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1. Introduction.

In [1J, P.E. Bland has studied the strongly M-projective module and the
strongly M-projective cover. As their general notions, we define the strongly
n-projective module and the strongly »-projective cover for any class yCMod-R,
(for the definitions, refer to section 2) and by considering the pre-torsion theory
associated with the radical t,, (¢,(Kr)=n{Ker(f)|f€Homgr(Kg, Mg), Mr< y} for
any right R-module Kjz), we shall show that the above notions can be translated
into the new notions weakly codivisible module and weakly codivisible cover
with respect to (I, &) associated with the radical ¢, and that new or generalized
results are obtained. Through all the sections, we shall generalize the results of
P.E. Bland [1], M. L. Teply and K. M. Rangaswarmy [4].

In [1, Proposition 5] and [1, Proposition 6], it is proved that if Cog (Mg) is
closed under factors, then

(1) Bg has a strongly M-projective cover iff B/B-Ann(Mg) has a projective
cover as an R/Ann (Mg)-module.

(2) Every R-module has a strongly M-projective cover iff R/Ann(Mg) is a
right perfect ring.

But we shall show in Corollaries 8, 9 that these statements are valid without
the above assumption on Cog (Mpg).

By [1, Proposition 7], if Mgz is an injective module, then any strongly M-
projective module is codivisible with respect to the hereditary torsion theory
cogenerated by My So we shall characterize under what conditions about the
pre-torsion theory (4, I.) associated with the radical ¢ a strongly z-projective
module is codivisible.

We have equivalent conditions in Theorem 12 that
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(1) If B/B-t(R) is a projective R/H R)-module, then By is a codivisible module.

(2) Any weakly codivisible module (vesp. strongly p-projective module) is a
codivisible module.

3) A-H{R)NKr=0 for any weakly-codivisible module Ag and its submodule
Kg such that KreF,. (i.e. t(Agr) has no non-zero torsion-free submodule.)

(4) t(Br)=Bgrnt(Agr) for any codivisible module Ar and its submodule Bpg.

(5) M-t(R) has no non-zero torsion-free submodule for any (cyclic) module
M.

These conditions are deep related to a pseudo-hereditary pre-torsion theory.
In fact, conditions in Theorem 12 hold iff (2, ;) is a pseudo-hereditary pre-
torsion theory (Theorem 14). Furthermore this implies it holds the converse of

[4, Theorem 8] which asserts if (I, &) is a pseudo-hereditary torsion theory,
then B/B-{(R) is a projective R/t(R)-module iff By is a codivisible module.
Hence our result Theorem 12 proves that [1, Proposition 7] and [4, Theorem 8]
are essentially the same contents.

As an immediate consequence, we have the following generalization of [4,
Corollary 15] that any R-module is codivisible iff R/t(R) is a semi-simple Artinian
ring and (I, &.) is pseudo-hereditary. We shall also generalize the result [4,
Theorem 8] on the pseudo-hereditaryness in a torsion theory to those in a pre-
torsion theory associated with a radical (Theorem 13).

In the final section, we study a module My such that Mg-t(R)=Mpz. 1t is
proved in [7, Lemma 3] and [4, Corollary 9] that if (I, &) is a pseudo-hereditary
torsion theory, My t(R)= My implies that M is codivisible. We shall, however, show
that Mz-t(R)=MJjz for a torsion theory (I, &) iff Mp is torsion and has a colocali-
zation with respect to (I, &). In fact, this result is valid under more weaker
situation that (4, &) is a pre-torsion theory such that A/t(Bg) is codivisible for
any codivisible module Arp and BrC Ar (Theorem 17). As an application, we
obtain the equivalent conditions which are a generalization of [7, Corollary 1]
and [7, Proposition 1];

(1) R/t(R) is a semi-perfect ring.

(2) Every simple R-module has a codivisible cover.

(3) Every simple R/t(R)-module has a codivisible cover as an R-module.
(Corollary 18).

We shall, at the same time, another proof of Theorem of K. Ohtake that
every module has the colocalization iff the torsion-free class & is closed under

factors and extensions (Corollary 19).
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2. Definitions.

Let R be a ring with unit and Mod-R the category of unital right R-modules.
For nCMod-R, we denote “Cog (9)"={Mg| MrCIIL; for some L;en}, i.e. the
class cogenerated by %, and “Ann (9)"=nN{Ann (Mg)| Mr< 7t. MrEMod-R is
called “strongly %-projective” if Homgz(Mgz, —) preserves the exactness of every
short exact sequence 0— Kzp— Lg-— Hz—0 such that Lg=TIL; for some L;€7. A
“strongly 7-projective cover” of Np means a strongly 7-projective module Pg
with an epimorphism Pr— Nr—0 whose kernel is small and 7-independent in Pr.
Here a submodule KzC Ly is called “y-independent” in L if, for any non-zero
K% Ky, the canonical map

