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1. Introduction.

A large number of problems in geometric topology can be reduced to ques-
tions about homotopy properties near infinity of non-compact locally compact
spaces or proper maps between them. These properties were studied most suc-
cessfully under the following four notions of a homotopy for proper maps: a
proper homotopy ([2], [10], and [22]), a germ proper homotopy ([2] and [3]), a
weak proper homotopy ([7]), and a homotopy at $\infty$ ( $[4]$ and [5]).

The present paper is an introduction into a systematic study of the above
four types of homotopy for proper maps using the techniques of algebraic topo-

logy. The key idea in this paper is to associate to every pair $(K, L)$ of connected,
(non-compact) locally compact, separable metric ANR spaces and a paper map a
of the ray $[1, \infty$) into $L$ certain groups which will correspond to the relative
homotopy groups in the ordinary homotopy theory.

The description of such groups for the germ proper homotopy was given by
Brown in [2]. Here we define those groups anew in such a way that their
analogues in the other three homotopy theories are apparent. In fact, we intro-
duce eleven different groups for the triplet $(K, L, a)$ and study their most ele-
mentary properties and investigate how do they relate to various shape invariant
groups (inward, approaching, and fundamental) of compacta [20], [21].

In order to sketch our main results, in this introduction, we shall consider
only relative proper homotopy groups. The map a will play the role of a base
point and triplets $(=D^{n}, S^{n-1}=’\underline{*})=(D^{n}\times[1, \infty),$ $ S^{n-1}\times[1, \infty$)

$,$

$\{*\}\times[1, \infty$)) and

$(\underline{D}^{n},\underline{S}^{n-1},\underline{*})=((\bigcup_{k=1}^{\infty}D^{n}\times\{k\})\cup\underline{*},\bigcup_{k=1}^{\infty}S^{n-1}\times\{k\})\cup\underline{*},\underline{*})$ are two possible choices for

a space which will play the role of the relative n-cell $(D^{n}, S^{n-1}, *)$ in the defini-
tion of relative homotopy groups. We identify $t*$ } $\times[1, \infty$) and $[1, \infty$ ) and denote
by $P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ the collection of all proper maps $f:(\underline{D}^{n},\underline{S}^{n-1})\rightarrow(K, L)$
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which agree with a on $\underline{*}$ . Let $\underline{\pi}_{n}(K, L, a)$ be the set of all equivalence classes

under the relation of proper homotopy rel $\underline{*}$ on $P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ . For $n\geqq 2$ , it
is possible to define a group operation on $\underline{\pi}_{n}(K, L, a)$ by multiplying restrictions
of representatives on each relative n-cell $(D^{n}, S^{n-1}, *)\times\{k\}$ in $(\underline{D}^{n},\underline{S}^{n-1},\underline{*})$ . By

replacing $(\underline{D}^{n},\underline{S}^{n-1},\underline{*})$ with $(^{n}=D, S^{n-1},\underline{*})=$ we similarly introduce groups $\pi_{n}(K, L, a)=$

$(n>1)$ and a pointed set $\pi_{1}(K=\prime L, a)$ . The group $\underline{\pi}_{n}(K, L, a)(\pi_{n}(K\approx\prime L, a))is$

called the n-th relative discrete (continuous) proper homotopy group of $(K, L)$ at $a$ .
Motivated by Hu’s paper [12], we first show in \S 2 that groups $\underline{\pi}_{n}(K, L, a)$

and $\pi_{n}(K=\prime L, a)$ are naturally isomorphic to the n-th relative homotopy group of
pointed pairs $S(K, L, a)$ and $I(K, L, a)$ , respectively, associated functorially to
$(K, L, a)$ . From this observation we see that every statement about relative
homotopy groups has an analogue about both relative discrete and relative con-
tinuous proper homotopy groups. Then we show how to compute $\underline{\pi}_{n}(K, L, a)$

from relative homotopy groups of complements of an exhausting sequence of
compacta in $K$.

In \S 3 we prove that for every pointed pair (X, $A,$ $x$ ) of compact metric
spaces there is a naturally associated pair of contractibe Q-manifolds $(M(X), M(A))$

and a proper map $a:\underline{*}\rightarrow M(A)$ such that Quigley’s inward group $I_{n}(X, A, x)$ and

approaching group $J_{n}(X, A, x)$ [21] of (X, $A,$ $x$) are naturally isomorphic to
$\underline{\pi}_{n}(M(X), M(A),$ $a$ ) and $\pi_{n}(M(X)=\prime M(A), a)$ , respectively. Borsuk’s fundamental
group $F_{n}(X, A, x)$ of (X, $A,$ $x$ ) $[21]$ is naturally isomorphic to the relative limit
group $\pi_{n}\leftarrow(M(X), M(A),$ $a$ ) of $(M(X), M(A))$ at a defined as the inverse limit of an
inverse sequence of relative homotopy groups of complements of an increasing

sequence of compacta in $M(X)$ (see \S 2).

By combining results in sections 2 and 3 it follows immediately that every

statement about relative homotopy groups has an analogue about both inward

and approaching relative groups of pointed pairs of compacta.

In \S 4 we show that for $n\geqq 3$ , any pair $(K, L)$ of connected, locally compact,

separable metric ANR spaces, and a proper map $a;\underline{*}\rightarrow L$ there is an exact

sequence
$j_{\pi}^{n}$

$Id- sh_{\pi}^{n}$ $\delta_{\pi}^{n}$

$0-\leftarrow\pi_{n}(K, L, a)-\underline{\pi}_{n}(K, L, a)-\underline{\pi}_{n}(K, L, a)-=\pi_{n- 1}(K, L, a)$

$\underline{q_{\pi}^{p}}\leftarrow\pi_{n-1}(K, L, a)-0$

connecting the n-th and the $(n-1)- st$ relative limit group of $(K, L)$ at $a$ .
Finally, in \S 5 we introduce the notion of $a\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$

triplet $(K, L, a)$ and show that on such triplets the homomorphism $Id- sh_{\pi}^{n}$ in the

above sequence is an epimorphism.
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In view of \S 3 our theorems in \S \S 4 and 5 generalize the principal results of
[21].

2. Various relative homotopy groups.

We shall consider only triplets $(M, M_{1}, M_{0})$ of connected, locally compact,
separable metric ANR spaces such that $M_{0}\subset M_{1}\subset M$ and $M_{0}$ and $M_{1}$ are closed
subsets of $M$.

A map is called proper if the counter-image of each compact set is compact.
On the collection $P(M, M_{1}, M_{0} ; N, N_{1}, N_{0})$ of all proper maps between triples
$(M, M_{1}, M_{0})$ and $(N, N_{1}, N_{0})(i$ . $e.$ , proper maps $f:M\rightarrow N$ with $f(M_{1})\subset N_{1}$ and $f(M_{0})$

$\subset N_{0})$ that agree on $M_{0}$ we can introduce eight equivalence relations $=,$ $\Pi,$
$\rho,$

$\pi$ ,
$=^{\infty},$ $\prod^{\infty},$

$\rho^{\infty}$, and $\pi^{\infty}$ as follows. For $f,$ $g\in P(M, M_{1}, M_{0} ; N, N_{1}, N_{0})$ ,
$f=g$ iff maps $f$ and $g$ are identical,
$f\Pi g$ iff maps $f$ and $g$ are homotopic $relM_{0}(i$ . $e.$ , there is a map $H:(M\times I$,

$M_{1}\times I,$ $M_{0}\times I$ ) $\rightarrow(N, N_{1}, N_{0})$ , where $I=[0,1]$ is the unit interval, such that $H_{0}=f$,
$H_{1}=g$ , and $H_{t}|M_{0}=f|M_{0}=g|M_{0}$ for all $t\in I$ ),

$f\rho g$ iff maps $f$ and $g$ are weakly proper homotopic $relM_{0}[7](i$ . $e.$ , for
every compactum $B$ in $N$ there is a compactum $A$ in $M$ and a map $H:(M\times I$,
$M_{1}\times I,$ $M_{0}\times I$ ) $\rightarrow(N, N_{1}, N_{0})$ with $H_{0}=f,$ $H_{1}=g,$ $H_{t}(M-A)\subset N-B$ , and $H_{t}|M_{0}=$

$f|M_{0}=g|M_{0}$ for all $t\in I$ ),
$f\pi g$ iff maps $f$ and $g$ are properly homotopic $relM_{0}(i$ . $e.$ , there is a proper

map $H:(M\times I, M_{1}\times I, M_{0}\times I)\rightarrow(N, N_{1}, N_{0})$ such that $H_{0}=f,$ $H_{1}=g$, and $H_{t}|M_{0}=$

$f|M_{0}=g|M_{0}$ for all $t\in I$ ),
$f=^{\infty}g$ iff maps $f$ and $g$ have the same germ [2] ( $i$ . $e.$ , there is a compactum

$A$ in $M$ such that $f|M-A=g|M-A$),
$f\prod^{\infty}g$ iff maps $f$ and $g$ are germ homotopic $relM_{0}$ [2] ( $i$ . $e.$ , there is a

compactum $A$ in $M$ such that $(f|M-A)\prod(g|M-A))$ ,
$f\rho^{\infty}g$ iff maps $f$ and $g$ are homotopic at $\infty relM_{0}[4](i$ . $e.$ , for every

compactum $B$ in $N$ there is a compactum $A$ in $M$ and a map $H:(M-A,$ $M_{1}-A$ ,
$M_{0}-A)\times I\rightarrow(N-B, N_{1}-B, N_{0}-B)$ with $H_{0}=f|M-A,$ $H_{1}=g|M-A$ , and $H_{t}|M_{0}-A$

$=f|M_{0}-A=g|M_{0}-A$ for all $t\in I$ ), and
$f\pi^{\infty}g$ iff maps $f$ and $g$ are germ proper homotopic $relM_{0}$ [2], [3] $(i$ . $e.$ ,

there is a compactum $A$ in $M$ such that $(f|M-A)\pi(g|M-A))$ .
The obvious inclusions (denoted by arrows) among these relations are indi-

cated in the diagram below. In general none of the arrows can be reversed.
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$\Pi\uparrow-\Pi^{\infty}\uparrow$

$\rho\rho^{\infty}\uparrow^{-}\uparrow$

$\pi\uparrow-\pi\uparrow^{\infty}$

The following simple proposition shows that the first three arrows in the
above diagram can be reversed when $N$ and $N_{1}$ are contractible.

PROPOSITION. 2.1. Let $f,$ $g\in P(M, M_{1}, M_{0} ; N, N_{1}, N_{0})$ where $N$ and $N_{1}$ are
contractible locally compact sepa rable metric $ANR$ spaces and $lefR\in\{\Pi, \rho, \pi\}$ .
Then $fRg$ iff $fR^{\infty}g$ .

The equivalence class of $f\in P(M, M_{1}, M_{0} ; N, N_{1}, N_{0})$ with respect to the rela-

tions $=^{\infty},$ $\Pi,$ $\Pi^{\infty},$
$\rho,$

$\rho^{\infty},$ $\pi$ , and $\pi^{\infty}$ are denoted by $f,$ $\Pi(f),$ $\prod^{\infty}(f),$ $\rho(f),$ $\rho^{\infty}(f)$ ,
$\pi(f)$ , and $\pi^{\infty}(f)$ , respectively.

In order to define our relative homotopy groups we need a triple that will
play the role of a triple $(D^{n}, S^{n-1}, *)$ , consisting of the unit n-disc $D^{n}$ , its boun-

dary $(n-1)$-sphere $S^{n-1}$ and a point $*\in S^{n-1}$ , in the ordinary homotopy theory.

Two most useful choices for such a triple are $(=D^{n}, S^{n-1},\underline{*})=(D^{n}=\times[1, \infty)$ ,

$S^{n-1}\times[1, \infty)$ , $t*$ } $\times[1, \infty$)) and its subtriple $(\underline{D}^{n},\underline{S}^{n-1},\underline{*})=((\bigcup_{k=1}^{\infty}D^{n}\times\{k\})\cup\underline{*}$ ,

$(\bigcup_{k=1}^{\infty}S^{n-1}\times\{k\})\cup\underline{*},\underline{*})$ .
These two possibilities imply that we can introduce twelve types of relative

homotopy groups for a pair $(K, L)$ of connected, locally compact, separable metric
ANR spaces and a proper map $a:\underline{*}\rightarrow L$ as follows. Let $P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ denote

the collection of all proper maps $f:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\rightarrow(K, L, a(\underline{*}))$ which agree with
$a$ on $\underline{*}$ . The set $P_{a}(=D^{n}, S^{n-1} ; K=\prime L)$ is defined similarly. Now, for any $ R\in$

$\{\Pi, \Pi^{\infty}, \rho, \rho^{\infty}, \pi, \pi^{\infty}\}$ , let $\underline{R}_{n}(K, L, a)$ be the set of all R-classes of maps in
$P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ and let $\underline{R}_{n}(K, L, a)$ denote the set of all R-classes of maps in
$P_{a}(=D^{n}, S^{n-1} ; K=\prime L)$ .

