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ON GENERALIZED CONVOLUTION RINGS OF
ARITHMETIC FUNCTIONS

By

Miguel FERRERO

The set of all functions defined in the semi-group of the natural numbers
whose values are in a commutative ring $R$ , becomes an associative ring when
addition and multiplication are defined by the functional addition and the $\gamma$-con-
volution $(f*g)(n)=\sum_{rs=n}f(r)g(s)\gamma(r, s)$ .

In this paper, we will give some characterization of these rings. Finally, we
will study on the extension of the base ring.

Let $N$ be the multiplicative semi-group of the natural numbers and let $K$ be
a field. In [4] the ring of arithmetic functions is defined as the set of all func-
tions $f:N\rightarrow K$ whose addition and multiplication are defined by the functional
addition and the convolution $(f*g)(n)=\sum_{rs=n}f(r)g(s)$ for every $n\in N$. In [3], the

generalized convolution ring is studied. The concept of convolution is generalized
by a weighting kernel $\gamma:N\times N\rightarrow K$ and the multiplication is defined by $(f*g)(n)$

$=\sum_{rs=n}f(r)g(s)\gamma(r, s)$ .
All weighting kernels $\gamma$ are characterized by the requirement that the set of

all arithmetic functions still remains as an associative integral ring.
We consider here a commutative unitary ring $R$ and we define the generalized

convolution ring of arithmetic functions over $R$ , in an analogous way. If $\gamma(r, s)$

$=1$ for every $r,$ $s$ in $N$, the ring of arithmetic functions, which is denoted by
$\mathcal{F}(N, R)$ , is naturally isomorphic to the formal power series ring with infinitely
many indeterminates $R[[X_{1}, \cdots, X_{n}, \cdots]]$ via the the application $\Gamma$ which is
defined as follow. If $\{p_{1}, \cdots, p_{n}\cdots\}$ is the sequence of all prime numbers, we
put $\Gamma(X_{i})=f_{pi}$ where $f_{pj}(n)=\delta_{pi^{n}},$ ( $\delta$ is the Kronecker’s delta).

In section 1, we characterize these rings as solution of an universal problem.

Section 2 is devoted to characterize them in an intrinsic way. In section 3 we
concern with the extension of the base ring.

This paper is originated in the unpublished paper “Sur les anneaux de fonc-
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tions arithm\’etiques’’, that the author did in collaboration with Carlos Meritano
[2]. Several results in sections 1 and 3 of this paper are obtained in that paper.
The author wishes to thank him, who kindly permites to restate them here.

1. Introduction.

In what follows we denote by $N$ the multiplicative semi-group of the natural
integers and by $R$ a commutative unitary ring. Let $\gamma:N\times N\rightarrow R$ an application
such that, for every $r,$ $s,$

$t$ in $N$

$\gamma(r, s)\gamma(rs, t)=\gamma(r, st)\gamma(s, t)$ [1.1]

and
$\gamma(r, 1)=\gamma(1, r)=1$ [1.2]

We denote by $\mathcal{F}_{\gamma}(N, R)$ the ring whose elements are the functions $a:N\rightarrow R$

with the ordinary addition and multiplication defined by $(a_{\gamma}*b)(n)=\sum_{rs=n}a(r)b(s)\gamma(r, s)$ ,

for every $a,$
$b$ in $\mathcal{F}_{\gamma}(N, R)$ . If $\gamma(r, s)=1$ for all $r,$ $s$ in $N$, we denote by $\mathcal{F}_{1}(N, R)$

or simply by $\mathcal{F}(N, R)$ . Actually, we have an R-algebra with the identity 1 de-
fined by $1(n)=\delta_{1.n}$ , for every $n\in N$ (see [3]). We say that $\mathcal{F}_{\gamma}(N, R)$ is the $\gamma-$

convolution ring over $R$ .
Let $A=\mathcal{F}_{\gamma}(N, R)$ and $\phi:N\times A\rightarrow R$ the application defined by $\phi(n, a)=a(n)$ ,

for every $a\in A$ and $n\in N$. Then it is easy to see that the followings are verified

(I) For every $n\in N$, the application $\Phi_{n}$ : $A\rightarrow R$ defined by $\Phi_{n}(a)=\phi(n, a)$ , for
all $a\in A$ , is R-linear.

(II) $\phi(n, ab)=\sum_{rs=n}\phi(r, a)\phi(s, b)\gamma(r, s)$ , for every $a,$
$b$ in $A$ and $n$ in $N$.

(III) For every sequence $(a_{n})_{n\in N}\in R^{N}$ there is a unique $a\in A$ such that $\phi(n, a)$

$=a_{n}$ , for all $n\in N$.
Let now $A$ be an arbitrary R-algebra and $\phi$ : $N\times A\rightarrow R$ an application such

that (I) and (II) are satisfied. Then it is easy to see that the conditions (III’)

$\phi(1,1)=1$ and (III”) $\phi(n, 1)=\delta_{1.n}$ for every $n\in N$, are equivalent conditions.
Further, if $\phi$ satisfies (III) then it satisfies (III’) too.

In the rest of this section, we consider the pairs $(A, \phi)$ where $A$ is an R-
algebra and $\phi:N\times A\rightarrow R$ .

PROPOSITION 1.1. There is a pair $(A, \phi)$ such that (I), (II) and (III’) are
satisfied and for every pair $(A^{\prime}, \phi^{\prime})$ which satisfies (I), (II) and (III’) there is a
unique homomorphism of R-algebra $f:A^{\prime}\rightarrow A$ such that, the following diagram is
commutative
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Further, such $(A, \phi)$ is unique up to isomorphisms.

PROOF. It is sufficient to choose any pair $(A, \phi)$ such that (I), (II) and (III)

are satisfied ( $i$ . $e.,$ $A=\mathcal{F}_{\gamma}(N,$ $R)$ and $\phi$ defined as before). If $(A^{\prime}, \phi^{\prime})$ satisfied (I),

(II) and (III’) and $a^{\prime}\in A^{\prime}$ , we can define $f(a^{\prime})\in A^{\prime}$ by $\phi(n, f(a^{\prime}))=\phi^{\prime}(n, a^{\prime})$ for
every $n\in N$.