Homg(Lg, Mg) —> Homgz(K%, Mpg)

is non-zero for some Mz=Cog (). In the case that 5 consists of a single element
My, the above definitions coincide with the original definitions of strongly M-

projective module and strongly M-projective covers in [1].
For a subfunctor ¢ of the identity functor on Mod-R which is called a “pre-

radical”’, we denote
g,= {Mz=Mod-R | t(Mg)=Mpg} and
F,={MgeMod-R| t(Mg)=0}

whose elements are said to be “torsion” and “torsioen-free” respectively. A pre-
radical ¢ is called a “radical” if #(M/t(Mg)r)=0O for any Mz=Mod-R and is
“jdempotent” if t(t(Mg)=1t(Mg) for any MreMod-R. We call the pair (Z;, F4)
a “pre-torsion theory” (resp. “torsion theory”) if ¢ is a radical (resp. idempotent
radical). For a detail, refer to [6]. For pCMod-R, we define a pre-radical “t,”
by

t,(Kp)=n {Ker (N feHomg(Kg, Mg), Mp< 7}

for any Kzr=Mod-R. Clearly it is a radical. In H. Katayama has remarked
that any radical ¢ is represented as t=t, for some 7CMod-R.

A module Mg is “codivisible” (resp. “weakly-codivigible”) if Homg(Mp, —)
preserves the exactness of every short exact sequence O— Kp— Lr—Hr—O such
that Kz F, (resp. Lre ;). Clearly a codivisible module is a weakly codivisible
module. A “codivisible cover” of My means a codivisible Pz with an epimor-
phism Pr— Mz—O whose kernel is small in Pr and torsion-free. An epimorphism
fi: Pr—Mrp—O is called a “weakly codivisible eover’ of My if Py is weakly
codivisible, Ker (f) is small in Py and t(Pp)n\Ker (f)=0. In the case that ¢ isa
radical, if a module My has a codivisible cover, then it has a weakly codivisible
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cover (for the proof, see Lemma 11). A “colocalization” of My is an R-homo-
morphism f: Pr— My such that Pj is torsion codivisible and Ker (f) & Cok (f)
€%,. For a detail, see and [5]. A codivisible cover, a weakly codivisible
cover and a colocalization of Mj are unique up to the isomorphism if they exist
(for the proof, see Lemma 6).

A pre-torsion theory (T, &) is called “pseudo-hereditary” (resp. “hereditary”)
if any submodule of #(Rp) (resp. Mr= ) is torsion.

3. Basic Property for Radicals.

PROPOSITION 1. Let t be a pre-radical. t is a radical uf t=t, for some
»CMod-R.

In this case, F,=Cog () and t=tgq,.

PROOF. “If part” is clear. So we assume ¢ is a radical and we put =g,
Let MreMod-R, Kre F, and FeHomg(Mg, Kp). f induces t(f): t(Mg)— t(Kg)
and {(Kgr)=0 since KpeF,, so f(t(Mg)=0, hence HMp)Ct,(Mg). We consider
the canonical map i: Mzr— Mgz/t(Mg)z then (t,(Mg))=0 since M/t(Mg)EF,.
So t,(Mp)Ct(Mg). Thus t=t,. Next we prove F,=Cog (). Let MgeeCog (7).
Then there are L; », €1 such that MpGII:c L, hence t,(Mgp)=0, thus MpeF,.
Assume MreF,. For every O+#xe My there is L.e% and f,: Mr—L, such
that f,(x)#0, which means fo:MR—JL,*zeMRLx is a monomorphism, thus
MreCog (9).

COROLLARY 2. Let (T, &) be the pre-torsion theory associated with a radical
t and n a subclass of Mod-R such that t=t,. Then the following properties hold.

(1) t(Rgp)=Ann(y)=Ann (&).

(2) Mg -t(RR)Ct(Mg) for any MzreMod-R.

(3) g is closed under factors, direct sums and extensions.

(4) For any MgreModR and KrC My such that Kre F, if t(Mp)N Kz is a
direct summand of Mg, then t(Mg)N\Kgr=0.

PROOF. Proof of (1). By Proposition 1, t(Rgp)=14(Rz). So
ty(R)=nN{Ker (f)|f€Homg(Rzr, Mg), Mr< 7}
=N {Ann (m)|me Mz, Mg< 7}
=N {Ann (Mg)| Mrs 7} .

Proof of (2). For any x& Mp, we define f: Rp— My by f(r)=x-r for every
rE€R. Since x-t(Rp)=f(t(Rg)) and f(t(Rp)CTt(Mg), M- t(Rg)C t(Mz).
Proof of (3). Since t=tgq, t(Mp)=Mp iff Homap(Mg, Kg)=0 for any Kp=%.
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Hompg(—, Kj) is a right exact functor, so (3) holds.
Proof of (4). We put Mr=(t(M)NKp)®M% for some MiC Mg t(Mp)
=t (MpNKp@t(ME=t(MHCTM%. Hence t(Mp)NKr=t(Mp)N\Kg\M3%=0.

REMARK: The proof of (2) is valid under the assumption that ¢ is a pre-
radical. The above proofs of (2) and (4) are suggested by the refree.

