respect to $(\mathcal{F}, \mathcal{F})$ associated with the radical $t_{\eta}$ and that new or generalized
results are obtained. Through all the sections, we shall generalize the results of
P. E. Bland [1], M. L. Teply [7] and K. M. Rangaswarmy [4].

In [1, Proposition 5] and [1, Proposition 6], it is proved that if Cog $(M_{R})$ is
closed under factors, then

(1) $B_{R}$ has a strongly M-projective cover iff $B/B\cdot Ann(M_{R})$ has a projective
cover as an $R/Ann(M_{R})$-module.

(2) Every R-module has a strongly M-projective cover iff $R/Ann(M_{R})$ is a
right perfect ring.
But we shall show in Corollaries 8, 9 that these statements are valid without
the above assumption on Cog $(M_{R})$ .

By [1, Proposition 7], if $M_{R}$ is an injective module, then any strongly M-
projective module is codivisible with respect to the hereditary torsion theory

cogenerated by $M_{R}$ . So we shall characterize under what conditions about the
pre-torsion theory $(X_{l}, \mathcal{F}_{t})$ associated with the radical $t$ a strongly $\eta$ -projective
module is codivisible.

We have equivalent conditions in Theorem 12 that
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(1) If $B/B\cdot t(R)$ is a projective $R/t(R)$-module, then $B_{R}$ is a codivisible module.
(2) Any weakly codivistble module (resp. $ str\theta ngly\eta$-prajective module) is a

codivisible modu le.
(3) $A\cdot t(R)\cap K_{R}=0$ for any weakly-codivisible module $A_{R}$ and its submodule

$K_{R}$ such that $K_{R}\in \mathcal{F}_{t}$ . ( $i$ . $e$ . $t(A_{R})$ has no non-ze $ro$ torsion-f $ree$ submodule.)

(4) $t(B_{R})=B_{R}\cap t(A_{R})$ for any codivisible module $A_{R}$ and its submodule $B_{R}$ .
(5) $M\cdot t(R)$ has no non-ze $ro$ torsion-free submodule for any (cyclic) module

$M_{R}$ .
These conditions are deep related to a pseudo-hereditary pre-torsion theory.

In fact, conditions in Theorem 12 hold iff $(g_{t}\mathcal{F}_{t})$ is a pseudo-hereditary pre-
torsion theory (Theorem 14). Furthermore this implies it holds the converse of
[4, Theorem 8] which asserts if $(f, \mathcal{F})$ is a pseudo-hereditary torsion theory,

then $B/B\cdot t(R)$ is a projective $R/t(R)$-module iff $B_{R}$ is a codivisible module.
Hence our result Theorem 12 proves that [1, Proposition 7] and [4, Theorem 8]

are essentially the same contents.
As an immediate consequence, we have the following generalization of [4,

Corollary 15] that any R-module is codivisible iff $R/t(R)$ is a semi-simple Artinian
ring and $(\xi\Gamma_{t}, \mathcal{F}_{t})$ is pseudo-hereditary. We shall also generalize the result [4,

Theorem 8] on the pseudo-hereditaryness in a torsion theory to those in a pre-
torsion theory associated with a radical (Theorem 13).

In the final section, we study a module $M_{R}$ such that $M_{R}\cdot t(R)=M_{R}$ . It is
proved in [7, Lemma 3] and [4, Corollary 9] that if $(5^{\cdot}, \mathcal{F}$ ) is a pseudo-hereditary
torsion theory, $M_{R}\cdot t(R)=M_{R}$ implies that $M_{R}$ is codivisible. We shall, however, show
that $\lrcorner l/I_{R}\cdot t(R)=M_{R}$ for a torsion theory $(SEZ, \mathcal{F})$ iff $M_{R}$ is torsion and has a colocali-
zation with respect to $(f, \mathcal{F})$ . In fact, this result is valid under more weaker
situation that (Er, $\mathcal{F}$) is a pre-torsion theory such that $A/t(B_{R})$ is codivisible for
any codivisible module $A_{R}$ and $B_{R}\subset A_{R}$ (Theorem 17). As an application, we
obtain the equivalent conditions which are a generalization of [7, Corollary 1]

and [7, Proposition 1];

(1) $R/t(R)$ is a semi-perfect ring.
(2) Every simple R-module has a codivisible cover.
(3) Every simple $R/t(R)$-module has a codivisible cover as an R-module.

(Corollary 18).

We shall, at the same time, another proof of Theorem of K. Ohtake that
every module has the colocalization iff the torsion-free class $\mathcal{F}$ is closed under
factors and extensions (Corollary 19).
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2. Definitions.

Let $R$ be a ring with unit and Mod-R the category of unital right R-modules.

For $\eta\subset Mod- R$ , we denote “Cog $(\eta)=$ { $M_{R}|M_{R}\subset\prod L_{i}$ for some $ L_{i}\in\eta$ }, $i$ . $e$ . the

class cogenerated by $\eta$ , and “Ann $(\eta)=\cap\{Ann(M_{R})|M_{R}\in\eta\}$ . $M_{R}\in Mod- R$ is

called “strongly $\eta$-projective” if $Hom_{R}(M_{R}$ , - $)$ preserves the exactness of every

short exact sequence $0\rightarrow K_{R}\rightarrow L_{R}\rightarrow H_{R}\rightarrow 0$ such that $L_{R}=\Pi L_{i}$ for some $ L_{i}\in\eta$ . A

“strongly $\eta\cdot projective$ cover” of $N_{R}$ means a strongly $\eta$ -projective module $P_{R}$

with an epimorphism $P_{R}\rightarrow N_{R}\rightarrow 0$ whose kernel is small and $\eta$ -independent in $P_{R}$ .
Here a submodule $K_{R}\subset L_{R}$ is called $\eta$-independent’‘ in $L_{R}$ if, for any non-zero
$K_{R}^{*}\subset K_{R}$ , the canonical map

$Hom_{R}(L_{R}, M_{R})-Hom_{R}(K_{R}^{*}, M_{R})$

is non-zero for some $M_{R}\in Cog(\eta)$ . In the case that $\eta$ consists of a single element

$M_{R}$, the above definitions coincide with the original definitions of strongly M-

projective module and strongly M-projective covers in [1].