REMARK 1.2. If follows from the proof that there is a unique pair $(A, \phi)$

such that (I), (II) and (III) are verified, $i$ . $e.$ , the $\gamma$-convolution ring over $R$ .

REMARK 1.3. We denote by $C(R)$ the category whose objects are the pairs
$(A, \phi)$ such that (I), (II) and (III’) are verified and the morphisms are the R-algebra

homomorphisms $f:A\rightarrow A^{\prime}$ such that the diagram in proposition 1.1 is a commuta-

tive diagram. By proposition 1.1, this category has the $\gamma$-convolution ring over
$R$ as a final object.

REMARK 1.4. Let now $A$ be a ring (which is not necessarily an R-algebra
“a priori”) and $\phi:N\times A\rightarrow R$ an application which satisfied similar conditions but
in (I) we change the condition $\Phi_{n}$ is R-linear” for (I’): $\Phi_{n}$ is additive”. Then
it is easy to obtain that similar results as in proposition 1.1. In particular, the
object $(A, \phi)$ that satisfied (I’), (II) and (III) are unique and it is the same $\mathcal{F}_{\gamma}(N, R)$

(a posteriori” $A$ is an R-algebra and $\Phi_{n}$ is R-linear).

Let now $(A, \phi)$ be a pair which satisfies (I), (II) and (III). We define $\psi:R^{N}$

$\rightarrow A$ by $\psi((r_{n})_{n\in N})=a$ if $\phi(n, a)=r_{n}$ for every $n\in N$. It is easy to see that

(I) $\psi$ is R-linear mapping
$(II_{1})$

$\psi((a_{n})_{n\in N}(b_{n})_{n\in N})=\psi((\sum_{rs=n}a_{r}b_{s}\gamma(r, s))_{n\in N})$ for all $(a_{n})_{n\in N}$ and $(b_{n})_{n\in N}$ in $R^{N}$ .
$(III_{1})$ $\psi$ is a bijective mapping.

Conversely, if $(A, \psi)$ is an R-algebra $A$ and an application $\psi:R^{N}\rightarrow A$ which
satisfies conditions $(I_{1}),$ $(II_{1})$ and $(III_{1})$ , we can define $\phi:N\times A\rightarrow R$ in a similar
way, and $(A, \phi)$ satisfies (I), (II) and (III).

We consider also $(III_{1}^{\prime})\psi((\delta_{1,n})_{n\in N})=1$ .
Then, we have trivially
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PROPOSITION 1.5. There is a pair $(A, \psi)$ such that $(I_{1}),$ $(II_{1})$ and $(II1_{1})$ are
satisfied and for every pair $(A^{\prime}, \phi^{\prime})$ which satisfies $(I_{1}),$ $(II_{1})$ and (III\’i), there is a
unique homomorphism of R-algebras $f_{1}$ : $A\rightarrow A^{\prime}$ such that the following diagram
is commutative

Further, $(A, \psi)$ is unique up to isomorphism.

REMARK 1.6. It is clear that the object which is a solution of the former
universal problem is the unique object that satisfies $(I_{1}),$ $(II_{1})$ and $(III_{1})$ and it cor-
responds to the solution of the problem in proposition 1.1.

Let now $R$ and $R^{\prime}$ be commutative rings and $h:R\rightarrow R^{\prime}$ a ring homomorphism.
If $\gamma:N\times N\rightarrow R$ satisfies [1.1] and [1.2] and if for every pair $(r, s)\in N\times N$ we put
$\gamma^{\prime}(r, s)=h(\gamma(r, s))$ , then $\gamma^{\prime}$ : $N\times N\rightarrow R^{\prime}$ satisfies [1.1] and [1.2]. We denote by
$(A, \phi)$ (resp. $(B,$ $\mu)$) the $\gamma$-convolution ring over $R$ (resp. $\gamma^{\prime}$ -convolution ring over
$R^{\prime})$ . We have, from proposition 1.1,

COROLLARY 1.7. There is a unique ring homomorphism $h^{*}:$ $A\rightarrow B$ such that
the following diagram is commutative

$N\times A\frac{\phi-}{-}R$

$1\times f$
$h$

$N\times B\rightarrow^{\mu}R^{\prime}$

PROOF. Since $(A, h\circ\phi)$ satisfies (I’), (II) and (III’) it is enough to apply

remark 1.4.

2. Characterization of Convolution Rings.

Let $R$ be a commutative unitary ring, $\gamma:N\times N\rightarrow R$ a map which satisfies
[1.1] and [1.2] and $(A, \phi)$ the $\gamma$-convolution ring over $R$ . We put

$A_{1}=\{a\in A|\phi(n, a)=0\forall n\in N, n\neq 1\}$

It is clear that $A_{1}$ is a commutative unitary subring of $A$ which is isomor-
phic to $R$ via $f:a\mapsto\phi(1, a)$ . Further $\gamma^{\prime}=f^{-1}\circ\gamma:N\times N\rightarrow A_{1}$ satisfies [1.1] and
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[1.2] and $(A, \phi)$ is the $\gamma^{\prime}$ -convolution ring over $A_{1}$ . Then, in the following we
consider $R=A_{1}\subset A$ and for every $a\in A_{1},$ $\phi(1, a)=a$ . We also put

$I=\{a\in A|\phi(1, a)=0\}$ .
Then it is easy to see that $I$ is a two sided ideal of $A$ such that $A=A_{1}\oplus I$ (as
$A_{1}$-modules).