4. Weakly Codivisible Modules and Strongly »-Projective Modules.

In this section, we study basic properties of weakly codivisible modules and
strongly »-projective modules.

PROPOSITION 3. Let (I, F) be the pre-torsion theory associated with a radical
t. Then it holds that

(1) If Ag is weakly codivisible with respect to (T, F), then A/A-H(R) is a
projective R/t(R)-module.
(2) If Ag is weakly codivisible, then t(Ag)=Ag: t(R).

(3) Let O—Ar— Br—Cr—0 be an exact sequence. If Cgis codivisible, then
t(Ap)=t(Br)NAkg.

PROOF. Proof of (1). We put f an epimorphism SP(R/t(R)r— A/A-t(R)r
— O and j the canonical map Az— A/A-t(R)r— 0. We consider the next dia-
gram with exact rows;

J
O —> A-t(Rp)r —> Ag —> A/A-t(R)p —> O

f
O — Ker (f)r — ZDBR/H(R)) —> A/A-t(R)p —> O..

By assumption, there is g: Az—3@P(R/t(R))r such that j=fg. By Corallary 2,
g(A-t(R))=0. So thereis g: A/A-t(R)g— 3PB(R/t(R))r such that g=4gj. Since
J=fg=fgj and j is an epimorphism, 1=z, which means A/A-#(R)y is a direct
summand of J@(R/#(R))g, hence A/A-t(R) is a projective R/t(R)-module.

Proof of (2). A-#(R)Ct(Ag) by Corollary 2, so #(A/A-t(R)=1t(Ar)/A-t(R),
but t(A/A-t(R))=0 by (1), hence t(Az)=Ag- t(Rg).

Proof of (3). Since t(Az)Ct(Bpr), t(B/t(Ar)=1(Bg)/t(Az). On the other
hand, the exact sequence O—A/t(Ag)g— B/t(Ap)r—Cr— O splits since Cgp is
codivisible and Ap/t(Ap)E<F, so we put B/t(Ar)=A/t(A)DC for CrCB/t(Apg.
Since a radical commutes with the direct sums, we have

t(Br)/t(Ap)=1(Bgr/t(Ag))
=1(Ar/1(AR)Dt(Cpr)



208 Masahisa SATO

:t(ER)CC-R .
Thus (ArNt(Bgr)/t(AR)=(Ar/t(AR)IN((Br)/t(Ar)=0, i.e.
ArNt(Br)=1t(Ag).

REMARK : (1) in the above proposition is a generalization of [4, Corollary 7].

THEOREM 4. Let t be a radical, (T, F) the corresponding pre-torsion theory
and n a subclass of Mod-R such that t=t,. Then the following statements are
equivalent for Mp=Mod-R.

(1) M/M-t(R) is a projective R/t(R)-module.

(2) M/M-Ann () is a projective R/Ann (n)-module.

(3) Mg is weakly codivisible with respect to (I, <F).

(4) Mpy is a strongly n-projective module.

ProOOF. Clearly (1) and (2) are equivalent by Corollary 2. (3) implies (1) is
proved by Proposition 3. )

(1) implies (3). Let O—»AR—>BR—1»CR—>O be an exact sequence such that
BreF and f: Mzr—Cpgr Bgr-t(R)=0 by Corollary 2, so Cg-t(R)=0, hence
f(Mg- t(R)=f(Mg)-t(R)=0. It induces f:M/M-t(R)p—Cr such that f=fj
where j: Mr—M/M-t(R)r is the canonical map. Clearly f and ¢ are R/t(R)-
homomorphisms, so there is an R-homomorphism & : M/M-t(R)r— Br such that
f=ih since M/M-t(R) is a projective R/t(R)-module. Thus f=i(hj), so (3) holds.

(3) implies (4). It holds since »CF,=Cog (n) by Proposition 1.

(4) implies (3). Let 0—>AR—>BR—1CR—>O be an exact sequence such that
Bre g and f: Mzr—Cr any R-homomorphism. By Proposition 1, F=Cog (),
hence there are L;=7 (i) for some index set I such that BrCTIlic;L;. We
consider the following commutative diagram with exact rows;

Mp
b
O'—>AR'——> BR"—> CR —> 0

|7 %

0 Ag TIL; TIL;/Ar —> O.

By assumption, there is an R-homomorphism g: Mr—TIL; such that kf=jg.
Since By is a fibre product (i.e. pull back) of (k, j), there is an R-homomorphism
F: Mg— Bpg such that f=if. Thus Mz is weakly codivisible.
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COROLLARY 5. For a pre-torsion theory (I, &F), the following statements are
equivalent.

(1) Every R-module is a weakly codivisible module.

(2) R/t(R) is a semi-simple Artinian ring.

PROOF. This is a direct consequence of Theorem 4.

Theorem 7 generalizes [1, Proposition 5] and shows that it is proved without
the assumption in that Cog ({M}) is closed under factors. Before proving the
theorem, we prove the following lemma.