When $n\geqq 2$ , we can define group operations in $\underline{R}_{n}(K, L, a)$ and $\underline{R}_{n}(K, L, a)$

coordinatewise. More precisely, let $\nu^{n}$ : $(D^{n}, S^{n-1}, *)\rightarrow(D^{n}, S^{n-1}, *)\vee(D^{n}, S^{n-1}, *)$

be a fixed continuous comultiplication mapping of the homotopy cogroup
$(D^{n}, S^{n-1}, *)$ . Then the element $R(f)+R(g)$ in $\underline{R}_{n}(K, L, a)$ is represented by a
proper map $h:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\rightarrow(K, L, a(\underline{*}))$ where $h|\underline{*}=a$ and for each $k\in N(N$
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denotes the natural numbers), $h|(D^{n}, S^{n-1}, *)\times\{k\}=(f|(D^{n}, S^{n-1}, *)\times\{k\}$ ,
$g|(D^{n}, S^{n-1}, *)\times\{k\})\circ(\nu^{n}\times id_{fk\}}):(D^{n}, S^{n-1}, *)\times\{k\}\rightarrow(K, L, a(k))$ . The element
$R(f)+R(g)$ in $\underline{R}_{n}(K, L, a)$ is similarly represented by a proper map $H:(=D^{n}, S^{n-1}=’\underline{*})$

$\rightarrow(K, L, a(\underline{*}))$ where $H|\underline{*}=a$ and for each $ t\in[1, \infty$), $H|(D^{n}, S^{n-1}, *)\times\{t\}=$

$(f|(D^{n}, S^{n-1}, *)\times\{t\}, g|(D^{n}, S^{n-1}, *)\times\{t\})\circ(\nu^{n}\times id_{\{t1})$ . It is easy to check that
in these definitions $R(f)+R(g)$ depends only on $R(f)$ and $R(g)$ and not on the
choice of proper maps $f$ and $g$ and that with this multiplications $\underline{R}_{n}(K, L, a)$ and
$E_{n}(K, L, a)$ are groups (and abelian for $n\geqq 3$).

Note that groups $\underline{R}_{n}(K, L, a)$ and $R_{n}(K, L, a)$ for $R\in\{\Pi^{\infty}, \rho^{\infty}, \pi^{\infty}\}$ depend
up to an isomorphism only on the germ $\underline{a}$ of $a$ . Moreover, for those $R,\underline{R}_{n}(K, L, a)$

depends up to an isomorphism only on the end of $L$ determined by the map $a$

[1]. On the other hand, groups $\underline{R}_{n}(K, L, a)$ and $\underline{R}_{n}(K, L, b)$ (and, similarly, groups
$\pi_{n}\leftarrow(K, L, a)$ and $\pi_{n}\leftarrow(K, L, b)$ defined below) need not be isomorphic even though $a$

and $b$ might represent the same end of $L$ (the complement in the Hilbert cube $Q$

of a Z-set copy of a space $X$ constructed by Keesling [15] gives an example of
this phenomenon).

We have defined twelve groups but there are only at most ten different
groups among them because by (2.2) below groups $\underline{\pi}_{n}(K, L, a)$ and $\underline{\pi}_{n}^{\infty}(K, L, a)$ ,

are identical with groups $\underline{\rho}_{n}(K, L, a)$ and $\underline{\rho}_{n}^{\infty}(K, L, a)$ , respectively.

PROPOSITION 2.2. Proper maps $f,$ $g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ are weakly proper
homotopic (homotopic at $\infty$ ) $rel\underline{*}$ iff $f$ and $g$ are proper homotopic (germ proper
homotopic) $rel\underline{*}$ .

PROOF. Let $ C_{0}=\emptyset\subset C_{1}\subset C_{2}\subset\cdots$ be a sequence of compact subsets of $K$ such
that $\bigcup_{i>0}C_{i}=K$ and let $f\rho g$ . Then there is a sequence $ n(1)=1<n(2)<\cdots$ of

natural numbers such that for every $m,$ $n(i)\leqq m<n(i+1)$ , there is a homotopy
$H^{m}$ : $((D^{n}, S^{n-1}, *)\times\{m\})\times I\rightarrow(K-C_{i- 1}, L-C_{i-1})$ rel $(*, m)$ between $f|(D^{n}, S^{n-1}, *)$

$\times\{m\}$ and $g|(D^{n}, S^{n-1}, *)\times\{m\}(i=1,2, \cdots)$ . The map $ H:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\times I\rightarrow$

$(K, L, a(\underline{*}))$ which agrees with $H^{m}$ on $(D^{n}\times\{m\})\times I$ and on each $\underline{*}\times\{t\}(t\in I)$

with a is a proper homotopy $rel\underline{*}$ joining $f$ and $g$ . Hence, $f\rho g$ iff $f\pi g$ because
we already observed that $f\pi g$ implies $f\rho g$ . The proof for the other case is
the same. The only difference is that in general we can not get $n(1)=1$ .

REMARK 2.3. The groups $\underline{\pi}_{n}^{\infty}(K, L, a)$ and $\prod_{n}^{\infty}(K, L, a)$ were introduced by

Brown ([2] and [3]) who called them the n-th relative proper homotopy group
$\underline{\pi}_{n}(K, L, \underline{a})$ and the n-th relative repeated homotopy group $\pi_{n}(K, L, \underline{a})$ of $(K, L)$

based at $\underline{a}$ , respectively. His description of these groups is easily seen to be
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equivalent with ours using the homotopy extension theorem (HET) [14, p. 117].

In order to have consistent terminology, we shall call $\underline{\pi}_{n}^{\infty}(K, L, a)$ the (n-th rela-
tive) discrete germ proper homotopy group (of $(K,$ $L)$ at $\underline{a}$), $\coprod_{n}^{\infty}(K, L, a)$ the dis-
crete germ homotopy group, $\pi_{n}^{\infty}(K=\prime L, a)$ the (n-th relative) continuous germ proper
homotopy group (of $(K,$ $L)$ at $a$ ), $\underline{\coprod}_{n}^{\infty}(K, L, a)$ the continuous germ homotopy
group, and so on. However, for obvious reasons, we shall try not to use those
names too often.

Motivated by Hu’s methods in [12] we shall now give another description of
groups $\underline{\pi}_{n}(K, L, a)$ and $\pi_{n}=(K, L, a)$ which allows to consider these groups as
(singular) relative homotopy groups of certain pointed pairs functorially associated
to $(K, L, a)$ .

Let $K$ be a connected, locally compact, separable metric ANR space and let
$a;\underline{*}\rightarrow K$ be a proper map representing the end $e\in EK$ of $K$ and let $\alpha$ denote the
sequence $(a(*, i))_{i=1}^{\infty}$ in $K$. Let $S$ be the subspace $\{0\}\cup\{1/n|n=1,2, 3, \}$ of
$I=[0,1]$ . The space of all continuous maps $s:(S, O)\rightarrow(FK, e)(FK$ is the Freu-
denthal end-point compactification of $K$) such that $s^{-1}(EK)=0$ and the sequence
$(s(1/i))_{i=1}^{\infty}$ is equivalent to $\alpha[1]$ ( $i$ . $e.$ , both sequences converge in $FK$ to $e$), with
the compact-open topology, will be denoted by $S(K, a)$ and called the tangent S-
space of $K$ at $a$ . Similarly, the space of all continuous maps $p:(I, 0)\rightarrow(K\cup\infty, \infty)$

( $ K\cup\infty$ is the one-point compactification of $K$) such that $p^{-1}(\infty)=0$ , with the
compact-open topology, will be denoted by $I(K, \infty)$ and called the tangent I-space
of $K$ at $\infty$ (see [12, p. 174]).

Let $(K, L)$ be a pair of connected, locally compact, separable metric ANR
spaces and let $a;\underline{*}\rightarrow L$ be a proper map. Then $S(L, a)$ is a subspace of $S(K, a)$

and $I(L, \infty)$ is a subspace of $I(K, \infty)$ . The pointed pairs $(K^{*}, L^{*}, s_{a})$ and
$(K^{**}, L^{**}, p_{a})$ , where $K^{*}=S(K, a),$ $L^{*}=S(L, a),$ $s_{a}$ : $(S, O)\rightarrow(FK, e)$ is a map given
by $s_{a}(0)=e$ and $s_{a}(1/i)=a(*, i)$ for $i=1,2,3,$ $\cdots,$

$K^{**}=I(K, \infty),$ $L^{**}=I(L, \infty)$ ,

and $p_{a}$ : $(I, 0)\rightarrow(K\cup\infty, \infty)$ is a map given by $ p_{a}(0)=\infty$ and $p_{a}(t)=a(*, 1/t)$ for
$t\in(O, 1]$ , will be called the tangent S-pair and the tangent I-pair of $(K, L, a)$

and denoted by $S(K, L, a)$ and $I(K, L, a)$ , respectively.

LEMMA 2.4. The associations of the tangent S-pair $S(K, L, a)$ and the tangent
I-pair $I(K, L, a)$ can be considered as functors from the category of (pairs of)

connected, locally compact, sepa rable metric $ANR$ spaces with a fixed proper map
of $\underline{*}$ and proper maps respecting those maps to the category of pointed (pairs of)

topological spaces and continuous maps preserving base points.

PROOF. Obvious.
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THEOREM 2.5. The n-th (relative) discrete proper homotopy group functor $\underline{\pi}_{n}$

is naturally isomorphic to the functor $\pi_{n}\circ S$ and the n-th (relative) continuous
proper homotopy group functor $\pi_{n}=$ is naturally isomorphic to the functor $\pi_{n}\circ I$ .

PROOF. We shall prove that functors $\underline{\pi}_{n}$ and $\pi_{n}\circ S$ are naturally isomorpic.
The proof for functors $\pi_{n}=$ and $\pi_{n}\circ I$ is similar.

Let $K,$ $L,$ $a$ , and $\alpha$ be as above. Let $a$ proper map $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$

represent an element $\pi(f)$ of $\underline{\pi}_{n}(K, L, a)$ . For each point $d\in D^{n}$ the sequence
$(f(d, i))_{i=1}^{\infty}$ is an admissible sequence in $K$ (in $L$ if $d\in S^{n-1}$) equivalent to $\alpha[1]$ .
Hence, in a natural way, $f$ determines a continuous map $\varphi:(D^{n}, S^{n-1}, *)\rightarrow$

$S(K, L, a)$ . We associate $[\varphi]\in\pi_{n}S(K, L, a)$ to $\pi(f)$ and denote this correspon-
dence by $t_{(K.L.a)}$ . We shall show that $t=t_{(K,L,a)}$ is an isomorphism and that
for each proper map $p;(K, L, a)\rightarrow(K^{\prime}, L^{\prime}, a^{\prime})(i. e., p\circ a=a^{\prime})$ the diagram

(2.6) $t_{(K.L,a}$ )
$\downarrow\pi_{n}S^{n}(K,L\underline{\pi}(K,L, a)\underline{\pi}(K^{\prime},L_{(K}^{\prime}.a_{L^{\prime,}.a}a)\pi_{n}^{n}S(K’,L’,a^{)}’)^{\prime}\overline{S(p^{\#})_{\#_{)}}}\underline{p}r\downarrow t)$

commutes.

CLAIM 1. The function $t$ is onto.

PROOF. Let $[\varphi]\in\pi_{n}S(K, L, a)$ be represented by a continuous map
$\varphi:(D^{n}, S^{n-1}, *)\rightarrow S(K, L, a)$ . Define a map $f^{\prime}$ : $(D^{n}, S^{n-1})\times N\rightarrow(K, L)$ by $f^{\prime}(d, k)$

$=\varphi(d)(1/k)$ , for $d\in D^{n}$ and $k\in N$, and extend $f^{\prime}$ to a map $ f:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\rightarrow$

$(K, L, a(\underline{*}))$ such that $f$ and a agree on $\underline{*}$ . Clearly, $t(\pi(f))=[\varphi]$ .

CLAIM 2. The function $t$ is one-to-one.