For a subfunctor $t$ of the identity functor on Mod-R which is called a “pre-

radical”, we denote

$\mathcal{F}_{l}=\{M_{R}\in Mod- R|t(M_{R})=M_{R}\}$ and

$\mathcal{F}_{t}=\{M_{R}\in Mod- R|t(M_{R})=O\}$

whose elements are said to be “torsion” and “torsion-free” respectively. A pre-

radical $t$ is called a ”radical” if $t(M/t(M_{R})_{R})=O$ for any $M_{R}\in Mod- R$ and is

“idempotent” if $t(t(M_{R}))=t(M_{R})$ for any $M_{R}\in Mod- R$ . We call the pair $(q_{t}, \mathcal{F}_{t})$

a ”pre-torsion theory” (resp. “torsion theory”) if $t$ is a radical (resp. idempotent

radical). For a detail, refer to [6]. For $\eta\subset Mod- R$ , we define a pre-radical $t_{\eta}$

‘

by

$t_{\eta}(K_{R})=\cap\{Ker(f)|f\in Hom_{R}(K_{R}, M_{R}), M_{R}\in\eta\}$

for any $K_{R}\in Mod- R$ . Clearly it is a radical. In [2] H. Katayama has remarked

that any radical $t$ is represented as $t=t_{\eta}$ for some $\eta\subset Mod- R$ .
A module $M_{R}$ is “codivisible” (resp. “weakly-codivisible”) if $Hom_{R}(M_{R}$ , - $)$

preserves the exactness of every short exact sequence $O\rightarrow K_{R}\rightarrow L_{R}\rightarrow H_{R}\rightarrow 0$ such

that $K_{R}\in \mathcal{F}_{t}$ (resp. $L_{R}\in \mathcal{F}_{t}$ ). Clearly a codivisible module is a weakly codivisible

module. A ”codivisible cover” of $M_{R}$ means a codivisible $P_{R}$ with an epimor-

phism $P_{R}\rightarrow M_{R}\rightarrow O$ whose kernel is small in $P_{R}$ and torsion-free. An epimorphism
$f:P_{R}\rightarrow M_{R}\rightarrow O$ is called a “weakly codivisible eover” of $M_{R}$ if $P_{R}$ is weakly

codivisible, $Ker(f)$ is small in $P_{R}$ and $f(P_{R})\cap Ker(f)=O$ . In the case that $t$ is a
radical, if a module $M_{R}$ has a codivisible cover, then it has a weakly codivisible
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cover (for the proof, see Lemma 11). A “colocalization” of $M_{R}$ is an R-homo-
morphism $f:P_{R}\rightarrow M_{R}$ such that $P_{R}$ is torsion codivisible and $Ker(f)$ & Cok $(f)$

$\in \mathcal{F}_{l}$ . For a detail, see [3] and [5]. A codivisible cover, a weakly codivisible
cover and a colocalization of $M_{R}$ are unique up to the isomorphism if they exist
(for the proof, see Lemma 6).

A pre-torsion theory (er, $\mathcal{F}$) is called ”pseudo-hereditary” (resp. “hereditary”)
if any submodule of $t(R_{R})$ (resp. $M_{R}\in x$) is torsion.

3. Basic Property for Radicals.

PROPOSITION 1. Let $t$ be a pre-radical. $t$ is a radical iff $t=t_{\eta}$ for some
$\eta\subset Mod- R$ .

In this case, $\mathcal{F}_{t}=Cog(\eta)$ and $t=t_{x_{t}}$ .

PROOF. “If part” is clear. So we assume $t$ is a radical and we put $\eta=\mathcal{F}_{t}$ .
Let $M_{R}\in Mod- R,$ $K_{R}\in \mathcal{F}_{t}$ and $f\in Hom_{R}(M_{R}, K_{R})$ . $f$ induces $t(f):t(M_{R})\rightarrow t(K_{R})$

and $t(K_{R})=O$ since $K_{R}\in \mathcal{F}_{l}$ , so $f(t(M_{R}))=O$ , hence $t(M_{R})\subset t_{\eta}(M_{R})$ . We consider
the canonical map $i:M_{R}\rightarrow M_{R}/t(M_{R})_{R}$, then $i(t_{\eta}(M_{R}))=O$ since $M/t(M_{R})\in \mathcal{F}_{l}$ .
So $t_{\eta}(M_{R})\subset t(M_{R})$ . Thus $t=t_{\eta}$ . Next we prove $\mathcal{F}_{t}=Cog(\eta)$ . Let $M_{R}\in Cog(\eta)$ .
Then there are $L_{i}\in\eta,$ $i\in I$ such that $M_{R}\subset\Pi_{i\in I}L_{i}$ , hence $t_{\eta}(M_{R})=O$ , thus $M_{R}\in \mathcal{F}_{t}$ .
Assume $M_{R}\in \mathcal{F}_{t}$ . For every $0\neq x\in M_{R}$, there is $ L_{x}\in\eta$ and $f_{x}$ : $M_{R}\rightarrow L_{x}$ such
that $f_{x}(x)\neq 0$ , which means $\Pi f_{x}$ : $M_{R}\rightarrow\Pi_{0\neq x\in M_{R}}L_{x}$ is a monomorphism, thus
$M_{R}\in Cog(\eta)$ .

COROLLARY 2. Let (EZ‘, $\mathcal{F}$) be the pre-torsion theory associated with a radical
$t$ and $\eta$ a subclass of Mod-R such that $t=t_{\eta}$ . Then the following properties hold.

(1) $t(R_{R})=Ann(\eta)=Ann(\mathcal{F})$ .
(2) $M_{R}\cdot t(R_{R})\subset f(M_{R})$ for any $M_{R}\in Mod- R$ .
(3) $\mathcal{F}$ is closed under factors, direct sums and extensions.
(4) For any $M_{R}\in ModR$ and $K_{R}\subset M_{R}$ such that $K_{R}\in \mathcal{F}$, if $t(M_{R})\cap K_{R}$ is a

direct summand of $M_{R}$, then $t(M_{R})\cap K_{R}=0$ .

PROOF. Proof of (1). By Proposition 1, $t(R_{R})=t_{x}(R_{R})$ . So

$t_{\eta}(R)=\cap\{Ker(f)|f\in Hom_{R}(R_{R}, M_{R}), M_{R}\in\eta\}$

$=\cap\{Ann(m)|m\in M_{R}, M_{R}\in\eta\}$

$=\cap\{Ann(M_{R})|M_{R}\in\eta\}$ .
Proof of (2). For any $x\in M_{R}$, we define $f:R_{R}\rightarrow M_{R}$ by $f(r)=x\cdot r$ for every

$r\in R$ . Since $x\cdot t(R_{R})=f(t(R_{R}))$ and $f(t(R_{R}))\subset t(M_{R}),$ $M\cdot t(R_{R})\subset t(M_{R})$ .
Proof of (3). Since $t=t_{\mathcal{F}},$ $t(M_{R})=M_{R}$ iff $Hom_{R}(M_{R}, K_{R})=O$ for any $K_{R}\in \mathcal{F}$ .
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$Hom_{R}(-, K_{R})$ is a right exact functor, so (3) holds.
Proof of (4). We put $M_{R}=(t(M_{R})\cap K_{R})\oplus M_{R}^{*}$ for some $M_{R}^{*}\subset M_{R}$ . $t(M_{R})$

$=t(t(M_{R})\cap K_{R})\oplus t(M_{R}^{*})=t(M_{R}^{*})\subset M_{R}^{*}$ . Hence $t(M_{R})\cap K_{R}=t(M_{R})\cap K_{R}\cap M_{R}^{*}=O$ .

REMARK: The proof of (2) is valid under the assumption that $t$ is a pre-
radical. The above proofs of (2) and (4) are suggested by the refree.

4. Weakly Codivisible Modules and Strongly $\eta$-Projective Modules.

In this section, we study basic properties of weakly codivisible modules and
strongly $\eta$ -projective modules.

PROPOSITION 3. Let $(\mathcal{F}, \mathcal{F})$ be the pre-torsion theory associated with a radical
$t$ . Then it holds that

(1) If $A_{R}$ is weakly codivisible with respect to $(\mathcal{F}, \mathcal{F})$ , then $A/A\cdot t(R)$ is a
projective $R/t(R)$-module.