LEMMA 6. Let 7 be a subclass of Mod-R and Mr=Mod-R. Then it holds that
(1) A submodule Lr of Mg is p-independent in Mg iff t,(Mp)N\Lg=0.
(2) An epimorphism Pr— Mg is a strongly n-projective cover of Mg iff it 1s
a weakly codivisible cover.
(3) A strongly n-projective cover of Mg is unique up to the isomorphism if
it exists.

PrROOF. (1) and (2) are clear by definitions and Theorem 4.
k

s I g
Proof of (3). Let O—=Kz— Ar—Mr— 0O and O — Lg— Br— Mzr— O be strong-

ly p-projective covers of Mp. Since Ly is n-independent in Bg, there exists an
R-homomorphism & : Bg—Il:s;M; for some M;=# and an index set I such that
k-l is a monomorphism. So we have a commutative diagram with exact rows;
k f
0O— KR AR MR
[ g “
0O — LR BR MR
L h bn |7
O — hl(Lg) —> IIM; —> (IIM;)/hi(Lg) —> O

—> 0

—s 0

where j is the canonical map and h* and 7 are induced maps of h. Since Ag
is strongly 7-projective, there exists an R-homomorphism p: Ag— IIM; sunh that
jp=Rhf. By the fact that A* is an isomorphism, By is a fibre product of (j, A).
So there is an R-homomorphism s: Azr— B such that f=gs. Since g is a minimal
epimorphism, s is an epimorphism. Clearly Ker (s)C Kz, so Ker (s) is small and
n-independent in Az Repeating the same discussion as above, we can show
that s is a splitting epimorphism. Hence s is an isomorphism since Ker(s) is
small in Ap.
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THEOREM 7. Let 7 be a subclass of Mod-R and t=t, a radical. The follow-
ing assertions are equivalent for a given Br=Mod-R.

(1) Bg has a strongly n-projective cover.

(2) Bpg has a weakly codivisible cover.

(3) B/B-Ann(7n) has a projective cover as an R/Ann (n)-module.

(4) B/B-t(R) has a projective cover as an R/t(R)-module.

PROOF. (1) and (2) are equivalent by Lemma 6. Also (3) and (4) are equivalent
by Corollary 2.

(2) implies (4). Let O— Kgz— Ar— Br-— 0O be a weakly codivisible cover of
Br. By Proposition 3, t(Ag)=Ag-t(R), hence A:-t(R)x"\Kr=0. So we have a
commutative diagram with exact rows;

O —> Kz —> Agr — Bpr — 0

O —> Kg—>A/A-t(R)p—> B/B-t(R)g —> O

By Theorem 4, A/A-t(R) is a projective R/t(R)-module. Since an epimorphic
image of a small submodule is small, K is small in A/A-t(R). Hence the lower
sequence of the above diagram is a projective cover of B/B-t(R) as an R/t(R)-
module.

(4) implies (2). Let O—K—Q—B/B-t(R)—0 be a projective cover of
B/B-t(R) as an R/t(R)-module. We consider these modules as K-modules and
put (Ag, g, f) a fibre product of Qr— B/B-t(R)grand Br— B/B-t(R)r. We have
a commutative diagram with exact rows and columns;

(0] (0]
£
Ker (f)r—> B-t(R)p—>0
g
O—> K} —> Ar —_ Br — O

ool
O— Krg—> Qrp —> B/B-t(R)p—>0
0] 0]
We first show Ker (f)=Ag-t(R).
F(A-t(R)=[f(Ap) t(R)
=Qr t(R)
=0,
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) Agp-t(Rp)rCKer (f).

Thus g(A-t(R)=g(A-t(R))
=g(Ap) t(R)
=Bz t(R).

Since g is an isomorphism, A-t(R)=Ker (f). By this fact, Q@ and A/A-t(R) are
isomorphic as R-modules, hence as R/t(R)-modules. Here @ is a projective
R/t(R)-module, so Ar is a weakly codivisible module by Theorem 4. Next we
show K} (=Ker(g)) is small in Az. Assume K#+Lrp=Ar for LgC Ag. Then
K% t(R)+L-t(R)y=A-t(R). But K-t(R)=0, so K*-t(R)=0, thus L-t(R)=A-t(R),
hence Ker (f)=A-t(R)=L-t(R)YCLgz On the other hand, f(K¥)-+f(Lp)=f(Ag)
=Qpr, which means f(Lg)=Qz since K is small in Qr and f(K%¥)=Kzs. Since f
is an epimorphism, Lz+Ker (f)r=Ag, thus Lr=Ar. Last we show t(Axp)"\K¥=0.
t(Ap)=Ag-t(R) by Proposition 3, so O=Ker (f)=KinKer (f)r=KEN(Ar t(R)zr
=K¥Nt(Ag)z. This completes the proof of the theorem. '

By Theorem 7, we get following corollaries.

COROLLARY 8. The following statements are equivalent for Mz=Mod-R and
Br=Mod-R.

(1) Bg has a strongly M-projective cover.

(2) B/B-t(R) has a projective cover as an R/Ann (Mg)-module.