We define $\Gamma:A\rightarrow I$ by $\Gamma(a)=a^{\prime}$ if and only if $a^{\prime}$ satisfies $\phi(1, a^{\prime})=0$ and
$\phi(n, a^{\prime})=\phi(n-1, a)$ for every $n>1$ in $N$. We can easily see that $\Gamma$ is an $A_{1^{-}}$

isomorphism. Further, if $I_{n}=\Gamma^{n}(A)$ we can obtain by induction that

$I_{n}=$ { $a\in A|\phi(p,$ $a)=0$ for all $p\leqq n$ } [2.1]

Then, using (II) we have that $I_{n}$ is a two sided ideal too and we have

LEMMA 2.1. Let $A$ be the $\gamma$-convolution ring over the commutative subring
$A_{1}$ of A. Then
(i) $A_{1}$ is a direct summand of $A$ as an $A_{1}$ -module and its complement is a two

sided ideal I of $A$ .
(ii) There is an $A_{1}$ -isomorphism $\Gamma:A\rightarrow I$ such that for every $n\in N,$ $I_{n}=\Gamma^{n}(A)$ .

is a two sided ideal of $A$ and for every pair $(r, s)\in N\times N$, the following
diagram is commutative.

$A_{1}\times A_{1}.\underline{-}A\underline{-\Gamma^{r-1}\Gamma_{(t}^{\times\Gamma_{s)}^{s-1}}-}A_{A^{\times}}\downarrow^{A}$

where the vertical maps are the multiplications and $\Gamma_{(r,s)}(a)=\Gamma^{rs-1}(a)\gamma(r, s)$ .
(iii) The ring $A$ with the topology defined by $(I_{n})_{n\in N}$ becomes a Hausdorff and

complete topological ring.

PROOF. Let $a_{1}$ and $b_{1}$ be in $A_{1}$ and we put $a=\Gamma^{r-1}(a_{1}),$ $b=\Gamma^{S-1}(b_{1}),$ $c=$

$\Gamma_{(r,s)}(a_{1}b_{1})=\Gamma^{rs-1}(a_{1}b_{1}\gamma(r, s))$ and $c’=ab$ . Then it is clear that $\phi(n, a)=$

$\phi(1, a_{1})\delta_{n.r},$ $\phi(n, b)=\phi(1, b_{1})\delta_{n,s}$ . Then, since

$\phi(n, c^{\prime})=\sum_{uv=n}\phi(u, a)\phi(v, b)\gamma(u, v)$

$=\phi(1, a_{1})\phi(1, b_{1})\gamma(r, s)\delta_{n.rs}=\phi(1, a_{1}b_{1}\gamma(r, s))\delta_{n.rs}$

$=\phi(n, c)$ , for every $n\in N$ .
We $have_{\sim}^{\sim}c=c^{\prime}$ and (ii) is proved.
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Finally, $\bigcap_{n\in N}I_{n}=0$ is clear by [2.1]. Let $(x_{n})_{n\in N}$ be a Cauchy sequence in $A$ .
Then, for every integer $m$ there exists $n_{m}\in N$ such that for $p\geqq n_{m}$ and $q\geqq n_{m}$ ,

$x_{p}-x_{q}\in I_{m},$ $i$ . $e$ . $\phi(s, x_{p})=\phi(s, x_{q})$ for all $s\leqq m$ . We denote by $x\in A$ the unique

element such that $\phi(m, x)=\phi(m, x_{p})$ for arbitrary $p\geqq n_{m}$ . It is clear that $x=$

$\lim_{n\rightarrow\infty}x_{n}$ , which completes the proof.

Given a ring $A$ (resp. a topological ring $A$) we shall determine conditions for

the existence of an unitary commutative subring $A_{1}$ of $A$ and weighting kernel
$\gamma:N\times N\rightarrow A_{1}$ such that $A$ is isomorphic to $\mathcal{F}_{\gamma}(N, A_{1})$ as a ring (resp. as a topo-

logical ring). If this is the case, we say that $A$ is a convolution ring (resp. a
convolution ring as a topological ring).

COROLLARY 2.2. If the ring $A$ is a convolution ring, then there is a unita $ry$

commuta tive subring $A_{1}$ of $A$ and a function $\gamma:N\times N\rightarrow A_{1}$ which satisfies [1.1]

and [1.2] such that the conditions (i), (ii) and (iii) in lemma 2.1 are verified. More-
over, if $A$ is a convolution ring as a topological ring, $(I_{n})_{n\in N}$ is a base of the

topology of $A$ (via the isomorphism $A\cong \mathcal{F}_{\gamma}(N,$ $A_{1})$).

PROOF. If follows trivially from lemma 2.1.
To obtain the converse we need some lemmas.

LEMMA 2.3. Let $A$ be a ring and let $A_{1}$ be a unitary commutative subring

of $A$ satisfying the conditions (i) in lemma 2.1 and
(ii’) there is an $A_{1}$-module isomorphism $\Gamma:A\rightarrow I$ .
Then, for every $n\in N,$ $A\cong\bigoplus_{i=1}^{n}A_{i}\oplus I_{n}$ (internal direct sum), where $A_{r}=\Gamma^{r-1}(A_{1})$

and $I_{r}=\Gamma^{r-1}(I)$ for every $r\in N$.

PROOF. If $n=1$ , the result is clear by condition (i). It is not difficult to

complete the proof by induction argument.

COROLLARY 2.4. With the same assumptions and notations in the above lemma,

for every $a\in A$ and for every $n\in N$, there exist unique elements $a_{i}\in A_{i},$ $i=1,2$ ,

... , $n,$ $\alpha_{n}\in I_{n}$ , such that $a=\sum_{i=1}^{n}a_{i}+\alpha_{n}$ . Further, these elements does not depend

of $n$ .

PROOF. It is enough to prove that if $a=\sum_{i=1}^{n}a_{i}+\alpha_{n}=\sum_{j=1}^{m}b_{j}+\beta_{m}$ , where $a_{i}\in A_{i}$ ,

$(i=1,2, \cdots n),$ $b_{j}\in A_{j},$ $(j=1, \cdots, m),$ $\alpha_{n}\in I_{n}$ and $\beta_{m}\in I_{m}$ , then $a_{i}=b_{i}$ for all $ i\leqq$

$\min\{n, m\}$ . But this follows from $I_{r}\subset I_{s}$ and $A_{r}\subset I_{s}$ for every $r>s$ .