(2) If $A_{R}$ is weakly codivisible, then $t(A_{R})=A_{R}\cdot t(R)$ .
(3) Let $O\rightarrow A_{R}\rightarrow B_{R}\rightarrow C_{R}\rightarrow O$ be an exact sequence. If $C_{R}$ is codivisible, then

$t(A_{R})=t(B_{R})\cap A_{R}$ .

PROOF. Proof of (1). We put $f$ an epimorphism $\sum\oplus(R/t(R))_{R}\rightarrow A/A\cdot t(R)_{R}$

$\rightarrow 0$ and $j$ the canonical map $A_{R}\rightarrow A/A\cdot t(R)_{R}\rightarrow 0$ . We consider the next dia-
gram with exact rows;

$j$

$O-A\cdot t(R_{R})_{R}-$ $A_{R}$ $\rightarrow A/A\cdot t(R)_{R}-O$

$0\rightarrow Ker(f)_{R}\rightarrow\sum\oplus(R/t(R))A/A\cdot t(R)_{R}\underline{f}\rightarrow 0$ .
$\Vert$

By assumption, there is $g:A_{R}\rightarrow\sum\oplus(R/t(R))_{R}$ such that $j=fg$ . By Corallary 2,
$g(A\cdot t(R))=O$ . So there is $\overline{g}$ : $A/A\cdot t(R)_{R}\rightarrow\sum\oplus(R/t(R))_{R}$ such that $g=\overline{g}j$ . Since
$i=fg=f\overline{g}j$ and $j$ is an epimorphism, $1=f\overline{g}$ , which means $A/A\cdot t(R)_{R}$ is a direct
summand of $\sum\oplus(R/t(R))_{R}$ , hence $A/A\cdot t(R)$ is a proiective $R/t(R)$-module.

Proof of (2). $A\cdot t(R)\subset t(A_{R})$ by Corollary 2, so $t(A/A\cdot t(R))=t(A_{R})/A\cdot t(R)$ ,
but $t(A/A\cdot t(R))=O$ by (1), hence $t(A_{R})=A_{R}\cdot t(R_{R})$ .

Proof of (3). Since $t(A_{R})\subset t(B_{R}),$ $t(B/t(A_{R}))=t(B_{R})/t(A_{R})$ . On the other
hand, the exact sequence $O\rightarrow A/t(A_{R})_{R}\rightarrow B/t(A_{R})_{R}\rightarrow C_{R}\rightarrow 0$ splits since $C_{R}$ is
codivisible and $A_{R}/t(A_{R})\in \mathcal{F}$, so we put $B/t(A_{R})=A/t(A)\oplus\overline{C}$ for $\overline{C}_{R}\subset B/t(A_{R})_{R}$ .
Since a radical commutes with the direct sums, we have

$t(B_{R})/t(A_{R})=t(B_{R}/t(A_{R}))$

$=t(A_{R}/t(A_{R}))\oplus t(\overline{C}_{R})$
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$=t(\overline{C}_{R})\subset\overline{C}_{R}$ .
Thus $(A_{R}\cap t(B_{R}))/t(A_{R})=(A_{R}/t(A_{R}))\cap(t(B_{R})/t(A_{R}))=O,$ $i.e$ .

$A_{R}\cap t(B_{R})=t(A_{R})$ .

REMARK: (1) in the above proposition is a generalization of [4, Corollary 7].

THEOREM 4. Let $t$ be a radical, (EZ‘, $\mathcal{F}$) the corresponding pre-torsion theory

and $\eta$ a subclass of Mod-R such that $t=t_{\eta}$ . Then the following statements are
equivalent for $M_{R}\in Mod- R$ .

(1) $M/M\cdot t(R)$ is a projective $R/t(R)$-module.
(2) $M/M\cdot Ann(\eta)$ is a projective $R/Ann(\eta)$-module.
(3) $M_{R}$ is weakly codivisible with respect to (Er, $\mathcal{F}$).

(4) $M_{R}$ is a strongly $\eta$-projective module.

PROOF. Clearly (1) and (2) are equivalent by Corollary 2. (3) implies (1) is

proved by Proposition 3.
$i$

(1) implies (3). Let $O\rightarrow A_{R}\rightarrow B_{R}\rightarrow C_{R}\rightarrow O$ be an exact sequence such that
$B_{R}\in \mathcal{F}$ and $f:M_{R}\rightarrow C_{R}$ . $B_{R}\cdot t(R)=O$ by Corollary 2, so $C_{R}\cdot t(R)=O$ , hence
$f(M_{R}\cdot t(R))=f(M_{R})\cdot t(R)=O$ . It induces $\overline{f}:M/M\cdot t(R)_{R}\rightarrow C_{R}$ such that $f=\overline{f}j$

where $j:M_{R}\rightarrow M/M\cdot t(R)_{R}$ is the canonical map. Clearly $\overline{f}$ and $i$ are $R/t(R)-$

homomorphisms, so there is an R-homomorphism $h:M/M\cdot t(R)_{R}\rightarrow B_{R}$ such that
$\overline{f}=ih$ since $M/M\cdot t(R)$ is a projective $R/t(R)$-module. Thus $f=i(hj)$ , so (3) holds.

(3) implies (4). It holds since $\eta\subset \mathcal{F}_{t}=Cog(\eta)$ by Proposition 1.
$i$

(4) implies (3). Let $O\rightarrow A_{R}\rightarrow B_{R}\rightarrow C_{R}\rightarrow 0$ be an exact sequence such that
$B_{R}\in \mathcal{F}$ and $f:M_{R}\rightarrow C_{R}$ any R-homomorphism. By Proposition 1, $\mathcal{F}=Cog(\eta)$ ,

hence there are $L_{i}\in\eta(i\in I)$ for some index set $I$ such that $B_{R}\subset\Pi_{i\in I}L_{i}$ . We

consider the following commutative diagram with exact rows;

$O-A_{R}-\Vert B1^{1^{R}}\rightarrow^{i}$

$M_{R}C\downarrow^{R}k\downarrow f$

$-O$

$O-A_{R}-\Pi L_{i}-\Pi L_{i}/A_{R}-O$ .
By assumption, there is an R-homomorphism $g:M_{R}\rightarrow\Pi L_{i}$ such that $kf=jg$ .
Since $B_{R}$ is a fibre product ( $i$ . $e$ . pull back) of $(k, j)$ , there is an R-homomorphism
$\overline{f}:M_{R}\rightarrow B_{R}$ such that $f=i\overline{f}$. Thus $M_{R}$ is weakly codivisible.
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COROLLARY 5. For a pre-torsion theory (EZ‘, $\mathcal{F}$ ), the following statements are
equivalent.

(1) Every R-module is a weakly codivisible module.
(2) $R/t(R)$ is a semi-simple Artinian ring.

PROOF. This is a direct consequence of Theorem 4.

Theorem 7 generalizes [1, Proposition 5] and shows that it is proved without
the assumption in [1] that Cog $(\{M\})$ is closed under factors. Before proving the
theorem, we prove the following lemma.