REMARK : This fairly generalizes both [1, Proposition 5] and [4, Theorem
107 as we state before.

COROLLARY 9. Let 5 be a subclass of Mod-R. Then we have next equivalent
conditions.

(1) Every R-module in Mod-R has a strongly x-projective cover.

(2) R/Ann(%) is a right perfect ring.

REMARK : This is also a generalization of [1, Theorem 6] and [4, Theorem
117.

By applying Theorem 7 only to finitely generated modules, we have (c. f. [4,
Theorem 127)

COROLLARY 10. The following statements are equivalent.
(1) Every finitely generated (vesp. cyclic) R-module has a strongly mn-projec-
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live cover.
(2) FEvery finitely generated (resp. cyclic) R-module has a weakly codivisible
cover.

(3) R/Ann (%) is a semi-perfect ring.

5. A Pseudo-Hereditary Pre-Torsion Theory.

From Proposition 3, it is easily seen that when Bjy is codivisible with
respect to (9,, &,), then B/B-t(R) is a projective R/t(R)-module. On the other
hand, [4, Theorem 8] has shown that the converse of the above result holds if
(T:, ) is a pseudo-hereditary torsion theory.

Under the assumption that ¢ is a radical, we shall first study equivalent
conditions for which the converse of the above result holds. In fact, we
shall prove that the converse holds iff (I,, &,) is a pseudo-hereditary pre-torsion
theory. This result means that the equivalent conditions of [1, Proposition 7]
are nothing but a paraphrase of our result in the special case that (I, &) is a
hereditary torsion theory.

LEMMA 11. Let (I, F) be a pre-torsion theory with the radical t. Then it
holds that

(1) If Agr is weakly codivisible with respect to (T, F) and BrCt(Ag), then
A/Bpg is weakly codivisible.

(2) For any Mz=Mod-R, there is an exact sequence O— Kgp— Ap—Mz— 0O
such that Ag is weakly codivisible and Kr= F.

(3) For any Mzg=Mod-R, there is an exact sequence O— Kr— Ap— Mp— O
such that Ag is weakly codivisible and t(Ap)N\Kr=0.

PrROOF. Proof of (1). Let s: Kgp—Lrp— O be an epimorphism such that
KregF. Assume f: A/Brp—Lyp is an R-homomorphism. Since Ay is weakly
codivisible, there is f: Agx— Kz such that sf=fp where p is the canonical map
Ar— A/Br. f(Bp)Cf(t(Ar)=0 since t(Ap)=Ar-t(Rg) by Proposition 3, so
f(Br)=0, thus there is an R-homomorphism g: A/Br— Ky such that f=gp.
fp=sf=sgp and p is an epimorphism. This shows f=sg, as was to be shown.

Proof of (2) and (3). We consider an exact sequence O—Ker(f)z— Pgr

— Mz— O such that Ppgis projective. The exact sequence O—Ker (f)/t(Ker (f))r
— P/t(Ker (f)r— Mz— O satisfies (2) by (1). The exact sequence

O — Ker (f)/(Ker (f)Nt(Pr)r —> P/(Ker (/)Nt(Pp)r —> Mp—> O
satisfies (3) by (1).
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"REMARK: (3) in Lemma 11 is a generalization of [1, Lemma 1].

THEOREM 12. Let (I, F) be a pre-torsion theory with the radical t and 7 a
subclass of Mod-R such that t=t,. The following statements are equivalent.
(1) If M/M-t(R) is_a projective R/t(R)-module, then My is a codivisible
module with respect to (T, F). k
(2) Every weakly codivisible module is codivisible.
(2)* Every strongly m-projective module is codivisible.
(8) For every weakly codivisible module Ag, Agr-t(R)snKrp=O0 for any
torsion-free submodule Kp of Ag.
(3)* For every codivisible module Apg,
@) (Agr t(R)rN\Kr=0 for any torsion-free submodule Kz of Ag.
(b) Agr/t(Bpg) is codivisible for any BrC Ag.
(4) For every weakly codivisible module Ag, t(Ar)r has no non-zero torsion-
free submodule. , '
4)* For every codivisible module Ag,
(a) t(Agr)g has no non-zero torsion-free submodule.
(b) Ag/t(Bpg) is codivisible for any BrC Apg.
(5) For every weakly codivisible module Apg, t(Br)r=t(Agr)r"\Br for every
submodule BrC Ag. ‘
(B)* For every codivisible module Ag, t(Br)r=1t(Ar)rN\Br for every submodule
BrC Ar.
(6) For any Mg=Mod-R, Mg-t(R)r has no non-zero torsion-free submodule.
(7) For any cyclic module Cg, Cr-t(R)r has no non-zero torsion-free sub-
module.
(%) In these cases (1)—(7), for any Mg=Mod-R, there is an exact sequence
O—Kg— Ar—Mzr— O such that Ag is codivisible and Kre <.
Furthermore the property (b) of (3)* or (4)* is equivalent that t(+(Bg))=1(Bg)
by Proposition 3, (3).