PROOF. Let $f,$
$g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ and assume that $[\varphi]=t(\pi(f))$ and $[\psi]$

$=t(\pi(g))$ coincide. Let $x;(D^{n}, S^{n-1}, *)\times I\rightarrow S(K, L, a)$ be a homotopy joining $\varphi$

and $\psi$ Define $H^{\prime}$ : $[(D^{n}, S^{n-1})\times N]\times I\rightarrow(K, L)$ by $H^{\prime}(d, k, s)=\chi(d, s)(1/k)$ , for
$d\in D^{n}$ , $k\in N$, and $s\in I$, and extend $H^{1}$ to a proper map $ H:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\times I\rightarrow$

$(K, L, a)$ so that $H_{s}$ agrees with a on $\underline{*}$ for each $s\in I$ . Hence, $f$ and $g$ are
properly homotopic rel $\underline{*}i$ . $e.,$ $\pi(f)=\pi(g)$ .

CLAIM 3. The function $t$ is a homomorphism of groups for $n\geqq 2$ .

PROOF. Consider $f,$ $g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ . Recall that the element $\pi(f)\dashv-\pi(g)$

in $\underline{\pi}_{n}(K, L, a)$ is represented by a proper map $h:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\rightarrow(K, L, a(\underline{*}))$ where
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$h|\underline{*}=a$ and for each $k\in N,$ $h|(D^{n}, S^{n-1}, *)\times\{k\}=(f|(D^{n}, S^{n-1}, *)\times\{k\},$ $g|(D^{n}$ ,

$S^{n-1},$ $*$) $\times\{k\}$ ) $c(\nu^{n}\times id_{1k\}})(\nu^{n}$ ; $(D^{n}, S^{n-1}, *)\rightarrow(D^{n}, S^{n-1}, *)\vee(D^{n}, S^{n-1}, *)$ is a fixed
continuous comultiplication mapping of the homotopy cogroup $(D^{n}, S^{n-1}, *))$ . But

it is clear that a map $x;(D^{n}, S^{n-1}, *)\rightarrow S(K, L, a)$ associated by the above con-
struction to $h$ is just $(\varphi, \psi)\circ\nu^{n}$ ; $(D, S^{n-1}, *)\rightarrow S(K, L, a)$ where $\varphi$ and $\psi$ are asso-
ciated to $f$ and $g$ , respectively. Thus $t(\pi(f)+\pi(g))=t(\pi(f))+t(\pi(g))$ and $t$ is a
homomorphism.

CLAIM 4. The diagram (2.6) is commutative.

PROOF. If $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ , then $p_{*}(\pi(f))$ is represented by a proper
map $p\circ f\in P_{a^{\prime}}(\underline{D}^{n},\underline{S}^{n-1} ; K^{\prime}, L^{\prime})$ . Now, $t_{(K^{\prime},L^{\prime}.a\prime)}\circ p_{*}(\pi(f))$ is represented by a
continuous map $\psi:(D^{n}, S^{n-1}, *)\rightarrow S(K^{\prime}, L^{\prime}, a)$ defined as $\psi(d)(1/k)=p\circ f(d_{J}k)$ ,

$d\in D^{n},$ $k\in N$. We can view $\psi$ as $S(p)_{*}(\varphi)$ , where $\varphi:(D^{n}, S^{n-1}, *)\rightarrow S(K, L, a)$ is

defined by $\varphi(d)(1/k)=f(d, k)$ . But, clearly, $[\varphi]=t_{(K.L.a)}(\pi(f))$ . Hence, $S(p)_{\#}t_{(K,L,a)}$

$=t_{(K^{r}.L^{\prime},a^{i})}\circ p_{*}$ .

REMARK 2.7. By the similar method one can prove that the diagram

$\underline{\pi}_{n}(K, L, a)\rightarrow^{\delta}\underline{\pi}_{n-1}(L, a)$

$ t_{(K.L,a)}\downarrow$ $\downarrow t_{(L,a)}$

$\pi_{n}S(K, L, a)\rightarrow^{\delta}\pi_{n- 1}S(L, a)$

commutes for every triplet $(K, L, a)$ (the boundary homomorphism $\underline{\delta}$ is defined
coordinatewise). Hence, homotopy systems $\mathcal{H}_{S}=(\underline{\pi},\underline{\delta}, \#)$ and $\mathcal{H}_{S}^{\prime}=(\pi\circ S, \pi\circ S, \#)$

are equivalent in the sense of [13, p. 121]. Similarly, homotopy systems $\mathcal{H}_{I}=$

$(\pi=’\delta=’\#)$ and $\mathcal{H}_{I}^{\prime}=(\pi\circ I, \pi\circ I, \#)$ are also equivalent. It follows from these equi-

valences that for every statement concerning (relative) homotopy groups there is

a corresponding statement about (relative) discrete and continuous proper homo-

topy groups. In fact, for every homotopy invariant functor $\mathcal{F}$ on the category of

(pointed) topological pairs we can define proper homotopy invariant functors $\underline{\mathcal{F}}$

and $=c\gamma$ by $\underline{\mathcal{F}}=\mathcal{F}\circ S$ and $==\mathcal{F}\circ I$ . In particular, there are discrete proper homo-

logy and cohomology groups $\underline{H}_{n}$ and $\underline{H}^{n}$ and continuous proper homology and

cohomology groups $=H_{n}$ and $H^{n}=$ .

REMARK 2.8. Observe that the groups $\pi_{n}I(K, L, a)$ , $H_{n}I(K, L, a)$ , and

$H^{n}I(K, L, a)$ are precisely Hu’s (relative) local homotopy group $\lambda_{n}(K\cup\infty,$ $ L\cup\infty$ ,

$\infty;p_{a})$ of $(K\cup\infty, L\cup\infty)$ at $\infty$ based at the path $p_{a}$ , (relative) local homology

group $L_{n}(K\cup\infty, L\cup\infty, \infty)$ of $(K\cup\infty, L\cup\infty)$ at $\infty$ , and (relative) local cohomo-
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logy group $L^{n}(K\cup\infty, L\cup\infty, \infty)$ of $(K\cup\infty, L\cup\infty)$ at $\infty$ , respectively (see [12, $p$ .
175 and p. 199]).

We continue with a description (similar to Brown’s description of groups
$\underline{\pi}_{n}^{\infty}(K, L, a)$ involving the functor $\mathcal{P}[2],$ $[11]$ ) of a method for computing dis-
crete groups of a triple $(K, L, a)$ .

Let $(G_{ij})$ be an infinite diagram

$c_{12}^{11}c_{1}$ $c_{22}c_{1^{21}}$ $ cc_{1_{32}^{31}}.\cdot.\cdot.\cdot$

$\uparrow$ $\uparrow$ $\uparrow$

$c_{\dagger_{:}^{13}}$ $c_{1_{:}^{23}}$ $ G_{:^{33}}\uparrow\cdots$

of groups and homomorphisms (indicated by arrows). Let $\sum(G_{ij})$ denote all
sequences $(g_{i.k(i)})_{i=1}^{\infty}$ of elements of the above groups, $g_{i.k(i)}\in G_{i,k(i)}$ , such that
$ k(i)\rightarrow\infty$ as $ i\rightarrow\infty$ . If $g=(g_{i,k(i)})$ and $g^{\prime}=(g_{i,k\prime(i)}^{\prime})$ are two sequences in $\sum(G_{ij})$ ,
we write

$g\hat{\Pi}g^{\prime}$ iff for every $i\in N$ there is $l(i)\in N$ such that $g_{i.k(i)}^{l(i)}=(g_{i,k^{\prime}(i)}^{\prime})^{l(i)}$ , where
$g_{i,k(i)}^{l(i)}$ is the image of $g_{i.k(i)}$ in the group $G_{i.l(i)}$ under the composed vertical
homomorphisms in the diagram (and, of course, $1(i)\leqq k(i),$ $k^{\prime}(i)$).

$g\prod g^{\prime}\bigwedge_{\infty}$ iff there is $i_{0}\in N$ such that for every $i\geqq i_{0}$ there is an $l(i)$ satisfying
the above condition.

$g\hat{\pi}g^{\prime}$ iff there is a sequence $(l(i))_{i=1}^{\infty}$ in $N$ converging to $\infty$ such that
$g_{i,k(i)}^{l(i)}=(g_{i,k\prime(i)}^{\prime})^{l(i)}$ for each $i\in N$.

$g\hat{\pi}^{\infty}g^{\prime}$ iff there is an $i_{0}\in N$ such that for every $i\geqq i_{0}$ there is $1(i)\in N$ with
$Iim_{0}l(i)=\infty i\geqq i$ and $g_{i,k(i)}^{l(i)}=(g_{i,k\prime(i)}^{\prime})^{l(i)}$ .

It is easily seen that these are four equivalence relations on $\sum(G_{ij})$ . The
equivalence class of $g=(g_{i,k(i)})$ under $\hat{\Pi}$ is denoted by $\hat{\Pi}(g)$ and the set of all
equivalence classes by $\wedge\prod(G_{ij})$ . If $\hat{\Pi}(g),$ $\hat{\Pi}(g^{\prime})\in\hat{\prod}(G_{ij})$ , select representatives
$g=(g_{i,k(i)}),$ $g^{\prime}=(g_{i,k^{\prime}(i)}^{\prime})$ so that $k(i)=k^{\prime}(i)$ for each $i$ . Then define $\hat{\Pi}(g)\cdot\hat{\Pi}(g^{\prime})$

$\wedge$
$\wedge$

$=\Pi((g_{i.k(t)}\cdot g_{i.k(i)}^{\prime}))$ . This gives a well defined group operation on $\Pi(G_{ij})$ .
Clearly, $\hat{\Pi}$ can be considered as a functor from the category of diagrams ( $ G_{ij}\rangle$

into the category of groups (abelian groups if all groups $G_{ij}$ are abelian). The
analogous definitions and statements hold also for the remaining three relations
(functors).

(2.9) Let $(K, L)$ be a pair of connected, locally compact, separable metric
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ANR spaces, let $\{C_{k}\}$ be a sequence of compact subsets of $K$ such that $ C_{1}=\emptyset$,

$C_{k}\subset Int(C_{k+1})$ , and $\bigcup_{k=1}^{\infty}C_{k}=K$, and let $a;\underline{*}\rightarrow L$ be a proper map. For each $k$ , let
$B_{k}$ be the component of $L-(L\cap C_{k})$ which contains $a(*, t)$ for all sufficiently
large $ t\in[1, \infty$ ) and let $A_{k}$ be the component of $K-C_{k}$ containing $B_{k}$ . Choose
an increasing sequence $\nu=\{1=\nu_{1}<\nu_{2}<\nu_{3}< -\}$ such that $a(*, t)\in B_{k}$ for all $ t\geqq$

$\nu_{k+1}$ . Let $(\pi_{n})_{\nu}$ denote the following diagram of groups $(n\geqq 2)$ .

$\pi_{n}(K, L\uparrow\prime a(1))\cdots\uparrow$ $\pi_{n}(K,L\uparrow\prime a(\nu_{2}))\cdots$ $\pi_{n}(K,L\uparrow\prime a(\nu_{3}))\cdots$

$*\uparrow$

...
$*\uparrow$

$\pi_{n}(A_{1}, B_{1}\uparrow\prime a(\nu_{2}))\cdots$

...
$\pi_{n}(A_{1,\uparrow}, B_{1}, a(\nu_{3}))\cdots$

$*\uparrow_{:}$

$\ldots*\uparrow_{:}$
$*\uparrow_{:}$

...

$\cdot$ ..
$\pi_{n}(A_{2,\uparrow_{:}}, B_{2}, a(\nu_{3}))\cdots$

with vertical homomorphisms induced by inclusions and $with*replacing$ a group
which agrees with the one above it.

THEOREM 2.10. For each $R\in\{\Pi, \Pi^{\infty}, \pi, \pi^{\infty}\},\hat{R}((\pi_{n})_{\nu})$ is naturally isomorphic
to $\underline{R}_{n}(K, L, a)$ .

PROOF. We shall consider only the case $ R=\pi$ . The proof for the other
groups is similar. We shall also not discuss the meaning of the word natural in
the statement of the theorem (see [2] for some indications as to what it should
mean) in order to keep the paper at reasonable lenght.