LEMMA 6. Let $\eta$ be a subclass of Mod-R and $M_{R}\in Mod- R$ . Then it holds that
(1) A submodule $L_{R}$ of $M_{R}$ is $\eta$ -independent in $M_{R}$ iff $t_{\eta}(M_{R})\cap L_{R}=O$ .
(2) An epimorphism $P_{R}\rightarrow M_{R}$ is a strongly $\eta$-projective cover of $M_{R}$ iff it is

a weakly codivisible cover.
(3) A strongly $\eta$-projective cover of $M_{R}$ is unique up to the isomorphism if

it exists.

PROOF. (1) and (2) are clear by definitions and Theorem 4.

Proof of (3). Let
$0\rightarrow K_{R}\rightarrow A_{R}\rightarrow M_{R}\rightarrow Okf$

and
$0\rightarrow L_{R}\rightarrow B_{R}\rightarrow M_{R}\rightarrow Olg$

be strong-

ly $\eta$-projective covers of $M_{R}$ . Since $L_{R}$ is $\eta$-independent in $B_{R}$ , there exists an
R-homomorphism $h:B_{R}\rightarrow\Pi_{i\ni I}M_{i}$ for some $ M_{i}\in\eta$ and an index set $I$ such that
$h\cdot l$ is a monomorphism. So we have a commutative diagram with exact rows;

$O-$ $K_{R}$

$\rightarrow^{k}$ $A_{R}\underline{f}$
$M_{R}$ $\rightarrow 0$

$l$

$\Vert$

$O-$ $L_{R}$ – $B_{R}\underline{g}$
$M_{R}$ $-O$

$l\downarrow h^{*}$ $\downarrow h$

$j$

$\downarrow\overline{h}$

$O-hl(L_{R})\rightarrow\Pi M_{t}-(\Pi M_{i})/hl(L_{R})-O$

where $j$ is the canonical map and $h^{*}$ and $\overline{h}$ are induoed maps of $h$ . Since $A_{R}$

is strongly $\eta$ -projective, there exists an R-homomorphism $p:A_{R}\rightarrow\Pi M_{i}$ sunh that
$jp=\overline{h}f$. By the fact that $h^{*}$ is an isomorphism, $B_{R}$ is a fibre product of $(j,\overline{h})$ .
So there is an R-homomorphism $s:A_{R}\rightarrow B_{R}$ such that $f=gs$ . Since $g$ is a minimal
epimorphism, $s$ is an epimorphism. Clearly $Ker(s)\subset K_{R}$ , so $Ker(s)$ is small and
$\eta$ -independent in $A_{R}$ . Repeating the same discussion as above, we can show
that $s$ is a splitting epimorphism. Hence $s$ is an isomorphism since $Ker(s)$ is
small in $A_{R}$ .
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THEOREM 7. Let $\eta$ be a subclass of Mod-R and $t=t_{\eta}$ a radical. The follow-
ing assertions are equivalent for a given $B_{R}\in Mod- R$ .

(1) $B_{R}$ has a strongly $\eta$-projective cover.
(2) $B_{R}$ has a weakly codivisible cover.
(3) $B/B\cdot Ann(\eta)$ has a projective cover as an $R/Ann(\eta)$-module.
(4) $B/B\cdot t(R)$ has a projective cover as an $R/t(R)$-module.

PROOF. (1) and (2) are equivalent by Lemma 6. Also (3) and (4) are equivalent
by Corollary 2.

(2) implies (4). Let $O\rightarrow K_{R}\rightarrow A_{R}\rightarrow B_{R}\rightarrow O$ be a weakly codivisible cover of
$B_{R}$ . By Proposition 3, $t(A_{R})=A_{R}\cdot t(R)$ , hence $A\cdot t(R)_{R}\cap K_{R}=O$ . So we have a
commutative diagram with exact rows;

$o-K_{R}^{R}-A/A\cdot t(R)_{R}-B/B^{B\rightarrow 0}o-K\rightarrow A_{R}-\Vert\downarrow.\downarrow_{t(R)_{R}-O}^{R}$

By Theorem 4, $A/A\cdot t(R)$ is a projective $R/t(R)$-module. Since an epimorphic
image of a small submodule is small, $K_{R}$ is small in $A/A\cdot t(R)$ . Hence the lower
sequence of the above diagram is a projective cover of $B/B\cdot t(R)$ as an $R/t(R)-$

module.
(4) implies (2). Let $O\rightarrow K\rightarrow Q\rightarrow B/B\cdot t(R)\rightarrow 0$ be a projective cover of

$B/B\cdot t(R)$ as an $R/t(R)$-module. We consider these modules as R-modules and
put $(A_{R}, g, f)$ a fibre product of $Q_{R}\rightarrow B/B\cdot t(R)_{R}$ and $B_{R}\rightarrow B/B\cdot t(R)_{R}$ . We have
a commutative diagram with exact rows and columns;

$Ker(f)_{R}-0\downarrow\sim\overline{g}$ $ B\cdot t(R)_{R}-OO\downarrow$

$ O-K_{R}^{*}\rightarrow$

$ A_{R}\downarrow$

$\underline{g}$

$ B_{R}-O\downarrow$

$\downarrow\overline{f}$ $\downarrow f$

$-B/B\cdot t(R)_{R}\downarrow\rightarrow 0$

$O-K_{R}-$
$ QO^{R}\downarrow$

$0\downarrow$

We first show $Ker(f)=A_{R}\cdot t(R)$ .
$f(A\cdot t(R))=f(A_{R})\cdot t(R)$

$=Q_{R}\cdot t(R)$

$=O$ ,
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so $A_{R}\cdot t(R_{R})_{R}\subset Ker(f)$ .

Thus $\overline{g}(A\cdot t(R))=g(A\cdot t(R))$

$=g(A_{R})\cdot t(R)$

$=B_{R}\cdot t(R)$ .
Since $\overline{g}$ is an isomorphism, $A\cdot t(R)=Ker(f)$ . By this fact, $Q$ and $A/A\cdot t(R)$ are
isomorphic as R-modules, hence as $R/t(R)$-modules. Here $Q$ is a proiective
$R/t(R)$-module, so $A_{R}$ is a weakly codivisible module by Theorem 4. Next we
show $K_{R}^{*}(=Ker(g))$ is small in $A_{R}$ . Assume $K_{R}^{*}+L_{R}=A_{R}$ for $L_{R}\subset A_{R}$ . Then
$K_{R}^{*}\cdot t(R)+L\cdot t(R)=A\cdot t(R)$ . But $K\cdot t(R)=O$ , so $K^{*}\cdot t(R)=O$ , thus $L\cdot t(R)=A\cdot t(R)$ ,

hence $Ker(f)=A\cdot t(R)=L\cdot t(R)\subset L_{R}$ . On the other hand, $f(K_{R}^{*})+f(L_{R})=\overline{f}(A_{R})$

$=Q_{R}$, which means $f(L_{R})=Q_{R}$ since $K_{R}$ is small in $Q_{R}$ and $f(K_{R}^{*})=K_{R}$ . Since $f$

is an epimorphism, $L_{R}+Ker(f)_{R}=A_{R}$ , thus $L_{R}=A_{R}$. Last we show $t(A_{R})\cap K_{R}^{*}=O$ .
$t(A_{R})=A_{R}\cdot t(R)$ by Proposition 3, so $O=Ker(\tilde{f})=K_{R}^{*}\cap Ker(f)_{R}=K_{R}^{*}\cap(A_{R}\cdot t(R))_{R}$

$=K_{R}^{*}\cap t(A_{R})_{R}$ . This completes the proof of the theorem.