PrOOF. The equivalences of (1), (2) and (2)* hold by Theorem 4.
(2) implies (3). The exact sequence

O —> A-t(R)gN\Kr —> Ap —> Ar/(A- t(R)sN\Kp)g —> O
splits since A/(A-t(R)NK)g is codivisible by Lemma 11, (1) and the assumption.
Thus A-t(R)s"\Kz=0 by Corollary 2.
The"equivalence of (3) and (4) holds since t(Ap)=Ag-t(R) by Proposition 3.
(6) implies (4). It is clear.
(4) implies (6). By Lemma 11, there exists an exact sequence O— Kz— Apg
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— Mgz— O such that Az is weakly codivisible and t(Az)rNKr=0. So we have a
commutative diagram with exact rows;

O —> Ag - t(R)sn\Kr —> Ap-t(R)g —> Mz-t(R)g —> O
N N n
o K Agr > Mp > 0
Since t(Ag)=Ag-t(R) by Proposition 3, Ag-t(R)g=Mpg-t(R)z, s0 Mg-t(R)g has no
non-zero torsion-free submodule.
(5) implies (5)*. It is clear.
(5)* implies (1). Let Ar be a codivisible module and a submodule By of Ag.

Then by assumption, it holds

t(t(Br)=1t(Ar)rNt(Br)r

. = t(BR)R
since
t(Ar)Dt(Br),
SO
H(BRET.

Using this fact, there is an exact sequence O — Kzr— Pr— Mr— O such that
Py is codivisible and Kz & by similar way in Lemma 11. t( PR rn\Kr=1t(Kg)=0
by assumption, so we have a commutative diagram with exact rows;

)

0 IHR —> Ppg > Mg

0 —> Kgp —> Pp/P-t(R)g —> Mg/M-t(R)g —> O.

Since Mz/M-t(R) is a projective R/t(R)-module, the lower row sequence splits
as R-modules, hence so does the upper row sequence. Thus My is codivisible.
(4) implies (5). We remark A/t(Bpg) is weakly codivisible by Lemma 11, L.

(t(AR)rN\BR)/t(BR)C t(ARr)/t(Br)=1t(A/t(Bg)
(t(AR)rN\Br)/t(BR)C Br/t(Bg).
By assumption, (t(Ax)N\Bgr)/t(Br)=0 since it is torsion-free. Hence t(Agr)r
NBgr=1t(Bg).

The equivalence of (3)* and (4)* is clear.
(1) and (3) imply (3)* is also clear.

and

(4)* implies (5)*. It is proved similarly as (4) implies (5).

(6) implies (7). It is clear.

(7) implies (6). We first show that if My is finitely generated, then My has
the property (6) by induction on the number of generators of Mz By assumption,
it holds in case n=1. Assume n=1, Mg=m,R+ -+ +m,R+m,,R and Kz is a
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torsion-free submodule of Mz t(R).

mn+1t(R)Rf\KRE =
and
M1t (R)rNEKrC (M1 R)- t(RE),
hence
M1t (R)rNKr=0 .
So
Ke®(Mas1t(RR)C Mg t(R)
and
Kp=(Kg® M1 t(R)))/Mnr1t(RR)
C Mg t(Rg)/Mns1t(Rp)
=(, R+ - +fin R)-t(Rg)
where

mi:mi+mn+1t(R) ’ 7':1: ry, N
By induction hypothesis, Kxz=0. Let Mz=Mod-R and K a torsion-free sub-
module of Mg-t(R). For any k= Kp, it has an expansion k=m,t,+ -+ +Mnly
for some m;= Mz and t;€t(R), i=1, -, n. So kRC(mR+ -+ +m,R)-t(R) and
ERe&, thus ERr=0. Hence Kr=0. This completes the proof of the theorem

REMARK : In the proof of this theorem, the simplification of the proof that
(2) implies (3), (4) implies (5) are suggested by the refree.

We recall the definition of a pseudo-hereditary pre-torsion theory that any
submodule of #(Rgz)z is torsion. We have the following theorem (c.f. Theorem

12).

THEOREM 13. Let (T, F) be a pre-torsion theory with the radical t. Then
the following assertions are equivalent.

(1) (T, F) is the pseudo-hereditary pre-torsion theory.

(2) For every MreMod-R, any submodule of Mg-t(Rp) is torsion.

(3) For every weakly codivisible module Ag, any submodule of t(AR)r 18
torsion.

(3)* For every codivisible module Ag, any submodule of t(Apr is torsion.

(4) For a module My such that t(Mg)=Mpg: t(Rg), any submodule of t(Mgp)r
is torsion.

(5) For a module Mg such that t(Mg)=Mpg-t(R), t(Ng)=t(Mr)N\Ng for every
NrC Mpg.

PrROOF. (4) implies (3), (3) implies (3)*, (2) implies (1) are clear.
(3) implies (2). By a similar way in Lemma 11, (3) using the assumption,

there is an exact sequence O — Kz— Ar— Mz— O such that Ap is codivisible and
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Krnt(Agr)=0. Thus t(Ag)=Ag-t(R)=M4z-t(R). Hence (2) holds.