LEMMA 2.5. Let $A$ be a ring, $A_{1}$ an unitary commutative subring of $A$ and
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$\gamma:N\times N\rightarrow A_{1}$ a map such that [1.1] and [1.2] are verified. Let us suppose that
the conditions (i) and (ii) in lemma 2.1 are verified. Then, there is an application
$\phi:N\times A\rightarrow A_{1}$ such that the conditions (I), (II) and (III’) in section 1 are verified.

PROOF. Let $a\in A$ and $r\in N$. We denote by $a_{r}\in A_{r}$ the elements which are
determined in corollary 2.4. Then, we put $\phi(n, a)=\Gamma^{1-r}(a_{r})\in A_{1}$ . It is clear that

(I) and (III’) are verified. Finally, if $a=\sum_{i=1}^{n}a_{i}+\alpha_{n},$ $b=\sum_{j=1}^{m}b_{j}+\beta_{m}$ are the repre-
sentations in corollary 2.4 we have

$a_{i}b_{j}=\Gamma^{i-1}(\delta(i, a))\Gamma^{j-1}(\phi(j, b))$

$=\Gamma^{ij-1}(\phi(i, a)\phi(j, b)\gamma(i, j))\in A_{ij}$

Then, it follows that

$ ab=\sum_{r=1}^{n}c_{r}+\delta$ , where $c_{r}=\sum_{uv=r}a_{u}b_{v}\in A_{r}$

and $\delta\in I_{n}$ . Thus, we have

$\phi(r, ab)=\Gamma^{1-r}(\sum_{uv=r}a_{u}b_{v})=\sum_{uv=r}\Gamma^{1-uv}(a_{u}b_{v})$

$=\sum_{uv=r}\phi(u, a)\phi(v, b)\gamma(u, v)$ .

REMARK 2.6. The object $(A, \phi)$ which is defined in lemma 2.5, is an object

in the category $C(A_{1})$ (Remark 1.3).

PROPOSITION 2.7. Let $A$ be a ring, $A_{1}$ an unitary commutative subring of $A$

and $\gamma:N\times N\rightarrow A$ such that [1.1] and [1.2] are verified. If the conditions (i), (ii)

in lemma 1.1 and
(iii’) The ring A becomes a Hausdorff topological space with respect to the topo-

logy defined by $(I_{n})_{n\in N}$ ,

are verified, the completion $\hat{A}$ of $A$ is isomorphic to $\mathcal{F}_{\gamma}(N, A_{1})$ as a topological
ring.

PROOF. Using corollary 2.4 and the definition of $\phi$ we can easily see that

$I_{n}=\{a\in A|\phi(r, a)=0, \forall r\leqq n\}$ .
Let $x\in\hat{A}$ and let $(x_{n})_{n\in N}$ be a sequence in $A$ such that $\lim_{n\rightarrow\infty}x_{n}=x$ . Since

$(x_{n})_{n\in N}$ is a Cauchy sequence, for every $m$ there exists $n_{m}$ such that for every
$p\geqq n_{m},$ $\phi(r, x_{p}-x_{n_{m}})=0$ , for $r<m$ . Therefore, the sequence $(\phi(r, x_{p}))_{p\in N}$ is a
stationary sequence in $A_{1}$ . Thus, we can define $\hat{\phi}:N\times\hat{A}\rightarrow A_{1}$ by $\hat{\phi}(r, x)=$

$\lim_{n\rightarrow\infty}\phi(r, x_{n})$ . It is easy to see that this definition does not depend on $(x_{n})_{n\in N}$
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and $\hat{\phi}/N\times A=\phi$ Then, the conditions (I) and (II) in section 1 are trivially true.

Let $(a_{n})_{n\in N}\in A_{1}^{N}$ ; we put $b_{i}=\Gamma^{i-1}(a_{i})\in A_{i}$ and $x_{n}=\sum_{i=1}^{n}b_{i}\in A$ . We can see that
$(x_{n})_{n\in N}$ is a Cauchy sequence in $A$ . If $x=\lim_{n\rightarrow\infty}x_{n}\in\hat{A}$ , for every $r\in N,\hat{\phi}(r, x)$

$=\phi(r, x_{p})=a_{r}$ (takinp $p$ adequately). Finally, if $\hat{\phi}(r, x)=\hat{\phi}(r, y)$ for all $r\in N$,
$\hat{\phi}(r, x-y)=0$ . We write $x-y=\lim_{n\rightarrow\infty}t_{n}$ , where $(t_{n})_{n\in N}\in A^{N}$ and using $\bigcap_{n\geq 1}I_{n}=(0)$ ,

it follows that $x-y=0$ . Then, condition (III) in section 1 is verified and remark
1.2 shows that $\hat{A}\cong \mathcal{F}_{\gamma}(N, A_{1})$ . Since this isomorphism is a canonical isomorphism
and $\hat{I}_{n}=\{a\in\hat{A}|\hat{\phi}(r, a)=0, \forall r\leqq n\}$ define the topology in $\hat{A}$ , it is clear that it is
a topological isomorphism.

Putting together all the pieces we have

THEOREM 2.8. A ring $A$ is a convolution ring if and only if there exist a
unitary commutative subring $A_{1}$ of $A$ and a map $\gamma:N\chi N\rightarrow A$ which satisfies
[1.1] and [1.2] such that the conditions (i), (ii) and (iii) in lemma 2.1 are verified.
Furthermore, $A$ is a convolution ring as a topological ring if and only if all
above conditions are verified and $(I_{n})_{n\in N}$ is a base of the topology of $A$ (via the
isomorphism $A\cong \mathcal{F}_{\gamma}(N, A_{1}))$ .

PROOF. The corollary 2.2 shows the “only if” part. The converse is a con-
sequence of proposition 2.7. In fact, if $(I_{n})_{n\in N}$ define the complete topological
ring $A$ , then $A=\hat{A}\cong \mathcal{F}_{\gamma}(N, A_{1})$ . The last part is true if the topology given in $A$

coincide with the topology which is defined by $(I_{n})_{n\in N}$ . Then, the proof is com-
plete.