By Theorem 7, we get following corollaries.

COROLLARY 8. The following statements are equivalent for $M_{R}\in Mod- R$ and
$B_{R}\in Mod- R$ .

(1) $B_{R}$ has a strongly M-projective cover.
(2) $B/B\cdot t(R)$ has a projective cover as an $R/Ann(M_{R})$-module.

REMARK: This fairly generalizes both [1, Proposition 5] and [4, Theorem
10] as we state before.

COROLLARY 9. Let $\eta$ be a subclass of Mod-R. Then we have next equivalent
conditions.

(1) Every R-module in Mod-R has a strongly $\eta$ -projective cover.
(2) $R/Ann(\eta)$ is a right perfect ring.

REMARK: This is also a generalization of [1, Theorem 6] and [4, Theorem
11].

By applying Theorem 7 only to finitely generated modules, we have $(c$ . $f$ . $[4$ ,

Theorem 12])

COROLLARY 10. The following statements are equivalent.
(1) Every finitely generated (resp. cyclic) R-module has a strongly $\eta$ -projec-
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tive cover.
(2) Every finitely generated (resp. cyclic) R-module has a weakly codivisible

cover.
(3) $R/Ann(\eta)$ is a semi-perfe $ct$ ring.

5. A Pseudo-Hereditary Pre-Torsion Theory.

From Proposition 3, it is easily seen that when $B_{R}$ is codivisible with
respect to $(g_{t}, \mathcal{F}_{t})$ , then $B/B\cdot t(R)$ is a projective $R/t(R)$-module. On the other
hand, [4, Theorem 8] has shown that the converse of the above result holds if
$(g_{t}, \mathcal{F}_{t})$ is a pseudo-hereditary torsion theory.

Under the assumption that $t$ is a radical, we shall first study equivalent
conditions for which the converse of the above result holds. In fact, we
shall prove that the converse holds iff $(S_{t}, \mathcal{F}_{t})$ is a pseudo-hereditary pre-torsion
theory. This result means that the equivalent conditions of [1, Proposition 7]

are nothing but a paraphrase of our result in the special case that $(f, \mathcal{F})$ is a
hereditary torsion theory.

LEMMA 11. Let $(\mathcal{F}, \mathcal{F})$ be a pre-torsion theory with the radical $t$ . Then it
holds that

(1) If $A_{R}$ is weakly codivisible with respect to (EZ‘, $\mathcal{F}$) and $B_{R}\subset t(A_{R})$ , then
$A/B_{R}$ is weakly codivisible.

(2) For any $M_{R}\in Mod- R$ , there is an exact sequence $0\rightarrow K_{R}\rightarrow A_{R}\rightarrow M_{R}\rightarrow 0$

such that $A_{R}$ is weakly codivisible and $K_{R}\in \mathcal{F}$ .
(3) For any $M_{R}\in Mod- R$ , there is an exact sequence $O\rightarrow K_{R}\rightarrow A_{R}\rightarrow M_{R}\rightarrow O$

such that $A_{R}$ is weakly codivisible and $t(A_{R})\cap K_{R}=O$ .

PROOF. Proof of (1). Let $s:K_{R}\rightarrow L_{R}\rightarrow 0$ be an epimorphism such that
$K_{R}\in \mathcal{F}$ . Assume $f:A/B_{R}\rightarrow L_{R}$ is an R-homomorphism. Since $A_{R}$ is weakly

codivisible, there is $\overline{f}:A_{R}\rightarrow K_{R}$ such that $s\overline{f}=fp$ where $p$ is the canonical map
$A_{R}\rightarrow A/B_{R}$ . $f(B_{R})cf(t(A_{R}))=O$ since $t(A_{R})=A_{R}\cdot t(R_{R})$ by Proposition 3, so
$\overline{f}(B_{R})=O$ , thus there is an R-homomorphism $g:A/B_{R}\rightarrow K_{R}$ such that $\overline{f}=gp$ .
$fp=s\overline{f}=sgp$ and $p$ is an epimorphism. This shows $f=sg$, as was to be shown.

Proof of (2) and (3). We consider an exact sequence $O\rightarrow Ker(f)_{R}\rightarrow P_{R}$

$\rightarrow M_{R}\rightarrow Of$

such that $P_{R}$ is projective. The exact sequence $0\rightarrow Ker(f)/t(Ker(f))_{R}$

$\rightarrow P/t(Ker(f))_{R}\rightarrow M_{R}\rightarrow O$ satisfies (2) by (1). The exact sequence

$O-Ker(f)/(Ker(f)\cap f(P_{R}))_{R}-P/(Ker(f)\cap t(P_{R}))_{R}-M_{R}-O$

satisfies (3) by (1).
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REMARK: (3) in Lemma 11 is a generalization of [1, Lemma 1].

THEOREM 12. Let $(f, \mathcal{F})$ be a pre-to rsion theory with the radical $t$ and $\eta a$

subclass of Mod-R such that $t=t_{\eta}$ . The following statements are equivalent.
(1) If $M/M\cdot t(R)$ is a projective $R/t(R)$-module, then $M_{R}$ is a codivisible

module with respect to (Er, $\mathcal{F}$).

(2) Every weakly codivisible module is codivisible.
(2) Every strongly $\eta$-projective module is codivisible.
(3) For every weakly codivisible module $A_{R}$ , $A_{R}\cdot t(R)_{R}\cap K_{R}=O$ for any

torsion-free submodule $K_{R}$ of $A_{R}$ .
(3) For every codivisible module $A_{R}$,

(a) $(A_{R}\cdot t(R))_{R}\cap K_{R}=O$ for any torsion-free submodule $K_{R}$ of $A_{R}$ .
(b) $A_{R}/t(B_{R})$ is codivisible for any $B_{R}\subset A_{R}$ .

(4) For every weakly codivisible module $A_{R},$ $t(A_{R})_{R}$ has no non-zero torsion-
free submodule.

(4) For every codivisible module $A_{R}$ ,
$(a)$ $t(A_{R})_{R}$ has no non-zero torsion-f$ree$ submodule.
(b) $A_{R}/t(B_{R})$ is codivisible for any $B_{R}\subset A_{R}$ .

(5) For every weakly codivisible module $A_{R},$ $t(B_{R})_{R}=t(A_{R})_{R}\cap B_{R}$ for every
submodule $B_{R}\subset A_{R}$ .

(5) For every codivisible module $A_{R},$ $t(B_{R})_{R}=t(A_{R})_{R}\cap B_{R}$ for every submodule
$B_{R}\subset A_{R}$ .

(6) For any $M_{R}\in Mod- R,$ $M_{R}\cdot t(R)_{R}$ has no non-zero torsion-free submodule.
(7) For any cyclic module $C_{R},$ $C_{R}\cdot t(R)_{R}$ has no non-zero torsion-free sub-

module.
$(*)$ In these cases (1)$-(7)$ , for any $M_{R}\in Mod- R$ , there is an exact sequence

$O\rightarrow K_{R}\rightarrow A_{R}\rightarrow M_{R}\rightarrow O$ such that $A_{R}$ is codivisible and $K_{R}\in \mathcal{F}$.
Furthermore the property (b) of (3) or (4) $is$ equivalent that $t(t(B_{R}))=t(B_{R})$

by Proposition 3, (3).