(5) implies (4). Let NpCt(Mg)=Mpz-t(R). By assumption, #(Ng)=1t(Mzg)r
NNg=Npg.

(1) implies (5). t(Ngp)CTt(Mg)r"\Ng is clear. Assume x&t(Mg)rN\Nr and
decompose

x=2FEmE
for m{®e My and t¥<t(R) since x& Mgz-t(R). We put
Po=(t{", -+, tiy)R
CTiEDHR)
[ 2:BP; —> t(Mp)rN\Nr
(5, o, t)r2)
=3 (ZiEMPtr )

:szrz

via

for v, Rp. Clearly f is an epimorphism, so it is sufficient to show any submodule
of 27..Dt(R) is torsion since P,CXrxPt(R) and I is closed under factors and
direct sums. As we proved in Corollary 2, I is closed under extensions. So a
similar proof in [7, Lemma 3] gives this fact by induction.

The next is a generalization of a result [4, Theorem 8].

THEOREM 14. The properties in Theorem 12 and Theorem 13 are equivalent.

PROOF. (3) in Theorem 13 implies (4) in Theorem 12 is clear, so we shall
prove that (7) in Theorem 12 implies (1) in Theorem 13. Let LzC#(R)g.
L/t(Lg)eF and L/t(Lg)C(R/t(Lr))-t(R). By assumption (7), L/t(Lg)=0, thus
Le=1t(Lp).

Next corollary is a generalization of [4, Corollary 15].

COROLLARY 15. Let (I, F) be a pre-torsion theory with the radical t. Then
the following assertions are equivalent.
(1) Every R-module is codivisible with respect to (T, 5).
(2) (@) R/t(R) is a semi-simple Artinian ring, and
(b) (T, I) is pseudo-hereditary.

PROOF. (1) implies (2). (1) satisfies the property Theorem 12, (1). Hence
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(g, &) is pseudo-hereditary by Theorem 14. (a) is clear from Corollary 5.

(2) implies (1). It is clear from Corollary 5, Theorem 12, Theorem 13
and Theorem 14.

Next we give an example, which shows (a) and (b) in Corollary 15 are
independent.

EXAMPLE: We put Z a ring of integers, 77:{2/,52} and t=t, where p is
a prime number. Then

1) (g, F:) ts not pseudo-hereditary.

(2) Z/t(2) is a semi-simple Artinian ring.

) Every Z-module is a weakly codivisible module.

4) Z/pZ has not codivisible cover.

Since t(Z)=pZ, t(pZ)=p*Z+t(Z) and Z/H(Z) is a field. Hence (1), (2) and (3)
hold by Theorem 7 and Corollary 5. IfZ/pZ has a codivisibl cover, then it must
be of the form O— pZ/p*Z—Z/p*Z—Z/pZ—0O. But Z/p*Z is not codivisible by
Proposition 3 since #(p%*Z)=p*Z+ p*Z.

By Corollary 9, if every R-module has a codivisible cover, then R/t(R) is a
right perfect ring. So on the analogy of Corollary 15, we propose the next
conjecture.

CONJECTURE. (%) If every right R-module has a codivisible cover with respect
to a pre-torsion theory (I, F), then (I, F) is pseudo-hereditary.

6. The modules My -t(Rgp)=Mj.

M.L. Teply in has proved that for a pseudo-hereditary torsion theory
(g, &F), Mg is codivisible if Mg-t(Rp)=Mpg. In this section, we shall characterize
those modules My such that Mg-t(Rz)=Mp by the notion of the colocalization of
a module.

LEMMA 16. Let (2, F) be a pre-torsion theory with the radical t. The
Jollowing assertions are equivalent for a given R-module Mp.

(1) Homz(t(Mg)r, Lr/Tr)=0 for any TzCLzr=%Z.

(2) t(Mp)ed and t(Mp) is weakly codivisible.

(3) t(Mg)-t(Rp)=1t(Mp).

PrOOF. (1) implies (2). By Proposition 1, t=ts. Hence t(Mped since
Homg(¢(Mg)r, Lr)=0 for any LreF. The weakly codivisibility of ¢(Mpy) is clear.
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(2) implies (3). By Proposition 3, t(¢(Mg)=t(Mg)-t(Rr). But t(Mped,
t(t(Mg)=t(Mg). So t(Mg)=t(Mp)-t(Rg).

(3) implies (1). Assumef €sHompz(t(Mgp)r, Lr/Tgr). t(Mg)=t(Mpg)-t(Rg) implies
S(Me)=f(t(Mgp)-t(Rp). But f(t(Mg)CTLr/Tr and (Lr/Tr):-t(Rp)=(Lg-t(Rg)
+Tr/Tg=0. Thus f=0.

THEOREM 17. Let (I, F) be a pre-torsion theory with the radical t such that
if Ag is codivisible, then A/t(Bg)r is codivisible for any BrC Agr. Then the
following statements are equivalent.

(1) Mpg has the colocalization.