REMARK 2.9. In theorem 2.8, it is not necessary to assume that $\gamma$ satisfies
[1.1]. If we define the ring $\mathcal{F}_{\gamma}(N, R)$ even as a non-associative ring, the asso-
ciativity of $A$ and $A\cong \mathcal{F}_{\gamma}(N, A_{1})$ carry [1.1] as a consequence (see [3]). Further,
$A$ is a commutative ring if and only if $\gamma$ is symmetric. $A$ has not zero divisors
if and only if $A_{1}$ is an integer domain and $\gamma(r, s)\neq 0$ for every $r,$ $s$ in $N$. Finally,
if $A$ has not zero divisors, the condition [1.2] is also not necessary, because it
is implied by [1.1].

Using the same notations in theorem 2.8 we have

LEMMA 2.10. If $A$ is the $\gamma$-convolution ring over $A_{1},$ $A$ is commutative and
$\gamma(N\times N)\subset U(A_{1})$ (the set of all unit elements in $A_{1}$), then there exists $\omega;N\rightarrow U(A_{1})$

such that for every pair $(r, s)\in N\times N$,

$\gamma(r, s)=\frac{\omega(rs)}{\omega(r)\omega(s)}$
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PROOF. Since $\gamma$ is symmetric, the proof of theorem 3.1 in [3] applies un-
altered here.

LEMMA 2.11. Let $A$ be a commutative $\gamma$-convolution ring over $A_{1}$ and we as-
sume that there exists a function $\omega:N\rightarrow U(A_{1})$ such that

$\gamma(r, s)=\frac{\omega(rs)}{\omega(r)\omega(s)}$ ,

for every pair $(r, s)\in N\times N$. Then, there exists a canonical isomorphism $ A\cong$

$\mathcal{F}_{1}(N, A_{1})$ .

PROOF. We denote by $\phi:N\times A\rightarrow A_{1}$ and by $\phi_{1}$ : $N\times \mathcal{F}_{1}(N, ,A_{1})\rightarrow A_{1}$ the ca-
nonical applications respectively. If $x\in \mathcal{F}_{1}(N, A_{1})$ , we put $\psi(x)\in A$ the element
which is defined by $\phi(n, \psi(x))=\omega(n)\phi_{1}(n, x)$ , for all $n\in N$. It is not difficult to
check that $\psi$ is an isomorphism.

COROLLARY 2.12. Let $A$ be a ring which has not zero divisors and we sup-
pose that $A$ is the $\gamma$-convolution ring over a field $A_{1}$ . Then $A$ is commutative if
and only if $A\cong \mathcal{F}_{1}(N, A_{1})$ .

PROOF. The “if” part is trivial. Conversely, if $A$ is a commutative domain,
$\gamma(r, s)\neq 0$ for every $(r, s)\in N\times N$. Then $\gamma(N\times N)\subset A_{1}-\{0\}=U(A_{1})$ and we can
apply lemmas 2.10 and 2.11.

REMARK 2.13. In Lemma 2.11 and Corollary 2.12, if $A$ is a topological ring
and is the $\gamma$-convolution ring over $A_{1}$ as a topological ring, the isomorphism is a
topological isomorphism, since it is canonical. It is clear that a topological ring
$A$ can be a convolution ring but not a convolution ring as a topological ring.

If $A$ is the $\gamma$-convolution ring over $A_{1}$ , this subring is not, in general, uni-
quely determine. In fact, if $K$ is a field we have

$\mathcal{F}_{1}(N, K[[X]])\cong K[[X]][[X_{1}, \cdots, X_{n}, \cdots]]$

$\cong K[[X, X_{1}, \cdots, X_{n}, \cdots]]\cong \mathcal{F}_{1}(N, K)$ .
We can obtain some sufficient condition for $A_{1}$ to be uniquely determine when

$A$ is a $\gamma$-convolution ring as a topological ring.

PROPOSITION 2.14. Let $A$ be a topological ring which has not non-zero nil-
potent elements. If $A$ is a $\gamma$-convolution ring over $A_{1}$ as a topologycal ring, then
$A_{1}$ is obtained uniquely by $A_{1}\cong A/I$ , where $I=$ { $a\in A|\lim_{n\rightarrow\infty}$ a $=0$} (I is the ideal
in theorem 2.8).
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PROOF. We can put $A=\mathcal{F}_{\gamma}(N, A_{1})$ and $I=\{a\in A|\phi(1, a)=0\}$ . If $x\in I,$ $x^{2}\in I$,

$\phi(1, x^{2})=0$ and $\phi(2, x^{2})=2\phi(1, x)\phi(2, x)\gamma(1,2)=0$. Then $x^{2}\in I_{2}$ . By induction we
obtain $x^{n}\in I_{n}$ for every $n\in N$ and then $\lim_{n\rightarrow\infty}x^{n}=0$ . Conversely, let $ x=a+\alpha$ ,

where $a\in A_{1}$ and $\alpha\in I$ , such that $\lim_{n\rightarrow\infty}x^{n}=0$ . Since $x^{n}=a^{n}+\beta,$ $\beta\in I$, for every

$n\in N$, we have $a^{n}=0$ for some $n$ and then $a=0$ . Thus, $x=\alpha\in I$, which com-
pletes the proof.

THEOREM 2.15. Let $A$ be a topological ring. The following conditions are

equivalent:
(a) $A$ is topologically isomorphic to a l-convolution ring over a field.
(b) $A$ is a commutative domain and is topologically isomorphic to a convolution

ring over a field.
(c) $A$ is a commutative domain, and is topologically isomorphic to a convolution

ring and $I=\{a\in A|\lim_{n\rightarrow\infty}a^{n}=0\}$ is a maximal ideal.