PROOF. The equivalences of (1), (2) and (2) hold by Theorem 4.
(2) implies (3). The exact sequence

$0\rightarrow A\cdot t(R)_{R}\cap K_{R}-A_{R}\rightarrow A_{R}/(A\cdot t(R)_{R}\cap K_{R})_{R}\rightarrow O$

splits since $A/(A\cdot t(R)\cap K)_{R}$ is codivisible by Lemma 11, (1) and the assumption.
Thus $A\cdot t(R)_{R}\cap K_{R}=O$ by Corollary 2.

The equivalence of (3) and (4) holds since $t(A_{R})=A_{R}\cdot t(R)$ by Proposition 3.
(6) implies (4). It is clear.
(4) implies (6). By Lemma 11, there exists an exact sequence $0\rightarrow K_{R}\rightarrow A_{R}$
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$\rightarrow M_{R}\rightarrow O$ such that $A_{R}$ is weakly codivisible and $t(A_{R})_{R}\cap K_{R}=O$ . So we have a
commutative diagram with exact rows;

$O-A_{R}\cdot t(R)_{R}\cap K_{R}-A_{R}\cdot t(R)_{R}-M_{R}\cdot t(R)_{R}\rightarrow 0$

$\cap$ A $\cap$

$O-$ $K_{R}-$ $A_{R}$ $-M_{R}-O$
Since $t(A_{R})=A_{R}\cdot t(R)$ by Proposition 3, $A_{R}\cdot t(R)_{R}\cong M_{R}\cdot t(R)_{R}$ , so $M_{R}\cdot t(R)_{R}$ has no
non-zero torsion-free submodule.

(5) implies (5) $.$ It is clear.
(5) implies (1). Let $A_{R}$ be a codivisible module and a submodule $B_{R}$ of $A_{R}$ .

Then by assumption, it holds

$t(t(B_{R}))=t(A_{R})_{R}\cap t(B_{R})_{R}$

$=t(B_{R})_{R}$

since
$t(A_{R})\supset t(B_{R})$ ,

SO
$t(B_{R})\in X$ .

Using this fact, there is an exact sequence $0\rightarrow K_{R}\rightarrow P_{R}\rightarrow M_{R}\rightarrow 0$ such that
$P_{R}$ is codivisible and $K_{R}\in \mathcal{F}$ by similar way in Lemma 11. $t(P_{R})_{R}\cap K_{R}=t(K_{R})=O$

by assumption, so we have a commutative diagram with exact rows;

$O-K_{R}-P_{R}-$ $M_{R}$ $-O$
$ O-K_{R}-P_{R}/P\cdot t(R)_{R}-M_{R}/M\cdot t(R)_{R}-O\Vert\downarrow\downarrow$

.

Since $M_{R}/M\cdot t(R)$ is a projective $R/t(R)$-module, the lower row sequence splits

as R-modules, hence so does the upper row sequence. Thus $M_{R}$ is codivisible.
(4) implies (5). We remark $A/t(B_{R})$ is weakly codivisible by Lemma 11, (1).

$(t(A_{R})_{R}\cap B_{R})/t(B_{R})\subset t(A_{R})/t(B_{R})=t(A/t(B_{R}))$

and
$(t(A_{R})_{R}\cap B_{R})/t(B_{R})\subset B_{R}/t(B_{R})$ .

By assumption, $(t(A_{R})\cap B_{R})/t(B_{R})=O$ since it is torsion-free. Hence $t(A_{R})_{R}$

$\cap B_{R}=t(B_{R})$ .
The equivalence of (3) and (4) is clear.
(1) and (3) imply (3) is also clear.
(4) implies (5) $.$ It is proved similarly as (4) implies (5).

(6) implies (7). It is clear.
(7) implies (6). We first show that if $M_{R}$ is finitely generated, then $M_{R}$ has

the property (6) by induction on the number of generators of $M_{R}$ . By assumption,

it holds in case $n=1$ . Assume $n\geqq 1,$ $M_{R}=m_{1}R+\cdots+m_{n}R+m_{n+J}R$ and $K_{R}$ is a
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torsion-free submodule of $M_{R}\cdot t(R)$ .
$m_{n+1}t(R)_{R}\cap K_{R}\in \mathcal{F}$

and
$m_{n+1}t(R)_{R}\cap K_{R}\subset(m_{n+1}R)\cdot t(R_{R})$ ,

hence
$m_{n+1}t(R)_{R}\cap K_{R}=O$ .

So
$K_{R}\oplus(m_{n+1}t(R_{R}))\subset M_{R}\cdot t(R)$

and
$K_{R}\cong(K_{R}\oplus(m_{n+1}t(R)))/m_{n+1}t(R_{R})$

$\subset M_{R}\cdot t(R_{R})/m_{n+1}t(R_{R})$

$=(\overline{m}_{1}\cdot R+\cdots+\overline{m}_{n}\cdot R)\cdot t(R_{R})$

where
$\overline{m}_{i}=m_{i}+m_{n+1}t(R)$ , $i=1,$ $\cdots,$ $n$ .

By induction hypothesis, $K_{R}=O$ . Let $M_{R}\in Mod- R$ and $K_{R}$ a torsion-free sub-

module of $M_{R}\cdot t(R)$ . For any $k\in K_{R}$ , it has an expansion $k=m_{1}t_{1}+\cdots+m_{n}t_{n}$

for some $m_{i}\in M_{R}$ and $t_{i}\in t(R),$ $i=1,$ $\cdots$ , $n$ . So $kR\subset(m_{1}R+\cdots+m_{n}R)\cdot t(R)$ and
$kR\in \mathcal{F}$ , thus $kR_{R}=O$ . Hence $K_{R}=O$ . This completes the proof of the theorem

REMARK: In the proof of this theorem, the simplification of the proof that

(2) implies (3), (4) implies (5) are suggested by the refree.

We recall the definition of a pseudo-hereditary pre-torsion theory that any

submodule of $t(R_{R})_{R}$ is torsion. We have the following theorem ( $c$ . $f$ . Theorem
12).

THEOREM 13. Let $(9^{\cdot}, \mathcal{F}$) be a pre-torsion theory with the radical $t$ . Then

the following assertions are equivalent.
(1) $(f, \mathcal{F})$ is the pseudo-hereditary pre-torsion theory.

(2) For every $M_{R}\in Mod- R$ , any submodule of $M_{R}\cdot t(R_{R})$ is torsion.
(3) For every weakly codivisible module $A_{R}$ , any submodule of $t(A_{R})_{R}$ is

torsion.
(3) For every codivisible module $A_{R}$, any submodule of $t(A_{R})_{R}$ is torsion.
(4) For a module $M_{R}$ such that $t(M_{R})=M_{R}\cdot t(R_{R})$ , any submodule of $t(M_{R})_{R}$

is torsion.
(5) For a module $M_{R}$ such that $t(M_{R})=M_{R}\cdot t(R),$ $t(N_{R})=t(M_{R})\cap N_{R}$ for every

$N_{R}\subset M_{R}$ .

PROOF. (4) implies (3), (3) implies (3)
$,$

(2) implies (1) are clear.