Let a proper map $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ represent an element $\pi(f)\in\underline{\pi}_{n}(K, L, a)$ .
For each integer $i$, let $k_{i}=k_{i}^{f}$ be the maximum of numbers $k$ such that
( $f(D^{n}\times\{i\}),$ $f(S^{n-1}\times\{i\})\subset(A_{k},$ $B_{k})$ and $a([i-1,$ $\infty)$ ) $\subset B_{k}$ . Then the map $f_{i}=$

$f|(D^{n}, S^{n-1}, *)\times\{i\}$ : $(D^{n}, S^{n-1}, *)\times\{i\}\rightarrow(A_{k_{i}}, B_{k_{i}}, a(i))$ determines an element $g_{i,k_{i}}$

of $\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i))$ . Since $f$ is a proper map, $\{(g_{i.k_{i}})\}\in\sum((\pi_{n})_{\nu})$ . Let $\alpha$ denote
a map which associates $\hat{\pi}((g_{i.k_{i}}))\in\hat{\pi}((\pi_{n})_{\nu})$ to $\pi(f)$ . It is easy to check that $\alpha$ is
an isomorphism.

There is a one more group (called the limit group) associated to a triple
$(K, L, a)$ that we shall need. It is defined (with the above notation) to be the
inverse limit of the inverse sequence

$\pi_{n}(K, L, a(1))\leftarrow\pi_{n}(A_{1}, B_{1}, a(\nu_{2}))-\pi_{n}(A_{2}, B_{2}, a(\nu_{3}))-\cdots$

(where bonding homomorphisms are induced by inclusions followed by the change
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of a base point along the path $a|[\nu_{n-1}, \nu_{n}]$ ) and it is denoted $\pi_{n}\leftarrow(K, L, a)$ . The

group $\pi_{n}\leftarrow(K, L, a)$ does not depend (up to an isomorphism) on the choice of

sequences $\{C_{k}\}$ and $\nu$ (see [2], [23], and (4.4) below).

There are some interesting homomorphisms between groups that we defined

which we describe now.
With the notation from (2.9) and the proof of (2.10), for a proper map $ f\in$

$P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ and every $i\geqq 2$ , let $f_{i-1}^{*}$ : $(D^{n}, S^{n-1}, *)\times\{i-1\}\rightarrow(A_{k_{i}}, B_{k_{i}}, a(i-1))$

be a map representing $(a_{\#}^{t})^{-1}([f_{i}])\in\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i-1))$ , where $[f_{i}]\in\pi_{n}(A_{k_{i}},$ $B_{k_{i}}$ ,

$a(i))$ is a homotopy class determined by a map $f_{i}$ and $a_{\#}^{i}$ : $\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i-1))$

$\rightarrow\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i))$ is the isomorphism induced by the path a $=a|[i-1, i]$ . The

maps $\{f_{i}^{*}\}_{i=1}^{\infty}$ determine a proper map $f^{*}\in P_{a}(\underline{D}^{n},\underline{S}^{n-1}, K, L)$ . It is easy to

check that for every $R\in\{\prod, \prod^{\infty}, \rho, \rho^{\infty}, \pi, \pi^{\infty}\}$ the map $sh_{R}^{n}$ : $\underline{R}_{n}(K, L, a)\rightarrow$

$\underline{R}_{n}(K, L, a)$ which maps $R(f)$ into $R(f^{*})$ is well defined and is a homomorphism

of groups (called the shift operator [2]) $(n\geqq 2)$ .
The second homomorphism $\delta_{R}^{n}$ (the boundary operator) maps $\underline{R}_{n}(K, L, a)$ into

$E_{n-1}(K, L, a)$ and is defined as follows. Let $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ represent an
element $R(f)\in\underline{R}_{n}(K, L, a)$ . Then $\delta_{R}^{n}(R(f))=R(g)\in\underline{R}_{n-1}(K, L, a)$ is represented

by a map $g\in P_{a}(\Rightarrow D^{n-1}, S^{n-2} ; K\approx\prime L)$ constructed in the following way. We regard

each relative n-cell $(D^{n}, S^{n-1}, *)_{i}=(D^{n}, S^{n-1}, *)\times\{i\}$ in $(\underline{D}^{n},\underline{S}^{n-1},\underline{*})$ as the cone
$C(D^{n-1})_{i}$ over the $(n-1)$ -cell such that the intersection of $C(D^{n-1})_{i}$ with the ray
$\underline{*}$ is precisely its vertex $v_{i}$ . Let $f_{i}^{\prime}(i\geqq 1)$ be a map of $(C(D^{n-1})_{i}, Bd(C(D^{n-1})_{i}),$ $v_{i}$)

into $(K, L, a(i))$ homotopic (in $(A_{k_{i}},$ $B_{k_{i}})$ ) to $f_{i}=f|C(D^{n-1})_{i}$ such that $f_{i}^{\prime}$ maps the

segment $[v_{i}, (*, 1)]$ , where $*\in S^{n-2}\subset D^{n-1}$ , linearly onto the segment $a([i, i+1])$ ,

and it maps the base of $C(D^{n-1})_{i}$ into the point $a(i+1)$ . Let the map $g=B(\{f_{i}^{\prime}\})$

map the horizontal t-section of $D^{n-1}\times[i, i+1]$ in the same way as $f_{i}^{\prime}$ maps the

t-section of $C(D^{n-1})_{i}$ , for every $i>0$ and $t\in I$ .
Finally, the homomorphism $r_{R}^{n}$ : $E_{n}(K, L, a)\rightarrow\underline{R}_{n}(K, L, a)$ (called the restric-

tion operator) takes $R(f),$ $f\in P_{a}(=D^{n}, S^{n-1}= ; K, L)$ , into $R(f|(\underline{D}^{n},\underline{S}^{n-1},\underline{*}))$ .

3. Connections with inward, approaching, and fundamental groups.

Now we shall relate Quigley’s inward groups $I_{n}(X, A, x)[21]$ of a pointed

pair of compact metric spaces (X, $A,$ $x$ ) with discrete proper homotopy groups of
a certain pair of contractible Q-manifolds and show that his approaching groups
$\pi_{n}(X=\prime A, x)$ and Borsuk’s fundamental groups $\underline{\pi}_{n}(X, A, x)$ are in a similar way

related to the continuous proper homotopy groups and the limit homotopy groups,
respectively, of the same pair of Q-manifolds.

Consider the pointed pair (X, $A,$ $x$ ) of compact metric spaces as a subset of
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the Hilbert cube $Q$ and let $(N_{i}, M_{i})$ be a decreasing sequence of compact Q-
manifold neighborhoods of (X, $A$ ) in $Q$ such that $(N_{1}, M_{1})=(Q, Q)$ and $\bigcap_{i>0}(N_{i}, M_{i})$

$=(X, A)$ . Let $H(X)=N_{1}\times\{1\}\cup\{(q, t)|q\in N_{i}, 1/i\leqq t\leqq 1/(i-1), i>0\}\cup X\times\{0\}$ , and
$H(A)=M_{1}\times\{1\}\cup\{(q, t)|q\in M_{i}, 1/i\leqq t\leqq 1/(i-1), i>0\}\cup A\times\{0\}$ . Let $H(X, A)$ be
the pair $(H(X), H(A))$ . We shall identify (X, $A,$ $x$) with the triplet $(X\times\{0\}$ ,
$A\times\{0\},$ $\{x\}\times\{0\}$ ) in $H(X, A)$ . Let $a:\underline{*}\rightarrow H(A)$ be defined by $a(t)=(x, 1/t)$ , for
$t\in\underline{*}=[1, \infty)$ . Finally, denote the pair $(M(X), M(A))$ by $M(X, A)$ , where $M(X)$

$=H(X)-X$ and $M(A)=H(A)-A$ . Observe that $H(X, A)$ is a pair of Hilbert cubes,
$M(X, A)$ is a pair of contractible Q-manifolds, $X$ is a Z-set in $H(X),$ $A$ is a Z-set
in $H(A)[8]$ , and a is a proper map of $\underline{*}$ into $M(A)$ .

REMARK 3.1. The reader familiar with the description of the strong shape
category in [9] can easily check that $M$ can be considered as a functor from
the strong shape category (of pointed pairs of compacta in $Q$ ) into the proper
homotopy category (of pairs of ANR’s pointed by proper maps of $\underline{*}$ ). It can also
be considered as a functor from the category $Sh_{FE}$ (of pointed pairs of compacta
in $Q$ ) constructed by Kodama and Ono [16] (which is equivalent to Marde\v{s}i\v{c}-
Segal shape category [19]) into the weak proper homotopy category (of pairs of
ANR’s pointed by proper maps of $\underline{*}$ ).

THEOREM 3.2. The Quigley’s relative inward group functor $I_{n}[21]$ , the func-
$tor\underline{\pi}_{n}\circ M$, and the functor $\underline{\pi}_{n}^{\infty}\circ M$ are $na$ turally isomorphic.

PROOF. We shall prove that $I_{n}$ and $\underline{\pi}_{n}\circ M$ are naturally isomorphic. The
isomorphism of $\underline{\pi}_{n}\circ M$ and $\underline{\pi}_{n}^{\infty}\circ M$ follows from (2.1).

Consider the triple (X, $A,$ $x$ ) as being embedded in $H(X, A)$ . If $\xi:(D^{n}, S^{n-1}, *)$

$\times N\rightarrow(H(X), H(A),$ $x$ ) is an inward mapping [21], let $\xi^{*}:(D^{n}, S^{n-1})\times N\rightarrow$

$(M(X), M(A))$ be defined as follows. For a point $d\in D^{n}$ and a natural number
$k\in N,$ $\xi^{*}(d, k)$ is a point of $M(X)$ whose Q-coordinate is equal to the Q-coordinate
of $\xi(d, k)$ and whose I-coordinate is the maximum between $1/k$ and the I-coordi-
nate of $\xi(d, k)$ . Then $\xi^{*}$ extends to a proper map $\xi^{**}\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; M(X),$ $M(A))$ .
Let $\underline{t}_{(X,A.x)}([\xi])=\pi(\xi^{**})$ , where $[\xi]$ is the element of $I_{n}(X, A, x)$ represented by
$\xi$ and $\pi(\xi^{**})$ is the element of $\underline{\pi}_{n}(M(X), M(A),$ $a$ ) $=\underline{\pi}_{n}(M(X, A, x))$ .

CLAIM 1. The function.$t=\underline{t}_{(X.A.x)}$ is onto.

PROOF. Let $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; M(X),$ $M(A))$ . The map $f$ restricted to $D^{n}\times N$

is an inward mapping from $(D^{n}, S^{n-1}, *)$ into (X, $A,$ $x$ ) except that base points
are not preserved. Hence we must modify $f$ by shrinking $f(\underline{*})=a(\underline{*})$ to a point.
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In order to do this, let $\{U_{i}\}_{i=1}^{\infty}$ be a decreasing sequence of open neighbor-

hoods of $x$ in $Q$ such that $U_{i}\subset N_{i},$ $U_{i+1}\subset\overline{U}_{i+1}\subset U_{i}$ and assume also that $ N_{i+1}\subset$

Int $N_{i}\subset N_{i}$ , for each $i>0$ . Now, construct a map $\lambda:H(X)\rightarrow I$ such that $\lambda$ is 1 on
$(N_{1}-U_{1})\times\{1\},$ $1/2$ on $Bd(U_{2})\times[1/2,1]\cup(N_{2}-U_{2})\times\{1/2\},$ $1/3$ on $Bd(U_{3})\times[1/3,1]$

$\cup(N_{3}-U_{3})\times\{1/3\}$ , and so on and is interpolated continuously in between. Observe
that $\lambda^{-1}(0)=\{x\}\times I\subset H(X)$

Let a map $f:(D^{n}, S^{n-1}, *)\times N\rightarrow(H(X), H(A),$ $x$ ) has at a point $(d, k)\in D^{n}\times N$

as the value the point of $H(X)$ whose Q-coordinate is the Q-coordinate of $f(d, k)$

and whose I-coordinate is the minimum between $\lambda(f(d, k))$ and the I-coordinate
of $f(d, k)$ .

It is easy to check that $\xi=f$ is an inward mapping from $(D^{n}, S^{n-1}, *)$ into
(X, $A,$ $x$ ) and that $\xi^{**}$ and $f$ are proper homotopic rel $\underline{*}$ . Hence, $\underline{t}([\xi])=\pi(f)$ .

CLAIM 2. The function $\underline{t}$ is one-to-one.