(2) Hompg(t(Mg)g, Lr/Tr)=0 for any TpC LgE <.

3) t(Mgp)eg and t(Mpg) ts weakly codivisible.

(4) t(Mp)-t(Rp)=1t(Mpg).

PROOF. The equivalences of (2), (3) and (4) are proved by Lemma 16.

(1) implies (4). Let f: C(Mg)— Mg be a colocalization of Mz, C(Mg)€4d and
is codivisible, hence C(Mg)=t(C(Mg))=C(Mpg)-t(Rg) by Proposition 3, hence
FICM)=Ff(C(Mg)- t(RR)CT Mg t(Rg)Ct(Mg). On the other hand, Mg/f(C(Mg))E Z,
hence O=t(Mg/f(C(Mp))=t(Mg)/f(C(Mp)). Thus t(MpCSf(C(Mg), so (M)
=f(C(Mpg)) and t(Mg)=1t(Mg)-t(Rp).

(2) implies (1). We consider an exact sequence O— Kgr— Pr—t(Mg)r— O
such that Pp is projective. Since t(Pr/t(Kg))=1t(Pg)/t(Kg), we have a commut-
ative diagram with exact rows and columns;

@) 0

0]
o7
O — (Ken\t(Pr)/t(Kp)p —> t(Pp)/t(Kp)r —> Im (fi)r—> O
li ]
Kr/t(Kp)r Pr/t(Kp)g —> t(Mg)g —> O

l l %

O —> (Kg+i(Pg)/t(Pr)r —> Pgr/t(PrR)r —> Cok (j)r—> O

l l l

) 0 0

)

By assumption, 2=0. Hence Im (fi)=t(Mg). So (Kr+t(Pgr))/t(Pr)=Pr/t(Ppg).
Here Pg/t(Pr) is weakly codivisible by Lemma 11, so the left column sequence
splits, hence so does the middle column sequence. Thus t(Pgr)/t(Kg) is a direct
summand of Pr/t(Kz). But Pgr/t(Kp)is codivisible by assumption, hence ¢{(Pr)/t(Kr)
is codivisible. Furthermore
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t(Pr/t(Kp)=t(t(Pr)/t(Kr)D(Pr/t(Pr))
=1(t(Pr)/t(Kp)Dt(Pr/t(Pr))
=t(t(Pr/t(Kr)) .

Clearly this isomorphism is an injection #(i), hence t(Pg/t(Kgr)=t(t(Pgr/t(KRg))).
Thus it is torsion. This shows f: t(Pr)/t(Kp)r— Mg is a colocalization of Mpz.

The next corollary is a generalization of [7, Proposition 1] and [7, Corollary

1].

COROLLARY 18. Under same assumption as in Theorem 17, the following
assertions are equivalent.

(1) R/t(R) is a semi-perfect ring.

(2) Every simple R-module has a codivisible cover.

(3) Every simple R/t(R)-module has a codivisible cover as an R-module.

PrOOF. (1) implies (2). Assume S to be a simple R-module. If Sg: t(Rg)=Skg,
then Sp=1(Sp)=Sx-t(Rg). Hence Sy has a colocalization by Theorem 17. This
is a codivisible cover of Sz If Sg-t(Rp)=0, then S is a simple R/t(K)-module.
By assumption (1), S has a projective cover as an R/ t(R)-module, say O —K— P
—S—0. Since P is a direct summand of a direct sum of R/#(R) as an R/t(R)-
-module, so is as an R-module. Thus Pg is a codivisible R-module since a direct
sum of R/t(R) is codivisible by assumption. So the above exact sequence is a
codivisible cover of Sz as an R-module.

(2) implies (3). It is clear.

(3) implies (1). Let S be a simple R/t(R)-module and O—»KR~+PR£SR——>O
a codivisible cover of Sy as an R-module. Since #(Pr)=Pg-t(R) by Proposition
3, f(t(PR)=Ff(Pg)- t(R)=Sg-t(R)=0, hence O—(Kg+t(Pg))/t(Pr)— Pr/t(Pp)—S
—0O is an exact sequence as an R/t(R)-module. By Theorem 4, P/t(Pp) is a
projective R/t(R)-module, hence the above sequence is a projective cover of S as
an R/t(R)-module. Thus R/t(R) is a semi-perfect ring.

CoroLLARY 19. (K. Ohtake)

Let (I, F) be a pre-torsion theory with the radical t. Then the following
statements are equivalent.

(1) Every R-module has a colocalization.

(2) & is closed under factors and extensions.

PROOF. (2)implies (1). In this case, ¢ must be an idempotent radical, so it is
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clear from Theorem 17.

(1) implies (2). By Theorem 17, t(Mg)eg for any Mp=Mod-R because in

the proof that (1) implies (4) the codivisibility of Ag is not necessary. Hence ¢ is
an idempotent radical, so & is closed under extensions. Thus the assumption of
Theorem 17 is satisfied. Hence (2) holds by Theorem 17 since Homg(¢(Lz/T g)z,
Lp/Tr)=0 for any TpCLz=eF.
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