(d) There exist a field $K\subset A(1_{K}=1_{A})$ such that
(1) The complement of $K$ in $A$ is a two sided ideal I of $A$ .
(2) There exist a K-isomorphism $\Gamma:A\rightarrow I$ such that for every $n,$ $I_{n}=\Gamma^{n}(A)$

is a two sided ideal of $A$ and for every $r,$ $s$ in $N$, the following diagram

is commutative if the vertical applications are the multiplications:

$\Gamma^{r-1}\times\Gamma^{s-1}$

$K\times K-A\times A$

$|$

$\Gamma^{r\iota-1}$

$|$

$K-A$
(3) $A$ is a Hausdorff and complete topological ring and $(I_{n})_{n\in N}$ is a base of
its topology.

Finally, the field mentioned in each assertion is the same field $K$ and it is uni-

quely determine by $K\cong A/I$ .

PROOF. $(a)\rightarrow(b)$ it is clear from Remark 2.9. $(b)\rightarrow(c)$ it follows by Proposi-

tion 2.14. $(c)\rightarrow(a)$ : let $A\cong \mathcal{F}_{\gamma}(N, A_{1})$ . Using Proposition 2.14 and Corollary 2.12

we have that $A_{1}\cong A/I$ is a field and $A\cong \mathcal{F}_{1}(N, A_{1})$ . $(a)\leftrightarrow(d)$ is a particular case
of Theorem 2.8.

REMARK 2.16. The above theorem gives a characterization of the formal

power series ring with infinitely many indeterminates over a field when we define

a convenient topology.
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3. Extension of the Base Ring.

Let $h:R\rightarrow T$ a ring homomorphism of commutative rings, $\gamma:N\times N\rightarrow R$ a
function which satisfies [1.1] and [1.2] and $\gamma^{\prime}$ : $N\times N\rightarrow T$ the extension of $\gamma$

defined by $\gamma^{\prime}(r, s)=h(\gamma(r, s))$ . We denote $\gamma^{\prime}=\gamma$, by $\phi_{R}$ : $N\times \mathcal{F}_{\gamma}(N, R)\rightarrow R$ and
$\phi_{T}$ : $N\times \mathcal{F}_{\gamma}(N, T)\rightarrow T$ the canonical applications. We define $\phi^{\prime}$ : $N\times(\mathcal{F}_{\gamma}(N, R)\otimes_{R}T)$

$\rightarrow T$ by $\phi^{\prime}(n, x\otimes t)=\phi_{R}(n, x)t$ , for every $n\in N,$ $x\in \mathcal{F}_{\gamma}(N, R)$ and $t\in T$ . It is easy

to check that $\phi^{\prime}$ satisfies (I), (II) and (III’) in section 1. Thus, there is a unique

homomorphisms of T-algebras $\Phi:\mathcal{F}_{\gamma}(N, R)\otimes_{R}T\rightarrow \mathcal{F}_{\gamma}(N, T)$ such that the follow-

ing diagram is commutative

On the other hand, by Corollary 1.7, there is a unique ring homomorphism
$h^{*}:$ $\mathcal{F}_{\gamma}(N, R)\rightarrow \mathcal{F}_{\gamma}(N, T)$ such that the following diagram is commutative

$N\times \mathcal{F}_{\gamma}(N, R)\underline{\phi_{R}}R$

$N:_{\mathcal{F}(N^{*}}^{\times_{\gamma}h},$

$T$)

$\underline{\phi_{T}}T^{h}\downarrow$

Let $\mu:\mathcal{F}_{\gamma}(N, T)\otimes_{R}T\rightarrow \mathcal{F}_{\gamma}(N, T)$ the multiplication $(\mu(y\otimes t)=yt)$ . Then it is

easy to see that $\Phi=\mu\circ(h^{*}\otimes 1)$ and for every $\sum_{9=1}^{r}x_{i}\otimes t_{i}\in \mathcal{F}_{\gamma}(N, R)\otimes_{R}T,$ $\Phi(\sum_{i=1}^{n}x_{i}\otimes t_{i})$

is defined by

$\phi_{T}(n, \Phi(\sum_{i=1}^{r}x_{i}\otimes t_{i}))=\sum_{i=1}^{r}\phi_{R}(n, x_{i})t_{i}$ ,

for all $n\in N$.
We ask about conditions for $\Phi$ to be an isomorphism. Since $\Phi$ is a homo-

morphism of R-module, this fact does not depend on $\gamma$ . We omit it in the fol-
lowing.

We say that an R-module $M$ is countably generated if we can find a sequence
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$(x_{n})_{n\in N}\in M^{N}$ such that $M=\sum_{i\in N}Rx_{i}$ .

LEMMA 3.1. $\Phi$ is surjective if and only if for every countably generated R-
submodule $M$ of $T$ there is a finitely generated R-submodule $P$ of $T$ such that
$M\subset P$ .

PROOF. Let $\Phi$ be surjective and $(t_{n})_{n\in N}\in T^{N}$ . We define $y\in \mathcal{F}(N, T)$ by
$\phi_{T}(n, y)=t_{n}$ , for all $n\in N$. Then, there is

$x=\sum_{i=1}^{p}c_{i}\otimes e_{i}\in \mathcal{F}(N, R)\otimes_{R}T$

such that $\Phi(x)=y$ . Using the definition of $\Phi$ it is easy to check that $t_{n}\in\sum_{i=1}^{p}Re_{\ell}$

$\subset T$ , for every $n\in N$.
Conversely, if $y\in \mathcal{F}(N, T)$ , we denote by $P=\sum_{i=1}^{p}Re_{i}a_{\lrcorner}^{\tau}$ finitely generated

R-submodule of $T$ such that $\phi r(n, y)\in P$ for every $n\in N$. Thus $\phi_{T}(n, y)=\sum_{i=1}^{p}r_{ni}e_{i}$ ,

for some $r_{ni}\in R$ . Let $c_{i}\in \mathcal{F}(N, R)$ such that $\phi_{R}(n, c_{i})=r_{ni}$ for all $n\in N$ and
$i=1,$ $\cdots,$ $p$ . Since

$\phi_{T}(n, \Phi(\rangle_{1}^{p_{d}}=^{\urcorner}c_{i}\otimes e_{i}))=\phi_{T}(n, y)$ ,

for all $n\in N,$ $\Phi$ is surjective.
The following corollaries are clear.