PROOF. Take inward maps $\xi,$
$\eta$ : $(D^{n}, S^{n-1}, *)\times N\rightarrow(H(X), H(A),$ $x$ ) and assume

that $\xi^{**}$ and $\eta^{**}$ are properly homotopic $rel*$-via a proper homotopy $H:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})$

$\times I\rightarrow(M(X), M(A),$ $a$ ). Let $\tilde{H}$ be obtained from $H$ by the above construction.
Then $\tilde{H}_{0}(d, k)$ , for $(d, k)\in D^{n}\times N$, has the Q-coordinate equal to the Q-coordinate
$\nu(d, k)$ of $\xi(d, k)$ while its I-coordinate is $\min\{\max(\mu(d, k),$ $1/k$ )

$,$

$\lambda(\nu(d, k)$ ,

$\max(\mu(d, k),$ $1/k$ ))}, where $\mu(d, k)$ is the I-coordinate of $\xi(d, k)$ . Just as in the
proof of Claim 1, it follows that $\tilde{H}_{0}$ is inward homotopic to $\xi$ . Similarly, $\tilde{H}_{1}$ is

inward homotopic to $\eta$ . Since $\tilde{H}$ is an inward homotopy between $\tilde{H}_{0}$ and $\tilde{H}_{1}$ , we
get that $\xi$ and $\eta$ are inward homotopic.

CLAIM 3. For $n\geqq 2$ , the function $\underline{t}$ is a homomorphism of groups.

PROOF. Let $\xi,$
$\eta$ : $(D^{n}, S^{n-1}, *)\chi N\rightarrow(H(X), H(A),$ $x$ ) be inward maps from

$(D^{n}, S^{n-1}, *)$ into (X, $A,$ $x$ ) and suppose that $\zeta:(D^{n}, S^{n-1}, *)\times N\rightarrow(H(X), H(A),$ $x$ )

represents $[\xi]+[\eta]$ in $I_{n}(X, A, x)$ . Then, for every $k\in N,$ $\zeta_{k}=\zeta|(D^{n}, S^{n-1}, *)\times$

$\{k\}$ is equal to the composition $(\xi_{k}, \eta_{k})\circ\nu^{n}$ . If we now construct $\xi^{**},$ $\eta^{**}$ , and
$\zeta^{**}$ we easily see that $\pi(\zeta^{**})$ represents $\pi(\xi^{**})+\pi(\eta^{**})$ in $\underline{\pi}_{n}(M(X, A, x))$ .

CLAIM 4. Let $f:(X, A, x)\rightarrow(Y, B, y)$ be a continuous map and let $F:(H(X)$ ,

$H(A),$ $x$ ) $\rightarrow(H(Y), H(B),$ $y$ ) be an extension of $f$ such that $F^{-1}(Y)=X$. If $[\xi]\in$

$I_{n}(X, A, x)$ , let $f_{*}([\xi])$ be the element of $I_{n}(Y, B, y)$ represented by $ Fc\xi$ . Then

the diagram
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$I_{n}(X, A, x)$ $I_{n}(Y, B, y)$

${}^{\underline{t}}(X, A, x)$ $\downarrow{}^{\underline{t}}(Y, B, y)$

$(F|M(X))_{*}$
$\underline{\pi}_{n}(M(X), M(A),$ $a$ ) – $\underline{\pi}_{n}(M(Y), M(B),$ $b$)

commutes.

PROOF. A simple proof is left to the reader. Observe that Claim 4 holds
also when the map $f$ is replaced by an arbitrary morphism of the strong shape
category of pairs [9] (or, what is equivalent, by a morphism of the fine shape
category of pairs [17]) but the description of $f_{*}$ and a morphism corresponding
to $F|M(X)$ above are more complicated.

REMARK 3.3. Even though Quigley did not define explicitely the boundary

homomorphism $\delta:I_{n}(X, A, x)\rightarrow I_{n-1}(A, x)$ it is obvious how to do this. By the
similar method one can prove that the diagram

$\underline{t}_{(X,Ax)\downarrow}I_{n}.(X,A, x)I_{n-1}(A,x)\underline{\delta}\downarrow\underline{t}_{(A.x)}$

$\underline{\pi}_{n}(M(X), M(A),$ $a$ )
$\underline{\pi}_{n-1}(M(A)\underline{\underline{\delta}}a)$

commutes for every triple (X, $A,$ $x$ ) and $n>0$ . This implies that homotopy sys-
tems (I, $\delta,$ $*$ ) and $(\underline{\pi}\circ M,\underline{\delta}, *)$ are equivalent [13].

In particular, since the long sequences of discrete proper homotopy groups of
the pair $(M(X), M(A),$ $a$ ) and the triplet $(M(X), M(A),$ $M(B),$ $a$ ), where $x\in B$ and
$B\subset A\subset X$, are exact (see (2.7)), we immediately get.

COROLLARY 3.4. The long inwa $rd$ sequences

$...\rightarrow I_{n+1}(X, A, x)\rightarrow^{\delta}I_{n}(A, x)I_{n}(X, x)\underline{i}\rightarrow^{j}I_{n}(X, A, x)I_{n- 1}(A, x)\underline{\delta}\rightarrow\ldots$

and
$...\rightarrow I_{n+1}(X, A)I_{n}(A\underline{\delta^{\prime}}B)I_{n}(X\underline{i^{\prime}}B)I_{n}(X\underline{j^{\prime}}A)\rightarrow^{\delta^{\prime}}I_{n-1}(A, B)\rightarrow\cdots$

are exact.

REMARK 3.5. By combining Theorems (2.4) and (3.2) we see that the inward
group $I_{n}(X, A, x)$ can be in a natural way considered as the (singular) relative
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homotopy group of $SM(X, A, x)$ , the tangent S-pair of the triplet $(M(X), M(A),$ $a$ ).

Let $J_{n}(X, A, x)$ denote Quigley’s n-th relative approaching group of (X, $A,$ $x$ )

[21] (his notation for this group was $\pi_{n}(X=\prime A, x)$ and thus is not convenient
here).

THEOREM 3.6. The functors $J_{n},$ $\pi_{n}\circ M=$
’

$and=\pi_{n}^{\infty}\circ M$ are naturally isomorphic.
$Mo$ reover, homotopy systems $(J, \delta, *)$ and $(\pi\circ M\approx’\delta\Rightarrow’*)$ are equivalent in the sense
of [13, p. 121].

PROOF. It follows from (2.1) that $\pi_{n}M=$ and $\pi_{n}^{\infty}M=$ are naturally isomorphic.
We shall now only indicate the proof that $J_{n}$ and $\pi_{n}\circ M=$ are naturally isomorphic

because the details are either easy to check or are very similar to the ones used
in the proof of (3.2).

Let $K(X)$ be the space obtained from $H(X)$ by shrinking $X$ to a point and
let $p:H(X)\rightarrow K(X)$ be the natural projection. Let $K(X, A, x)$ denote the quadruple
$(K(X), K(A),$ $x_{0}$ ; $p_{a}$ ) where $K(A)=p(H(A)),$ $x_{0}=p(X)$ , and $p_{a}$ : $I\rightarrow K(A)$ is a path
defined by $p_{a}(0)=x_{0}$ and $p_{a}(t)=p\circ a(1/t)$ for $t\in(O, 1$]. Recall (see (2.8)) that the
group $\pi_{n}=(M(X), M(A),$ $a$ ) is isomorphic to Hu’s relative local homotopy group
$\lambda_{n}(K(X), K(A),$ $x_{0}$ ; $p_{a}$ ) of $(K(X), K(A))$ at $x_{0}$ based at the path $p_{\alpha}[12]$ .

Let $\xi:(=D^{n}, S^{n-1}=’\underline{*})\rightarrow(H(X), H(X),$ $x$ ) be an approaching n-map [21]. By de-

finition and the fact that $H(A)$ is an ANR, we can assume that there is an $r\in\underline{*}$

such that $\xi(S^{n-1}\times[r, \infty))\subset H(A)$ . Define a new approaching n-map $\xi^{\prime}$ by $\xi^{\prime}(d, t)$

$=\xi(d, t+r)$ , for each $(d, t)\in D^{n}\times[1, \infty)$ . Then $\xi^{\prime}$ is approaching homotopic to
$\xi$ (via the approaching homotopy which sends $(d,$ $t,$ $s)\in D^{n}\times[1,$ $\infty$ ) $\times I$ into
$\xi(d, t+sr))$ . Hence, we could assume from the begining that $\xi$ maps $S^{n-1}=$ into
$H(A)$ .

From $\xi$ we construct a map $\xi^{*}\in P_{a}(=D^{n}, S^{n-1}= ; M(X),$ $M(A))$ as follows. For
$d\in D^{n}$ and $ t\in[1, \infty$ ), $\xi(d, t)$ is a point in $H(X)$ with the Q-coordinate $\nu(d, t)$

and the I-coordinate $\mu(d, t)$ . Let $\xi^{*}(d, t)$ be a point of $H(X)$ whose Q-coordinate
is $\nu(d, t)$ and whose I-coordinate is $\max(\mu(d, t),$ $1/t$ ).

The composition $p\circ\xi^{*}\in P_{p\circ a}(=D^{n}, S^{n-1}= ; K(X)-\{x_{0}\},$ $K(A)-\{x_{0}\})$ induces an
admissible map [12] $\xi^{**}:$ $([D^{n}\times(0,1]]\cup\infty,$ $[S^{n-1}\times(0,1]]\cup\infty,$ $\infty$ ) $\rightarrow(K(X), K(A),$ $x_{0}$)

such that $\xi^{**}(*, t)=p\circ a(*, 1/t)=p_{a}(t)$ for each $t\in(O, 1$]. We define $=t([\xi])=$

$\approx t_{(X,A,x)}([\xi])$ to be $[\xi^{**}]$ , where $[\xi]$ is the element of $J_{n}(X, A, x)$ represented by
$\xi$ and $[\xi^{**}]$ is the element of $\lambda_{n}(K(X), K(A),$ $x_{0}$ ; $p_{a}$ ) represented by $\xi^{**}[12]$ .

The necessary properties of $=t$ are now verified in much the same way as
this was done in the proof of (3.2) for $\underline{t}$ . The only differences are that instead
of natural numbers we use the ray $[1, \infty$ ) and that from $H(X)$ we must pass to
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$K(X)$ by composing with the projection $p$.
REMARK 3.7. Since the groups $\pi_{n}(M(X)=\prime M(A), a)$ and $\pi_{n}(I(M(X), M(A),$ $a$ ))

are naturally isomorphic (by (2.4)), it follows that the relative approaching group
$J_{n}(X, A, x)$ can also be in a natural way considered as the (singular) relative
homotopy group of $IM(X, A, x)$ , the tangent I-pair of the triplet $(M(X), M(A),$ $a$ ).

Hence, for every statement about (relative) homotopy groups there is an analogous
statement about (relative) approaching groups. The corollaries below ((3.8) was
first proved in [21]) are trivial applications of this correspondence.

COROLLARY 3.8. The long approaching sequence
$\delta$ $i$ $j$ $\delta$

$...\rightarrow J_{n+1}(X, A, x)-J_{n}(A, x)-J_{n}(X, x)-J_{n}(X, A, x)-J_{n-1}(A, x)\rightarrow\cdots$

of the pointed pair (X, $A,$ $x$ ) of compacta is exact.

COROLLARY 3.9. The long approaching sequence

$...\rightarrow J_{n+1}(X, A)J_{n}(A\underline{\delta^{\prime}}B)J_{n}(X\underline{i^{\prime}}B)J_{n}(X\underline{j^{\prime}}A)J_{n-1}(A\underline{\delta^{\prime}}B)\rightarrow\cdots$

of the triple (X, $A,$ $B$) is exact.
Let $F_{n}(X, A, x)$ denote the n-th relative fundamental group of (X, $A,$ $x$ ) $[21]$

or, equivalently, the inverse limit group of the inverse system

$\pi_{n}(N_{1}, M_{1}, x)-\pi_{n}(N_{2}, M_{2}, x)-\pi_{n}(N_{3}, M_{3}, x)-\cdots$

with bonding homomorphisms induced by inclusions. This group is usually denoted
$\underline{\pi}_{n}(X, A, x)$ and also called the n-th relative shape group of (X, $A,$ $x$ ) but in our
paper that notation might be confusing.

THEOREM 3.10. The functors $F_{n}$ and $\pi.\circ M$ are naturally isomorphic. More-
over, homotopy $sys$ tems $(F, \delta, *)$ and $(\leftarrow\pi\circ M,\tilde{0,}*)$ are equivalent.

PROOF. A routine proof is left to the reader.