(3) implies (2). By a similar way in Lemma 11, (3) using the assumption,

there is an exact sequence
$0\rightarrow K_{R}\rightarrow A_{R}\rightarrow M_{R}\rightarrow Of$ such that $A_{R}$ is codivisible and
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$K_{R}\cap t(A_{R})=O$ . Thus $t(A_{R})=A_{R}\cdot t(R)\cong M_{R}\cdot t(R)$ . Hence (2) holds.
(5) implies (4). Let $N_{R}\subset t(M_{R})=M_{R}\cdot t(R)$ . By assumption, $t(N_{R})=t(M_{R})_{R}$

$\cap N_{R}=N_{R}$ .
(l)implies (5). $t(N_{R})\subset t(M_{R})_{R}\cap N_{R}$ is clear. Assume $x\in t(M_{R})_{R}\cap N_{R}$ and

decompose

$x=\sum_{i=1}^{k_{x}}m_{i}^{(x)}t_{i}^{(x)}$

for $m_{1}^{(x)}\in M_{R}$ and $t_{i}^{(x)}\in t(R)$ since $x\in M_{R}\cdot t(R)$ . We put

$P_{x}=(t_{1}^{(x)}, \cdots, t_{k_{x}}^{(x)})R$

$\subset\Sigma_{i=1}^{k_{x}}\oplus t(R)$

$f:\sum_{x}\oplus P_{x}-t(M_{R})_{R}\cap N_{R}$

via
$f(\sum_{x}(t_{1}^{(x)}, \cdots, t_{k_{x}}^{(x)})r_{x})$

$=\Sigma_{x}(\Sigma_{i\Rightarrow 1}^{k_{x}}m_{i}^{(x)}t_{i}^{(x)}r_{x})$

$=\Sigma_{x}xr_{x}$

for $r_{x}\in R_{R}$ . Clearly $f$ is an epimorphism, so it is sufficient to show any submodule
of $\sum_{i=1}^{n}\oplus t(R)$ is torsion since $P_{x}\subset\sum_{i=1}^{k_{x}}\oplus t(R)$ and 9’ is closed under factors and
direct sums. As we proved in Corollary 2, $\mathcal{F}$ is closed under extensions. So a
similar proof in [7, Lemma 3] gives this fact by induction.

The next is a generalization of a result [4, Theorem 8].

THEOREM 14. The properties in Theorem 12 and Theorem 13 are equivalent.

PROOF. (3) in Theorem 13 implies (4) in Theorem 12 is clear, so we shall
prove that (7) in Theorem 12 implies (1) in Theorem 13. Let $L_{R}\subset t(R)_{R}$ .
$L/t(L_{R})\in \mathcal{F}$ and $L/t(L_{R})\subset(R/t(L_{R}))\cdot t(R)$ . By assumption (7), $L/t(L_{R})=O$ , thus
$L_{R}=t(L_{R})$ .

Next corollary is a generalization of [4, Corollary 15].

COROLLARY 15. Let $(g, \mathcal{F})$ be a pre-torsion theory with the radical $t$ . Then
the following assertions are equivalent.

(1) Every R-module is codivisible with respect to (Er, S).

(2) (a) $R/t(R)$ is a semi-simple Artinian ring, and
(b) $(f, f)$ is pseudo-hereditary.

PROOF. (1) implies (2). (1) satisfies the property Theorem 12, (1). Hence
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$(\mathcal{F}, \mathcal{F})$ is pseudo-hereditary by Theorem 14. (a) is clear from Corollary 5.
(2) implies (1). It is clear from Corollary 5, Theorem 12, Theorem 13

and Theorem 14.

Next we give an example, which shows (a) and (b) in Corollary 15 are
independent.

EXAMPLE: We put $Z$ a ring of integers, $\eta=\{z/pz\}$ and $t=t_{\eta}$ where $p$ is
a prime number. Then

(1) $(\mathcal{F}_{t}, \mathcal{F}_{t})$ is not pseudo-heredita $ry$ .
(2) $Z/t(Z)$ is a semi-simple Artinian ring.
(3) Every Z-module is a weakly codivisible module.
(4) $Z/pZ$ has not codivisible cover.

Since $t(Z)=pZ,$ $t(pZ)=p^{2}Z\neq t(Z)$ and $Z/t(Z)$ is a field. Hence (1), (2) and (3)
hold by Theorem 7 and Corollary 5. $IfZ/pZ$ has a codivisibl cover, then it must
be of the form $O\rightarrow pZ/p^{2}Z\rightarrow Z/p^{2}Z\rightarrow Z/pZ\rightarrow O$ . But $Z/p^{2}Z$ is not codivisible by
Proposition 3 since $t(p^{2}Z)=p^{3}Z\neq p^{2}Z$ .

By Corollary 9, if every R-module has a codivisible cover, then $R/t(R)$ is a
right perfect ring. So on the analogy of Corollary 15, we propose the next
conjecture.

C0NJECTURE. $(*)$ If every right R-module has a codivisible cover with respect
to a pre-torsion theory $(9^{\cdot}, \mathcal{F}$), then (EZ‘, $\mathcal{F}$) is pseudo-hereditary.

6. The modules $M_{R}\cdot t(R_{R})=M_{R}$ .
M. L. Teply in [7] has proved that for a pseudo-hereditary torsion theory

$(\mathcal{F}, \mathcal{F}),$ $M_{R}$ is codivisible if $M_{R}\cdot t(R_{R})=M_{R}$ . In this section, we shall characterize
those modules $M_{R}$ such that $M_{R}\cdot t(R_{R})=M_{R}$ by the notion of the colocalization of
a module.

LEMMA 16. Let $(X, \mathcal{F})$ be a pre-torsion theory with the radical $t$ . The
following assertions are equivalent for a given R-module $M_{R}$ .

(1) $Hom_{R}(t(M_{R})_{R}, L_{R}/T_{R})=O$ for any $T_{R}\subset L_{R}\in \mathcal{F}$ .
(2) $t(M_{R})\in g$

. and $t(M_{R})$ is weakly codivisible.
(3) $t(M_{R})\cdot t(R_{R})=t(M_{R})$ .

PROOF. (1) implies (2). By Proposition 1, $t=t_{\mathcal{F}}$ . Hence $t(M_{R})\in 9^{\cdot}$ since
$Hom_{R}(t(M_{R})_{R}, L_{R})=O$ for any $L_{R}\in \mathcal{F}$ . The weakly codivisibility of $t(M_{R})$ is clear.
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(2) implies (3). By Proposition 3, $t(t(M_{R}))=t(M_{R})\cdot t(R_{R})$ . But $t(M_{R})\in \mathcal{F}$,
$t(t(M_{R}))=t(M_{R})$ . So $t(M_{R})=t(M_{R})\cdot t(R_{R})$ .

(3) implies (1). $Assumef\in Hom_{R}(t(M_{R})_{R}, L_{R}/T_{R})$ . $t(M_{R})=t(M_{R})\cdot t(R_{R})$ implies
$f(t(M_{R}))=f(t(M_{R}))\cdot t(R_{R})$ . But $f(t(M_{R}))\subset L_{R}/T_{R}$ and $(L_{R}/T_{R})\cdot t(R_{R})=(L_{R}\cdot t(R_{R})$

$+T_{R})/T_{R}=O$ . Thus $f=O$ .