COROLLARY 3.2. If $T$ is an R-algebra which is finitely generated as an R-
module, $\Phi$ is surjective.

COROLLARY 3.3. If $R$ is a noetherian ring, $\Phi$ is surjective if and only if
every countably generated R-submodule of $T$ is finitely generated.

Let $M$ be an R-module and $\mathcal{F}(N, M)$ denote the set of all functions $f:N\rightarrow M$,
which is an R-module in a trivial way. As before, we can define $\phi_{M}$ : $N\times \mathcal{F}(N, M)$

$\rightarrow M$ by $\phi_{M}(n, x)=x(n)$ , for every $n\in N$ and $x\in \mathcal{F}(N, M)$ . We can see that, as
in section 1, $\mathcal{F}(N, M)$ is a solution of the universal problem defined by the fol-
lowing conditions:

(A) For every $n\in N,$ $\Phi_{n}$ : $\mathcal{F}(N, M)\rightarrow M$ such that $\Phi_{n}(x)=\phi_{M}(n, x)$ is an R-linear
mapping.

In fact, $\mathcal{F}(N, M)$ is the unique R-module that satisfies (A) and

(B) For every $(x_{n})_{n\in N}\in M^{N}$ , there is a unique $x\in \mathcal{F}(N, M)$ such that $\phi_{H}(n, x)$

$=x_{n}$ , for each $n\in N$.
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Then, as above, we have that there exists a unique application $\rho_{M}$ : $\mathcal{F}(N, R)$

$\otimes_{R}M\rightarrow \mathcal{F}(N, M)$ such that $\rho_{M}(a\otimes x)=y$ if and only if

$\phi_{M}(n, y)=\phi_{R}(n, a)x$ , for all $n\in N$ $(\mathcal{F}(N, R)=\mathcal{F}_{\gamma}(N, R))$ .
Let $P$ be a projective R-module and let $L$ be a free R-module such that

$L\cong P\oplus Q$ . Since, by Corollary 3 in [1] (pag. A. II. 63), $\rho_{L}$ is a monomorphism

and $\rho_{P}$ can be can be considered as the restriction of $\rho_{L}$ on $\mathcal{F}(N, R)\otimes_{R}P,$
$\rho_{P}$ is

a monomorphism. Similarly, if $P$ is finitely generated and projective, $L$ is finitely

generated and free, thus $\rho_{P}$ is an isomorphism. Then, we have

LEMMA 3.4. If $P$ is a projective R-module (resp. projective and finitely gen-
erated), the canonical application $\rho_{P}$ is a monomorphism (resp. an isomorphism).

COROLLARY 3.5. If $T$ is an R-algebra which is projective (resp. projective

and finitely generated) as an R-module, $\Phi$ is a monomorphism (resp. an isomor-
phism),

PROOF. Taking $T=P$ . it is clear that $\Phi=\rho_{P}$ . More generally, we can prove,

PROPOSITION 3.6. Let us assume that for every finitely generated R-submodule
$M$ of $T$ there exists a projective R-submodule $P$ of $T$ such that $M\subset P$ . Then
$\Phi$ is a monomorphism.

PROOF. Let $v=\sum_{i=1}^{p}x_{i}\otimes t_{i}\in \mathcal{F}(N, R)\otimes_{R}T$ such that $\Phi(v)=0$ . We denote by

$P$ a projective R-submodule of $T$ such that $\sum_{i=1}^{p}Rt_{i}\subset P$ and by $j:P\rightarrow T$ the natural

inclusion. We write $u=\sum_{t=1}^{p}x_{i}\otimes t_{i}\in \mathcal{F}(N, R)\otimes_{R}P$ and we have $v=(1\otimes j)(u)$ .
Since, for every $n\in N$,

$0=\phi_{T}(n, \Phi(v))=\sum_{i=1}^{p}\varphi_{R}(n, x_{i})t_{i}=j(\sum_{=1}^{p}\phi_{R}(n, x_{i})t_{i})$ ,

$\phi_{P}(n, \rho_{P}(u))=0$ for every $n\in N$. Thus, $\rho_{P}(u)=0$ and by Lemma 3.4, $u=0$, which
completes the proof.

COROLLARY 3.7. Let us assume that for every countably generated R-submodule
$M$ of $T$ there is a finitely generated and projective R-submodule $P$ of $T$ such

that $M\subset P$ . Then $\Phi$ is an isomorphism.

PROOF. It follows trivially from Lemma 3.1 and Proposition 3.6.

REMARK 3.8. If $J$ is an ideal of $R$ , the above results include the particular

case $T=R/J$. In this case, the canonical application $\mathcal{F}(N, R)/J\mathcal{F}(N, R)\rightarrow \mathcal{F}(N, R/J)$
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is always surjective. If $R$ is a direct sum of two ideals, $R=J\oplus J^{\prime}$ , then, by

Corollary 3.5, it is an isomorphism. We shall consider now the case of locali-
zation.

Let $R$ be a ring and $S$ a multiplicative system of $R$ . We denote by $h:R\rightarrow R_{s}$

the natural application $h(r)=r/1$ and by $\Phi:(\mathcal{F}(N, R))_{S}\rightarrow \mathcal{F}(N, R_{S})$ the application
defined above, $i$ . $e.$ , for $x\in \mathcal{F}(N, R),$ $s\in S$ and $n\in N$,

$\phi(n,$ $\Phi(\frac{x}{s}))=\frac{\phi_{R}(n,x)}{s}$ ,

where $\phi=\phi_{R_{S}}$ . We consider here the following conditions
(h) For every $(s_{n})_{n\in N}\in S^{N}$ , there exist $(r_{n})_{n\in N}\in R^{N}$ and $t\in S$ , such that

$\frac{r_{n}s_{n}}{1}=\frac{t}{1}$ for every $n\in N$, in $R_{s}$ .
(H) For every $(s_{n})_{n\in N}\in S^{N}$ , there exist $(r_{n})_{n\in N}\in R^{N}$ and $t\in S$ such that

$r_{n}s_{n}=t$ for every $n\in N$, in $R$ .
It is clear that $(H)\rightarrow(h)$ and we shall see that the converse is not true.