4. The exact sequence.

In this section we shall show that for $ R=\pi$ and $R=\pi^{\infty}$ and every triple
$(K, L, a)$ , the five terms sequence of groups and homomorphisms $(n\geqq 3)$

$0-ker(Id- sh_{R}^{n})\underline{R}_{n}(K\underline{i_{R}^{n}}L, a)\underline{R}_{n}(K\underline{Id- sh_{R}^{n}}L, a)$

$\underline{\delta_{R}^{n}}\underline{R}_{n- 1}(K, L, a)^{\underline{\gamma_{R}^{n-1}}}{\rm Im} r_{R}^{n-1}-0$
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is exact. Then we shall prove that groups ${\rm Im} r_{R}^{n},$ $ker(Id- sh_{R}^{n})$ , and $\pi_{n}\leftarrow(K, L, a)$

are isomorphic for all $n\geqq 3$ . In view of the results in the previous section, it
follows that Quigley’s exact sequence from the n-th to the $(n-1)- st$ relative
fundamental group of a pointed pair of compacta [21] can be regarded as the
special case of the above sequence.

Let $Id$ denote the identity homomorphism on the group $\underline{R}_{n}(K, L, a)$ and let
$i_{R}^{n}$ be the inclusion of the kernel of $Id- sh_{R}^{n}$ into $\underline{R}_{n}(K, L, a)$ .

THEOREM 4.1. For $R\in\{\pi, \pi^{\infty}\}$ , every pair $(K, L)$ of connected, locally com-
pact, sepa rable metric $ANR$ spaces, every proper map $a:\underline{*}\rightarrow L$, and every $n\geqq 3$ ,

the above sequence of groups and homomorphisms is exact.

PROOF. We must show that the sequence is exact at the third and at the
fourth group. The exactness at other terms is obvious.

CLAIM 1. $ker(\delta_{R}^{n})={\rm Im}(Id- sh_{R}^{n})$ .

PROOF. Let $R(f)\in\underline{R}_{n}(K, L, a)$ . We shall show that if $R(g)=R(f)- sh_{R}^{n}(R(f))$

$=R(f)-R(f^{*})$ then $\delta_{R}^{n}(R(g))=0\in\underline{R}_{n- 1}(K, L, a)$ . We can assume that $R(g)$ is
represented by a proper map $g^{\prime}\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ such that the restriction $g_{m}^{\prime}$

of $g^{\prime}$ onto $C(D^{n-1})_{m}$ has the property that $g_{m}^{\prime}$ restricted to the lower half of
$C(D^{n-1})_{m}$ is in the homotopy class of $f_{m},$ $g_{m}^{\prime}$ restricted to the upper half of
$C(D^{n-1})_{m}$ is in the homotopy class $-[f_{m+1}]$ (with the base point moved to $a(m)$),
$g_{m}^{\prime}$ maps the middle section of $C(D^{n-1})_{m}$ into the point $a(m+(1/2))$ , and $g_{m}^{\prime}$ maps
the segment $[v_{m}, (*, 1)]$ linearly onto the segment $a([m, m+1])$ , for every $m>0$ .
Observe that for each $m>1,$ $B(\{g_{i}^{\prime}\})|D^{n-1}\times[m-(1/2), m+(1/2)]$ is null-homotopic
in the complement of any compact set in $K$ provided $m$ is large enough. By

applying the HET trice we see that $B(\{g_{i}^{\prime}\})|D^{n-1}\times[m-(1/2), m+(1/2)]$ is homo-
topic rel $a([m-(1/2), m+(1/2)])$ to a map of $D^{n-1}\times[m-(1/2), m+(1/2)]$ which
maps a pair $(x, t)\in D^{n-1}\times[m-(1/2), m+(1/2)]$ into the point $a(t)$ , and that these
homotopies for $B(\{g_{i}^{\prime}\})|D^{n-1}\times[m-(1/2), m+(1/2)]$ and $B(\{g_{i}^{\prime}\})|D^{n- 1}\times[m+(1/2)$ ,

$m+(3/2)]$ agree on $D^{n-1}\times\{m+(1/2)\}$ , for every $m>1$ . Piecing these homotopies
together we see that $\delta_{\pi}^{n}(\pi(g))=\pi(B(\{g_{i}^{\prime}\}))=0\in\pi_{n-1}(K=\prime L, a)$ . But then $\delta_{R}^{n}(R(g))=$

$R(B(\{g_{i}^{\prime}\}))=0$ also for $R=\pi^{\infty}$ .
Conversely, let $R(f)\in ker(\delta_{R}^{n})$ . Then $R(B(\{f_{i}^{\prime}\}))=R(c)$ , where $c\in P_{a}(=D^{n-1}$ ,

$S^{n-2}$ ;
$=$

$K,$ $L$) maps $(d, t)\in D^{n-1}\times[1, \infty)$ into $a(t)$ . Hence, there is a natural num-
ber $\lambda=\lambda_{R}$ and a proper map $H:(D^{n-1}, S^{n-2}, *)\times[\lambda, \infty)\times I\rightarrow(K, L)$ such that $\lambda_{\tau}=1$ ,
$H_{0}=B(\{f_{i}^{\prime}\})|D^{n-1}\times[\lambda, \infty),$ $ H_{1}=c|D^{n-1}\times[\lambda, \infty$), and $H_{l}(*, s)=a(*, s)$ for all $t\in I$

and $ s\geqq\lambda$ . For every integer $ m\geqq\lambda$ , the restriction $ H|D^{n-1}\times[m, m+1]\times\{0\}\cup$
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$D^{n- 1}\times\{m, m+1\}\times I$ can be considered as representing the sum $-[g_{m}]+[f_{m}]$

$+i_{m+1,m}([g_{m+1}])$ , where $g_{m}$ : $(D^{n}, S^{n-1}, *)\rightarrow(K, L, a(m))$ and $g_{m+1}$ : $(D^{n}, S^{n-1}, *)\rightarrow$

$(K, L, a(m+1))$ have images outside larger and larger compact subsets of $K$ as $m$

increases, while $i_{m+1.m}$ : $\pi_{n}(K, L, a(m+1))\rightarrow\pi_{n}(K, L, a(m))$ is an isomorphism in-
duced by the path a from $a(m+1)$ to $a(m)$ (in fact, we must consider these iso-
morphisms for complements of above compacta in $K$). Since $H|D^{n-1}\times[m, m+1]$

$\times\{0\}\cup D^{n-1}\times\{m, m+1\}\times I$ extends to all of $D^{n-1}\times[m, m+1]\times I$ and this exten-
sion agrees with $c$ on $D^{n- 1}\times[m, m+1]\times\{1\}$ , we conclude that $-[g_{m}]+[f_{m}]$

$+i_{m+1,m}([g_{m+1}])=0$ . Hence $[f_{m}]=[g_{m}]-i_{m+1,m}([g_{m+1}])$ . From this it follows
that $R(f)=(Id- sh_{R}^{n})(R(g))$ , where $g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ is any proper map which
agrees with $g_{m}$ on $D^{n}\times\{m\}$ for every integer $ m\geqq\lambda$ .

CLAIM 2. $ker(r_{R}^{n- 1})={\rm Im}(\delta_{R}^{n})$ .

PROOF. The inclusion ${\rm Im}(\delta_{R}^{n})\subset ker(r_{R}^{n-1})$ is clear from the construction of $\delta_{R}^{n}$ .
On the other hand, if $R(g)\in ker(r_{R}^{n-1})$ , then $r_{R}^{n-1}(R(g))=0,$ $i$ . $e.$ , there is a repre-
sentative $g\in P_{a}(=D^{n-1}, S^{n-2}= ; K, L)$ of $R(g)$ and a natural number $\lambda=\lambda_{R.g}$ such
that $\lambda_{\overline{}}.$

, $,=1$ and $g|(D^{n-1}\times[\lambda, \infty))\cap\underline{D}^{n- 1}$ is proper homotopic rel $\{*\}\times[\lambda, \infty$ ) to
$c|(D^{n-1}\times[\lambda, \infty))\cap\underline{D}^{n-1}$ . By applying the proper homotopy extension theorem [9]

we see that $R(g)$ is represented also by a proper map $f\in P_{a}(=D^{n- 1}, S^{n-2} ; K=\prime L)$

such that $f(D^{n-1}\times\{m\})=a(m)$ for every $m\in N$. Clearly, $R(f)\in{\rm Im}(\delta_{R}^{n})$ so that
$R(g)\in{\rm Im}(\delta_{R}^{n})$ because $R(f)=R(g)$ .

REMARK 4.2. The above sequence is well defined also for $n=2$ . In this case
$Id- sh_{R}^{o},$ $\delta_{R}^{Q}$ , and $r_{R}^{1}$ are merely functions of pointed sets. The proof of (4.1) can
be applied to show that in this case the sequence is also exact.

THEOREM 4.3. For $R\in t\rho,$ $\rho^{\infty},$ $\pi,$
$\pi^{\infty}$ }, every pair $(K, L)$ of connected, locally

compact, sepa rable metric $ANR$ spaces, every proper map $a;\underline{*}\rightarrow L$ , and every $n\geqq 3$ ,

the subgroups $ker(Id- sh_{R}^{n})$ and ${\rm Im}(r_{R}^{n})$ of $\underline{R}_{n}((K, L, a)$ coincide and are naturally

isomorphic to $\pi_{n}(K, L, a)$ .

PROOF. We shall prove that $ker(Id- sh_{R}^{n})={\rm Im}(r_{R}^{n})$ and that ${\rm Im}(r_{R}^{n})$ is isomor-
phic to $\pi\leftarrow(K, L, a)$ .

CLAIM 1. ${\rm Im}(r_{R}^{n})\subset ker(Id- sh_{R}^{n})$ .

PROOF. Let $g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ represent an element $R(g)\in{\rm Im}(r_{R}^{n})$ . Then
there is a proper map $F\in P_{a}(=D^{n}, S^{n-1} ;\Rightarrow K, L)$ such that $gRf$ where $f=F|\underline{D}^{n}$ .
Let us first consider the most complicated case when $ R=\rho$ . Let $ C_{0}=\emptyset\subset C_{1}\subset C_{2}\subset\cdots$
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be an increasing sequence of compacta in $K$ such that $K=\bigcup_{i\Leftarrow 0}^{\infty}C_{i}$ . Then there is
a sequence $ m_{0}=1<m_{1}<m_{2}<\cdots$ of natural numbers such that for every $m,$ $m_{i- 1}$

$\leqq m<m_{i}$ , there is a homotopy $H^{m}:(D^{n}, S^{n-1}, *)\times\{m\}\rightarrow(K-C_{i-1}, L-C_{i-1}, a(m))$

between $f_{m}$ and $g_{m}(i=1,2,3, \cdots)$ . It is clear that the collection of all homotopies
$H^{1},$ $H^{2},$ $\cdots$ defines a proper homotopy between $f$ and $g$ . By applying the proper
homotopy extension theorem [9] it follows that there is a proper map $ G\in$

$P_{a}(=D^{n}, S^{n-1}= ; K, L)$ with $g=G|\underline{D}^{n}$ . Hence, $R(g)\in ker(Id- sh_{\rho}^{n})$ . In the case $R=\rho^{\infty}$

we don’t have homotopies $H^{1},$
$\cdots,$

$H^{m_{1}-1}$ so that we can only conclude that there
is a proper map $G\in P_{a1Im_{1}.\infty)}(D^{n}\times[m_{1}, \infty),$ $ S^{n-1}\times[m_{1}, \infty$) $;K,$ $L$) such that
$g|(D^{n}\times[m_{1}, \infty))\cap\underline{D}^{n}=G|(D^{n}\times[m_{1}, \infty))\cap\underline{D}^{n}$ . This is however sufficient to get
$o^{\infty}(g)\in ker(Id- sh_{\rho}^{n_{\infty}})$ . The remaining cases $ R=\pi$ and $R=\pi^{\infty}$ are handled simi-
larly.

CLAIM 2. $ker(Id- sh_{R}^{n})\subset{\rm Im}(r_{R}^{n})$ .