THEOREM 17. Let $(9^{\cdot}, \mathcal{F}$) be a pre-torsion theory with the radical $t$ such that

if $A_{R}$ is codivisible, then $A/t(B_{R})_{R}$ is codivisible for any $B_{R}\subset A_{R}$ . Then the
following statements are equivalent.

(1) $M_{R}$ has the colocalization.
(2) $Hom_{R}(t(M_{R})_{R}, L_{R}/T_{R})=O$ for any $T_{R}\subset L_{R}\in \mathcal{F}$ .
(3) $t(M_{R})\in g$ and $t(M_{R})$ is weakly codivisible.
(4) $t(M_{R})\cdot t(R_{R})=t(M_{R})$ .

PROOF. The equivalences of (2), (3) and (4) are proved by Lemma 16.
(1) implies (4). Let $f:C(M_{R})\rightarrow M_{R}$ be a colocalization of $M_{R}$ . $C(M_{R})\in \mathcal{F}$ and

is codivisible, hence $C(M_{R})=t(C(M_{R}))=C(M_{R})\cdot t(R_{R})$ by Proposition 3, hence
$f(C(M_{R}))=f(C(M_{R}))\cdot t(R_{R})\subset M_{R}\cdot t(R_{R})\subset t(M_{R})$ . On the other hand, $M_{R}/f(C(M_{R}))\in \mathcal{F}$,

hence $O=t(M_{R}/f(C(M_{R})))=t(M_{R})/f(C(M_{R}))$ . Thus $t(M_{R})\subset f(C(M_{R}))$ , so $t(M_{R})$

$=f(C(M_{R}))$ and $t(M_{R})=t(M_{R})\cdot t(R_{R})$ .
(2)implies (1). We consider an exact sequence $0\rightarrow K_{R}\rightarrow P_{R}\rightarrow t(M_{R})_{R}\rightarrow 0$

such that $P_{R}$ is projective. Since $t(P_{R}/t(K_{R}))=t(P_{R})/t(K_{R})$ , we have a commut-

ative diagram with exact rows and columns;

$0\rightarrow(K_{R}\cap t(P_{R}^{O}))/t(K_{R})_{R}-\downarrow t(P_{R})/^{O_{t(K_{R})_{R}{\rm Im}(}O}\downarrow\underline{\overline{f}}\downarrow_{fi)_{R}-0}$

$O-K_{R}/t(K_{R})_{R}\downarrow-$ $P_{R}/t(K_{R})_{R}\downarrow i\underline{f}t(M_{R})_{R}-O\downarrow j$

$O-(K_{R}+t(P_{R}))/t(P_{R})_{R}\downarrow-$ $ P_{R}/t(P_{R})_{R}\downarrow$ $-Cok(j)_{R}-0\downarrow k$

$ O\downarrow$ $0\downarrow$ $0|$

By assumption, $k=O$ . Hence ${\rm Im}(fi)=t(M_{R})$ . So $(K_{R}+t(P_{R}))/t(P_{R})=P_{R}/t(P_{R})$ .
Here $P_{R}/t(P_{R})$ is weakly codivisible by Lemma 11, so the left column sequence
splits, hence so does the middle column sequence. Thus $t(P_{R})/t(K_{R})$ is a direct
summand of $P_{R}/t(K_{R})$ . But $P_{R}/t(K_{R})$ is codivisible by assumption, hence $t(P_{R})/t(K_{R})$

is codivisible. Furthermore
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$t(P_{R}/t(K_{R}))\cong t((t(P_{R})/t(K_{R}))\oplus(P_{R}/t(P_{R})))$

$=t(t(P_{R})/t(K_{R}))\oplus t(P_{R}/t(P_{R}))$

$=t(t(P_{R}/t(K_{R})))$ .
Clearly this isomorphism is an injection $t(i)$ , hence $t(P_{R}/t(K_{R}))=t(t(P_{R}/t(K_{R})))$ .
Thus it is torsion. This shows $\overline{f}:t(P_{R})/t(K_{R})_{R}\rightarrow M_{R}$ is a colocalization of $M_{R}$ .

The next corollary is a generalization of [7, Proposition 1] and [7, Corollary

1].

COROLLARY 18. Under same assumption as in Theorem 17, the following

assertions are equivalent.
(1) $R/t(R)$ is a semi-perfect ring.

(2) Every simple R-module has a codivisible cover.
(3) Every simple $R/t(R)$-module has a codivisible cover as an R-module.

PROOF. (1) implies (2). Assume $S_{R}$ to be a simple R-module. If $S_{R}\cdot t(R_{R})=S_{R}$,

then $S_{R}=t(S_{R})=S_{R}\cdot t(R_{R})$ . Hence $S_{R}$ has a colocalization by Theorem 17. This

is a codivisible cover of $S_{R}$ . If $S_{R}\cdot t(R_{R})=O$ , then $S$ is a simple $R/t(R)$-module.

By assumption (1), $S$ has a projective cover as an $R/t(R)$-module, say $O\rightarrow K\rightarrow P$

$\rightarrow S\rightarrow O$ . Since $P$ is a direct summand of a direct sum of $R/t(R)$ as an $R/t(R)-$

-module, so is as an R-module. Thus $P_{R}$ is a codivisible R-module since a direct

sum of $R/t(R)$ is codivisible by assumption. So the above exact sequence is a

codivisible cover of $S_{R}$ as an R-module.
(2) implies (3). It is clear.

(3) implies (1). Let $S$ be a simple $R/t(R)$-module and
$0\rightarrow K_{R}\rightarrow P_{R}\rightarrow S_{R}\rightarrow Of$

a codivisible cover of $S_{R}$ as an R-module. Since $t(P_{R})=P_{R}\cdot t(R)$ by Proposition

3, $f(t(P_{R}))=f(P_{R})\cdot t(R)=S_{R}\cdot t(R)=O$ , hence $O\rightarrow(K_{R}+t(P_{R}))/t(P_{R})\rightarrow P_{R}/t(P_{R})\rightarrow S$

$\rightarrow O$ is an exact sequence as an $R/t(R)$-module. By Theorem 4, $P/t(P_{R})$ is a
projective $R/t(R)$-module, hence the above sequence is a projective cover of $S$ as
an $R/t(R)$-module. Thus $R/t(R)$ is a semi-perfect ring.

COROLLARY 19. (K. Ohtake)

Let (EZ‘, $\mathcal{F}$) be a pre-torsion theory with the radical $t$ . Then the following

statements are equivalent.
(1) Every R-module has a colocalization.
(2) $\mathcal{F}$ is closed under factors and extensions.

PROOF. (2)implies (1). In this case, $t$ must be an idempotent radical, so it is
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clear from Theorem 17.
(1) implies (2). By Theorem 17, $t(M_{R})\in \mathcal{F}$ for any $M_{R}\in Mod- R$ because in

the proof that (1) implies (4) the codivisibility of $A_{R}$ is not necessary. Hence $t$ is
an idempotent radical, so $\mathcal{F}$ is closed under extensions. Thus the assumption of
Theorem 17 is satisfied. Hence (2) holds by Theorem 17 since $Hom_{R}(t(L_{R}/T_{R})_{R}$,
$L_{R}/T_{R})=O$ for any $T_{R}\subset L_{R}\in \mathcal{F}$ .
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