PROPOSITION 3.9. The following conditions are equivalent
(a) $\Phi$ is an epimorphism
(b) $S$ verifies (h)

(c) For every countably generated R-submodule $M$ of $R_{S}$ , there is $t\in S$ such
that $M\subset R\cdot 1/t$ .

PROOF. $(a)\leftrightarrow(c)$ it is a trivial consequence of Lemma 3.1, since every finitely

generated R-submodule of $R_{S}$ are contained in an R-submodule, which is gener-
ated by a simple element of the form $1/t,$ $t\in S$ .

$(b)\rightarrow(c)$ Given $(y_{n}/s_{n})_{n\in N}\in R_{\epsilon}^{N}$ , we choose $(r_{n})_{n\in N}\in R^{N}$ and $t\in S$ such that
$r_{n}s_{n}/1=t/1$ .

Thus $y_{n}/s_{n}=r_{n}y_{n}/t\in R\cdot 1/t$ , for every $n\in N$.
$(c)\rightarrow(b)$ Let $(s_{n})_{n\in N}\in S^{N}$ ; we can find $t\in S$ such that $1/s_{n}\in R\cdot 1/t$ , for every

$n\in N$, and (h) follows.

PROPOSITION 3.10. The following conditions are equivalent
(a) $\Phi$ is an isomorphism
(b) $S$ verifies (H).

PROOF. $(b)\rightarrow(a)$ . It is enough to prove that $\Phi$ is a monomorphism. Let
$x\in \mathcal{F}(N, R)$ and $s\in S$ such that $\Phi(x/s)=0$ . Then, for every $n\in N,$ $\phi_{R}(n, x)/s=0$

and there is $s_{n}\in S$ such that $s_{n}\phi_{R}(n, x)=0$ . We multiply by the element $r_{n}$ deter-
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mined by (H) and we have $\phi_{R}(n, tx)=t\phi_{R}(n, x)=r_{n}s_{n}\phi_{R}(n, x)=0$ for every $n\in N$.
Thus, $tx=0,$ $i$ . $e.,$ $x/s=0$ .

$(a)\rightarrow(b)$ Given $(s_{n})_{n\in N}\in S^{N}$ , since $\Phi$ is an epimorphism we can find $(r_{n})_{n\in N}$

$\in R^{N}$ and $t\in S$ such that $s_{n}r_{n}/1=t/1$ , for every $n\in N$, in $R_{S}$ . Let $x\in \mathcal{F}(N, R)$

and $y\in \mathcal{F}(N,R)/$ such that for every $n\in N,$ $\phi_{R}(n, x)=r_{n}s_{n}$ and $\phi_{R}(n, y)=t$ . Since
$\phi(n, \Phi(x/1))=r_{n}s_{n}/1=t/1=\phi(n, \Phi(y/1)),$ $x/1=y/1$ and there is $u\in S$ such that
$ux=uy$ . It is clear that $ur_{n}s_{n}=ut$ for every $n\in N$ and then (H) is verified.

REMARK 3.11. It is clear that every finite multiplicative system verifies (H).

Then if $R$ is a finite ring and $S$ is arbitrary, $\Phi$ is an isomorphism. On the other
hand, if $S$ is countable and it has not zero divisors, the conditions (h) and (H)

are equivalent, but they are true only in trivial cases, $i$ . $e.$ , if and only if every

element of $S$ is an unit in $R,$ $(R_{S}=R)$ . Finally, (h) and (H) are not equivalent
in general. In fact, let $R=C[0,1]$ the ring of all real continuous functions
defined in $[0,1]$ and $S$ the multiplicative system which consists of all of the
functions $f$ such that $f(x)=0$ if and only if $x\in[1/j, 1]$ for some $j\geqq 1$ , and the
constant function 1. For every $n$ , let $f_{n}$ be a function in $S$ such that $f_{n}(x)=0$

if and only if $x\in[1/n, 1]$ . If there exist some $f\in S,$ $g_{n}\in R(n=1,2\cdots)$ such
that $f=f_{n}g_{n}$ , we have $f=0$ . Then, (H) is not verified. But the condition (h) is
verified. In fact, let $f\in S$ and let suppose that $f(x)=0$ if and only if $x\in[1/m, 1]$ .
We define $g\in R$ as some continuous extension of the function defined for
$t\in[0,1/2m]$ by $g(t)=1/f(t)$ , and we denote by $h\in S$ a function such that $h(x)=0$

if and only if $x\in[1/2m, 1]$ . Then $h(gf-1)=0$ and we have $gf/1=1/1$ in $R_{S}$

(this example is due to Ada Maria de Souza Doering and the author thanks to
her).

Let now $R$ be a commutative ring and we denote by $R[[X]]$ the ring of
the formal power series over $R$ with indeterminates $X=\{X_{1}, \cdots, X_{n}, \}$ (finitely

or infinitely many). If $R\rightarrow T$ is a ring homomorphism of commutative rings, by
$\Phi:R[[X]]\otimes_{R}T\rightarrow T[[X]]$ , we denote the canonical application that we define in
the begining of this section, or if $X$ is a set of finitely many indeterminates then
its restriction. (We can do this restriction without problem since $\Phi(X_{i})=X_{i}$).

We have the following corollaries:

COROLLARY 3.12. Let us assume that for every contably generated R-sub-
module $M$ of $T$, there is a finitely genera $ted$ projective R-submodule $P$ of $T$ such
that $M\subset P$ . Then, the canonical application $\Phi$ is an isomorphism.

COROLLARY 3.13. If $S$ is a multiplicative system in $R$ which satisfies (h)
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(resp. $(H)$), the canonical application $(R[[X]])_{S}\rightarrow R_{S}[[X]]$ is an epimorphism (resp.

an isomorphism).
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