PROOF. We shall assume $ R=\rho$ and leave the other easier cases to the reader.
Let $p(f)\in ker(Id- sh_{\rho}^{n})$ . Then $\rho(f)=sh_{\rho}^{n}(\rho(f))$ . Using the method of the proof
of Claim 1, we see that every representative $f$ of $o(f)$ is proper homotopic to a
proper map $f^{\prime}\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ such that $[f_{i}^{\prime}]=(a_{\#}^{i})^{-1}([f_{i+1}])$ where $[f_{i}^{\prime}]\in$

$\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i)),$ $[f_{i+1}]\in\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i+1))$ , and $a_{\#}^{i}$ is the isomorphism induced
by the path $a^{i}=a|[i, i+1]$ (the notation is explained in \S 2) for $i=1,2,3,$ $\cdots$ .
Hence, for every $i\in N$, there is a map $H^{i}$ : $(D^{n}, S^{n-1}, *)\times[i, i+1]\rightarrow(K, L, a([i, i+1]))$

such that $H^{i}|D^{n}\times\{i\}=f_{i},$ $H^{i}|D^{n}\times\{i+1\}=f_{i+1},$ $H^{i}(*, t)=a(*, t)$ for all $t\in[i, i+1]$ ,
and the image of $H^{i}$ is in $A_{n_{i}}$ where $ n_{i}\rightarrow\infty$ as $ i\rightarrow\infty$ . By glueing all maps $H^{i}$

together we shall get a proper map $F\in P_{a}(=D^{n}, S^{n-1}= ; K, L)$ satisfying $F|\underline{D}^{n}=f$.
In other words, $\rho(f)\in{\rm Im}(r_{\rho}^{n})$ .

CLAIM 3. The groups ${\rm Im}(r_{R}^{n})$ and $\pi_{n}\leftarrow(K, L, a)$ are isomorphic.

PROOF. If $R(g)\in 1m(r_{R}^{n})$ is represented by a proper map $g\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ ,
then there is a proper map $F\in P_{a}(=D^{n}, S^{n-1}= ; K, L)$ such that $gRf$ where $f=F|\underline{D}^{n}$ .
With the notation from (2.9) and the proof of (2.10), select a sequence $m_{1}=$

$ 1<m_{2}<m_{8}<\cdots$ of natural numbers such that $(F(D^{n}\times[\nu_{m_{i}}, \nu_{m_{i+1}}]),$ $F(S^{n-1}\times[\nu_{m_{i}}$ ,
$\nu_{m_{i+1}}]))\subset(A_{i}, B_{i})$ and $m_{i}\geqq i+1$ for each $i=1,2,3,$ $\cdots$ . Hence, the map $f_{\nu_{m}}c$ when
shifted into the point $a(\nu_{i+1})$ determines an element of $\pi_{n}(A_{i}, B_{i}, a(\nu_{i+1}))$ while
the collection of all maps $f_{\nu_{m}}i$ determines an element $\{f_{\nu_{m_{i}}}\}$ of $\pi_{n}\leftarrow(K, L, a)$ . The
function $\alpha$ which associates $\{f_{\nu_{m_{9}}}\}$ to $R(g)$ is easily seen to be well defined and
is an isomorphism of ${\rm Im}(r_{R}^{n})$ onto $\pi_{n}\leftarrow(K, L, a)$ .
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REMARK 4.4. As in (4.2) observe that versions of (4.3) for $n=1$ and $n=2$

also hold.
By combining (4.1) and (4.3) we get the following.

COROLLARY 4.5. Under the assumptions of (4.1), the sequence of groups and

homomorphisms

$0\rightarrow\pi_{n}\leftarrow(K, L, a)\rightarrow^{j_{R}^{n}}\underline{R}_{n}(K, L, a)\underline{R}_{n}(K\underline{Id- sh_{R}^{n}}L, a)R_{n-1}(K\underline{\delta_{R}^{n}}L, a)$

$\rightarrow\leftarrow\pi_{n-1}(Kq_{R}^{n-1}L, a)\rightarrow 0$

is exact, where $j_{R}^{n}$ and $q_{R}^{n}$ are obtained from $i_{R}^{n}$ and $r_{R}^{n}$ , respectively, composing

with appropriate isomorphisms from (4.3).

The routine application of techniques in \S 3 implies that the following theorem

holds. It provides an alternative proof of a main result in [20] and shows that

Quigley’s theorem is a consequence of Corollary (4.5).

THEOREM 4.6. With the notation from the section 3, the ladder

$0-F_{n}(X, A, x)\underline{i_{n}}J_{n}(X, A, x)I_{n}$($X,$ A$\underline{Id_{n}-A_{n}}$

$x$) $-$
$\downarrow\hat{t}$

$n$

$\backslash _{\backslash ^{\underline{t}}}$ $\backslash \underline{t}$

$0\rightarrow\overline{\pi}_{n}(M(X), M(A),$ $a$ ) $\underline{J\pi}\underline{\pi}_{n}(M(X), M(A),$ $a)^{\underline{Id-sh_{\pi}^{n}}}\underline{\pi}_{n}(M(X), M(A),$
$a$ ) $\rightarrow$

$\underline{\delta_{n}}J_{n- J}(X, A, x)\underline{\gamma_{n-1}}F_{n-1}(X, A, x)\rightarrow 0$

$\underline{\delta_{\pi}^{n}}\Leftarrow\pi_{n-1}(M(X)I_{\Rightarrow}^{t}, M(A),$

$a$ )
$\underline{q_{n}^{n-1}}ii_{n- 1}^{\backslash _{(}}\leftarrow\iota_{M(X)}M(A),$

$a$ ) $\rightarrow 0$

commutes.

In the above ladder the upper horizontal sequence is the sequence (0.2) from

[21] and the vertical arrows are (natural) isomorphisms from theorems (3.2), (3.6),

and (3.10). The definition of the natural isomorphism $\tilde{t}=t_{(X,A,x)}\leftarrow$ in (3.10) is

obvious provided we recall that $X$ is a Z-set in the Hilbert cube $H(X)[8]$ .
The homomorphisms appearing in the sequence in (4.5) are natural so that

the reader will have nc difficulty to prove the following.

THEOREM 4.7. Let $(K, L)$ and $(K^{\prime}, L^{\prime})$ be two pairs of connected, locally com-
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pact, separable metric ANR’s and let $a:\underline{*}\rightarrow L$ and $a^{\prime}$ $:\underline{*}\rightarrow L^{\prime}$ be proper maps. If
$f:(K, L)\rightarrow(K^{\prime}, L^{\prime})$ is a proper map satisfying $f\circ a=a^{\prime},$ $n\geqq 3$ , and $R\in\{\pi, \pi^{\infty}\}$ ,

then the ladder

$ 0\rightarrow\pi_{n}\leftarrow$ ( $K,$ L. $a$ ) $\rightarrow^{j_{R}^{n}}\underline{R}_{n}(K, L, a)\underline{R}_{n}(K\underline{Id-sh_{R}^{n}}L, a)\rightarrow$

$ 0\rightarrow\leftarrow\pi_{n}(K^{\prime},L^{*}\downarrow fa^{\prime})\rightarrow^{j_{R}^{n}}\underline{R}_{n}(K,L^{*}\backslash f a^{\prime})\underline{Id-sh_{R}^{n}}\underline{R}_{n}(K,L^{\prime}\backslash _{\backslash ,}f_{*}a^{\prime})\rightarrow$

$\delta_{R}^{n}$ $q_{R}^{n-1}$

$-E_{n-1}(K, L, a)-\pi_{n-1}\leftarrow(K, L, a)-0$

$\downarrow f_{*}$ $\downarrow f_{*}$

$\delta_{R}^{n}$ $q_{R}^{n-1}$

$\rightarrow\underline{R}_{n-1}(K^{\prime}, L^{\prime}, a^{\prime})-\leftarrow\pi_{n-1}(K^{\prime}, L^{\prime}, a^{\prime})-0$ ,

in which the vertical homomorphisms are induced by $f$, commutes.

REMARK 4.8. The ladders in (4.6) and (4.7) are well defined also for $n=2$ .
Using remarks (4.2) and (4.4) it can be proved that in this case too they commute.

5. $\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ pairs.

This last section introduces the notion of a $C_{p0}$-movable at $\infty$ triplet $(K, L, a)$ ,

where $C_{p0}$ is a class of pointed pairs of topological spaces, $(K, L)$ is a pair of
connected, locally compact, separable metric spaces, and $a:\underline{*}\rightarrow L$ is a proper map.

We prove that for a $\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ triplet $(K, L, a)$ (of ANR’s) and
$R\in\{\pi, \pi^{\infty}\}$ the function $Id- sh_{R}^{n}$ : $\underline{R}_{n}(K, L, a)\rightarrow\underline{R}_{n}(K, L, a)$ is surjective for each
$n\geqq 1$ . In view of Theorem (4.6) this result extends the principal theorem in [21].

As a consequence we get that for a $\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ triplet $(K, L, a)$

the groups $\underline{R}_{n-1}(K, L, a)$ and $\pi_{n- 1}\leftarrow(K, L, a)$ are isomorphic $(n\geqq 3, R\in\{\pi, \pi^{\infty}\})$ .
By invoking Theorems (4.6) and (5.3) below it follows that the approaching group
$J_{n-1}(X, A, x)$ of a $\{(D^{n}, S^{n-1}, *)\}$ -movable (as defined in (5.2)) pointed pair (X, $A,$ $x$ )

of compact metric spaces and its fundamental group $F_{n-1}(X, A, x)$ are (naturally)

isomorphic.

DEFINITION 5.1. Let $C_{p0}$ be a class of pointed pairs $(Z, Z_{0}, *)$ of topological
spaces, let $(K, L)$ be a pair of locally compact separable metric spaces and let
$a:\underline{*}\rightarrow L$ be a proper map. We call the triplet $(K, L, a)C_{p0}$-movable at $\infty$ pro-
vided that for every compact set $B\subset K$ there is a compact set $C$ containing $B$

such that for every compact set $D$ in $K,$ $D\supset B$ , and a map $f:(Z, Z_{0}, *)-\rightarrow(K-C$,
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$L-C,$ $a(\underline{*})\cap(L-C))$ of $(Z, Z_{0}, *)$ in $C_{p0}$ there is a homotopy $f_{t}$ : $(Z, Z_{0}, *)\rightarrow(K-B$ ,
$L-B,$ $a(\underline{*})\cap(L-B))(0\leqq t\leqq 1)$ with $f_{0}=f$ and $f_{1}(Z)\subset K-D$ .

It is easy to verify that the above definition depends only on the germ of a
map $a$ .

DEFINITION 5.2. A pointed pair (X, $A,$ $x$ ) of compact metric spaces is said to
be $C_{p0}$-movable, where $C_{p0}$ is a class of pointed pairs of topological spaces, if for
some embedding of $X$ into an ANR $M$ the following holds. For each neighbor-
hood $(U, U^{\prime})$ of (X, $A$ ) in $M(i$ . $e.,$ $U$ is a neighborhood of $X$ in $M,$ $U^{\prime}$ is a neigh-
borhood of $A$ in $M$, and $U^{\prime}\subset U$ ) there is a smaller neighborhood (V, $V^{\prime}$ ) of (X, $A$)
in $M$ such that for any neighborhood $(W, W^{\prime})$ of (X, $A$) in $M$ and a map
$f:(Z, Z_{0}, *)\rightarrow(V, V^{\prime}, x)$ of $(Z, Z_{0}, *)$ in $C_{p0}$ there is a homotopy $f_{t}$ : $(Z, Z_{0}, *)\rightarrow$

$(U, U^{\prime}, x)(0\leqq t\leqq 1)$ satisfying $f_{0}=f,$ $(f_{1}(Z), f_{1}(Z_{1}))\subset(W, W)$ , and $f_{t}(*)=x$ for each
$t\in I$ .

It can be proved that a pointed pair (X, $A,$ $x$ ) $of$ compacta is $C_{p0}$-movable iff
the above condition holds in every ANR space containing $X$.

THEOREM 5.3. Let $C_{p0}$ be a class of pointed pairs of compact spaces and let
(X, $A,$ $x$ ) be a pointed pair of compacta with $X\subset Q$ . Then (X, $A,$ $x$ ) is $C_{p0}$-movable
iff the triplet $(M(X), M(A),$ $a$ ) is $C_{p0}$-movable at $\infty$ .

PROOF. Assume that (X, $A,$ $x$ ) $\subset H(X),$ $H(A),$ $x$ ) is $c_{p0}^{4}$-movable. If $B$ is a
compactum in $M(X)$ , then $U=H(X)-B$ is an open neighborhood of $X$ in $H(X)$ .
With the notation from \S 3, select a natural number $m>1$ such that $H_{m}(A)=$

$\{(q, t)|q\in M_{i}, 1/(i+1)\leqq t\leqq 1/i, i\geqq m\}\cup A\times\{0\}$ is contained in $U$. Since $H_{m}(A)$ is
an ANR [8], using the HET it follows that there is a neighborhood $U^{\prime}$ of $H_{m}(A)$

in $U$ and a homotopy $r_{t}$ : $U\rightarrow U(0\leqq t\leqq 1)$ such that $r_{0}=id_{U},$ $r_{1}(U^{\prime})\subset H_{m}(A)$ and
$r_{t}|H_{m}(A)=id$ for all $t\in I$ . Then pick an open neighborhood pair (V, $V^{\prime}$ ) of
(X, $A$ ) in $H(X)$ with respect to $(U, U^{\prime})$ an in Definition (5.2) and put $C=$

$(H(X)-V)\cup(H(A)-V^{\prime})$ . Consider a map $f:(Z, Z_{0}, *)\rightarrow(M(X)-C, M(A)-C$ ,
$a(\underline{*})\cap(M(A)-C))$ of $(Z, Z_{0}, *)\in C_{p0}$ and a compactum $D,$ $D\supset B$ , in $M(X)$ . Let
$W=H(X)-D$ . Now, repeat the argument used in the construction of $U^{\prime}$ and $r_{t}$

to get an open neighborhood $W^{\prime}$ of $A$ in $W$ and a homotopy $q_{t}$ : $U\rightarrow U$ such that
$q_{0}=id_{U},$ $q_{t}(W)\subset W,$ $q_{t}(U^{\prime})\subset U^{\prime}$ , and $q_{t}(W^{\prime})\subset H_{m}(A)$ for all $t\in I$ . Also, since $\alpha=$

$a([a^{-1}(f(*)), \infty))\cup\{x\}$ is a Z-set arc in $M(A)-C$, the natural collapse of $\alpha$ onto
the point $x$ extends to a pseudo-isotopy $\lambda_{t}$ : $H(X)\rightarrow H(X),$ $0\leqq t\leqq 1$ , supported on

$V^{\prime}$ such that $\lambda_{t}(\alpha)\subset\alpha$ , for each $t\in I$ (see [6]). The choice of the pair (V, $V^{\prime}$ )

implies that there is a homotopy $f_{t}$ : $(Z, Z_{0}, *)\rightarrow(U, U^{\prime}, x)$ such that $f_{0}=\lambda_{1}\circ f$ and
$(f_{1}(Z), f_{1}(Z_{0}))\subset(W. W^{\prime})$ . By changing only the I-coordinate in $H(X)$ , it is easy to
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see that there is a deformation $D_{t}$ : $(H(X), H(A))\rightarrow(H(X), H(A))$ with $ D_{l}(W)\subset$

$W-X,$ $D_{t}(U)\subset U-X,$ $ D_{t}(\alpha)\subset\alpha$ , and $D_{t}=id$ on $f(Z)$ , for all $0<t\leqq 1$ . Let
$g_{t}$ : $(Z, Z_{0}, *)\rightarrow(U, U^{\prime}, \alpha)(0\leqq t\leqq 1)$ denote the join of homotopies $\lambda_{l}\circ f$ and $r_{t}\circ q_{t}\circ f_{t}$ .
Then $D_{1}\circ g_{t}:(Z, Z_{0}, *)\rightarrow(M(X)-B, M(A)-B,$ $\alpha-\{x\}$ ) connects $f$ with a map
$D_{1}\circ r_{1}\circ q_{1}\circ f_{1}$ : $(Z, Z_{0}, *)\rightarrow(M(X)-D, M(A)-D,$ $\alpha-\{x\}$ ).

Conversely, suppose that the triplet $(M(X), M(A),$ $a$ ) is $C_{p0}$-movable at $\infty$ .
Let $(U, U^{\prime})$ be an open neighborhood of (X, $A$) in $H(X)$ . For a compactum $B=$

$(H(X)-U)\cup(H(A)-U^{\prime})$ in $M(X)$ , select a compactum $C,$ $C\supset B$ , as in Definition
(5.1) and put $V=H(X)-C$ . Then, in the same way we did it above, pick an open
nighborhood $V^{\prime}$ of $A$ in $U^{\prime}\cap V$ and a homotopy $r_{t}$ ; $V\rightarrow V(0\leqq t\leqq 1)$ such that
$r_{0}=id$ and $r_{1}(V^{\prime})\subset H(A)$ . We claim that the pair (V, $V^{\prime}$) meets our needs. Indeed,
take any open neighborhood $(W, W^{\prime})$ of (X, $A$) in $H(X)$ and a map $f:(Z, Z_{0}, *)$

$\rightarrow(V, V^{\prime}, x)$ of a pointed pair $(Z, Z_{0}, *)$ in $C_{p0}$ . Let $D=(H(X)-W)\cup(H(A)-W^{\prime})$

and let $D_{t}$ be a deformation described above satisfying, instead of the last con-
dition there, the conditions $D_{t}(H(X)-C)\subset M(X)-C$, and $D_{t}(V^{\prime})\subset V^{\prime}-A$ , for all
$0<t\leqq 1$ . By assumption, there is a homotopy $f_{l}$ : $(Z, Z_{0}, *)\rightarrow(M(X)-B, M(A)-B$ ,
$a(\underline{*})\cap(M(A)-B))$ such that $f_{0}=D_{1}\circ r_{1}\circ f$ and $(f_{1}(Z), f_{1}(Z_{0}))\subset(M(X)-D, M(A)-D)$

$\subset(W, W^{\prime})$ . The composition $\lambda_{1}\circ f_{l}$ is a homotopy in $(U, U^{\prime})$ connecting the map
$\lambda_{1}\circ D_{1}\circ r_{1}\circ f$ with $\lambda_{1}\circ f_{1}$ : $(Z, Z_{0}, *)\rightarrow(W, W^{\prime}, x)$ . It is clear that $f$ and $\lambda_{1}\circ D_{1}\circ r_{1}$ ofare homotopic in $(U, U^{\prime})$ rel $*$ . The join of the last two homotopies shows that
the pointed pair (X, $A,$ $x$ ) is $C_{p0}$-movable.

THEOREM 5.4. Let $(K, L)$ be a pair of connected, locally compact, separable
metric $ANR$ spaces, let $a:\underline{*}\rightarrow L$ be a proper map, let $R\in\{\rho, \rho^{\infty}, \pi, \pi^{\infty}\}$ , and let
$n>0$ be an integer. If the triplet $(K, L, a)$ is $\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ , then
the function $Id- sh_{R}^{n}$ : $\underline{R}_{n}(K, L, a)\rightarrow\underline{R}_{n}(K, L, a)$ is surjective.

PROOF. By Proposition (2.2) it suffices to consider cases $ R=\pi$ and $R=\pi^{\infty}$ .
We shall prove the theorem only for $ R=\pi$ because the proof for $R=\pi^{\infty}$ is similar.

Let $ C_{0}=\emptyset\subset C_{1}\subset C_{2}\subset\cdots$ be an exhausting sequence of compact subsets of $K$

such that $C_{i+1}$ satisfies the condition from Definition (5.1) with respect to $C_{i}$ , for
each $i\geqq 0$ . Let $\pi(f)\in\underline{\pi}_{n}(K, L, a)$ and take a representative $f\in P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$

of $\pi(f)$ . With the notation from (2.9) and the proof of (2.10), for a pair $(j, i)$ of
natural numbers, let $f_{(j.i).t}$ : $(D^{n}, S^{n-1}, *)\rightarrow(A_{k_{f}-1}, B_{k_{j^{-1}}}, a(\underline{*})\cap B_{k_{j^{-1}}})$ be a homo-
topy with $f_{(j.i),0}=f_{j}=f|(D^{n}, S^{n-1}, *)\times\{j\}$ and $(f_{(j,i).1}(D^{n}), f_{(j.i),1}(S^{n-1}),$ $f_{(j,i).1}(*))$

$\subset(A_{k_{i}}, B_{k_{i}}, a(i))$ when $k_{j}>1$ , and let $f_{(j.i).t}$ ; $(D^{n}, S^{n-1}, *)\rightarrow(K, L, a(*))$ be a homo-
topy with $f_{(j.i),0}=f_{j}$ and $f_{(j,i),1}(*)=a(i)$ when $k_{j}=1$ .

We shall define, for each $i>0$, a continuous map $g_{i}$ : $(D^{n}, S^{n-1}, *)\rightarrow(A_{k_{i}}, B_{k_{i}}, a(i))$
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such that the obvious map $g:(\underline{D}^{n},\underline{S}^{n-1},\underline{*})\rightarrow(K, L, a)$ constructed from the sequence
$\{g_{i}\}_{i=1}^{\infty}$ is in $P_{a}(\underline{D}^{n},\underline{S}^{n-1} ; K, L)$ and has the property that $(Id- sh_{\pi}^{n})(\pi(g))=\pi(f)$ .

First pick an integer $m>1$ such that $k_{i}>1$ for all $i\geqq m$ . Let $g_{m}$ : $(D^{n}, S^{n-1}, *)$

$\rightarrow(K, L, a(m))$ be a constant map into $a(m)$ . For $i>m$ , let $g_{i}$ : $(D^{n}, S^{n-1}, *)\rightarrow$

$(A_{k_{i}}, B_{k_{i}}, a(i))$ represent the element $-([f_{(m,t),1}]+[f_{(m+1,i).1}]+\cdots+[f_{(i- 1.i).1}])$

of $\pi_{n}(A_{k_{i}}, B_{k_{i}}, a(i))$ , and for $1\leqq i<m$ , let $g_{i}$ : $(D^{n}, S^{n-1}, *)\rightarrow(K, L, a(i))$ represent

the element $[f_{(m-1,i),1}]+[f_{(m-2,i),1}]+\cdots+[f_{(i.t),1}]$ of $\pi_{n}(K, L, a(i))$ . The routine

proof that a map $g$ has the required properties and a necessary alternations for

the case $R=\pi^{\infty}$ are left to the reader.
By combining Theorem (5.4) and Corollary (4.5), and Theorems (5.3), (5.4),

and (4.6), respectively, we get the following two results. The later improves

Theorem 2.18 in [21] because a pointed movable pair of compact metric spaces

is $\{(D^{n}, S^{n-1}, *)\}$ -movable, for all $n>0$ , while there exist pointed pairs of com-
pacta that are $\{(D^{n}, S^{n-1}, *)\}$ -movable, for each $n>0$ , but that are not movable

(see [18]).

THEOREM 5.5. Let $(K, L)$ be a pair of connected, locally compact, separable

metric $ANR$ spaces, let $a;\underline{*}\rightarrow L$ be a proper map, let $R\in\{\pi, \pi^{\infty}\}$ , and let $n\geqq 2$ .
If the triplet $(K, L, a)$ is $\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ , then the functim
$q_{R}^{n}$ : $\underline{R}_{n- 1}(K, L, a)\rightarrow k_{n-1}(K, L, a)$ is an isomorphism of groups for $n>2$ and a
bijection of pointed sets for $n=2$ .

THEOREM 5.6. If (X, $A,$ $x$ ) is a $\{(D^{n}, S^{n-1}, *)\}$ -movable pointed pair of com-

pacta, for each $n>0$ , then $J_{n}(X, A, x)$ and $F_{n}(X, A, x)$ are natu rally isomorphic,

for all $n\geqq 0$ .

COROLLARY 5.7. Let $(K, L)$ be a pair of connected, locally compact, sepa rable

metric $ANR$ spaces and let $a:\underline{*}\rightarrow L$ be a proper map. If the triplet $(K, L, a)$ is

$\{(D^{n}, S^{n-1}, *)\}$ -movable at $\infty$ , for each $n>0$ , then the long homotopy sequence

$\delta$ $i$ $j$
$\delta$

$...\rightarrow\pi_{n+1}\leftarrow(K, L, a)-\leftarrow\pi_{n}(L, a)-*\pi_{n}(K, a)-\tilde{\pi}_{n}(K, L, a)-\hslash_{n-1}(L, a)\cdots\rightarrow$

is exact.

PROOF. Apply Theorem (5.5) and the fact that the above sequence is exact

for the groups $\pi_{n}=$ in the place of the groups $\pi_{n}\leftarrow$ (see (2.7)).

COROLLARY 5.8. If (X, $A,$ $x$ ) is a $\{(D^{n}, S^{n-1}, *)\}$ -movable pointed pair of
compacta, for each $n>0$ , then the long fundamental sequence $F(X, A, x)$ of
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(X, $A,$ $x$ ) is exact.

PROOF. Apply (3.8) and (5.6).

REMARK 5.9. Throughout the paper we treated only the relative groups.
With minor changes our definitions and proofs apply also to absolute versions.
We leave the necessary alternations in the statements and their proofs to the
reader.
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