A NOTE ON THE HEREDITARY PROPERTIES IN THE PRODUCT SPACE

By

Katsuya EDA

In this note we shall investigate some hereditary properties of a subspace of a product space.

Let X_{α} be a topological space for each $\alpha \in I$ and A be a subset of I. p_A is the projection: $\prod_{\alpha \in I} X_{\alpha} \to \prod_{\alpha \in A} X_{\alpha}$, *i. e.* $p_A(x)$ is the restricted function of x whose domain is A. A is co-countable if I - A is countable.

The family of sets is linked if each pair of its members has non-empty intersection. The space has (K)-property (precaliber \aleph_1) (caliber \aleph_1), if any uncountable family of non-empty open subsets of X includes an uncountable subfamily which is linked (has the finite intersection property) (has non-empty intersection). [2]

THEOREM. Let X_{α} be second-countable for $\alpha \in I$ and X be a subspace of $\prod_{\alpha \in I} X_{\alpha}$ and ψ be one of the properties:

1) the countable chain condition, 2) (K)-property, 3) precaliber \aleph_1 , 4) caliber \aleph_1 , 5) the seperability, 6) the Lindelöf property.

Then, X satisfies the hereditarily ψ if and only if for any subspace Y of X, there exists co-countable subset A of I such that $p_A''Y$ satisfies ψ .

LEMMA 1. (N. A. Sanin) [1] Let Γ be an uncountable set of finite sets, then Γ includes an uncountable subfamily Δ which is quasi-disjoint i.e. $x \cap y \subseteq \cap \Delta$ for each different x and y of Δ .

See [1] for the proof.

Lemma 2. Let f be a continuous function whose domain is X and X satisfies ϕ in the theorem. Then, the range of f also satisfies ϕ .

Proof. Easy to check.

Let $\{V_n^{\alpha}; n < \omega\}$ be a base of X_{α} . Then, $\{p_A^{-1}V_{n_1}^{\alpha_1} \times \cdots \times V_{n_m}^{\alpha_m}; A = \{\alpha_1, \dots, \alpha_m\}, m < \omega\} = CV$ is a base of $\prod_{\alpha \in I} X_{\alpha}$. The domain of the basic open set $V(=p_A^{-1}V_{n_1}^{\alpha_1} \times \cdots \times V_{n_m}^{\alpha_m})$

Received November 19, 1979

This research was partially supported by Grand-in-Aid for Co-operativ Research, Project No. 434007.

 $\cdots \times V_{nm}^{\alpha_m}$ is A, which is finite, and is denoted by dom V.

LEMMA 3. Let θ be an unconntable subfamily of CV. Then, θ includes an uncountable subfamily Φ which has the following properties:

- a) $\{\text{dom } V; V \in \Phi\}$ is quasi-disjoint,
- b) $p_A''V = p_A''W$ for each V, $W \in \Phi$, where $A = \bigcap \{\text{dom } V; V \in \Phi\}$.

PROOF. By Lemma 1, θ includes an uncountable subfamily θ' such that $\{\text{dom }V; V \in \theta'\}$ is quasi-disjoint.

Let $A = \bigcap \{\text{dom } V; V \in \theta'\}$. Then, $\{p_A''V; V \in \theta'\}$ is countable. Hence, some uncountable subfamily Φ of θ' has the properties in the lemma.

PROOF OF THEOREM. The necessity is clear and so we shall prove the sufficiency. Suppose that X does not satisfy the hereditarily ϕ . Then, there exists a subset $\{x_{\alpha}; \alpha < \omega_1\}$ and a family $\{O_{\alpha}; \alpha < \omega_1\}$ of open subsets of X such that $x_{\alpha} \in O_{\alpha}$ for each $\alpha < \omega_1$ and

- i) $x_{\alpha} \in O_{\beta}$ for any $\beta \neq \alpha$,
- ii) for any uncountable subset S of ω_1 , there exists a pair α , β of S; $O_{\alpha} \cap O_{\beta} \cap \{x_{\alpha}; \alpha < \omega_1\} = \phi$,
- iii) for any uncountable subset S of ω_1 , there exists a finite subset F of S; $\bigcap_{\alpha \in F} O_{\alpha} \cap \{x_{\alpha}; \alpha < \omega_1\} = \phi$,
- iv) for any uncountable subset S of ω_1 , $\bigcap_{\alpha \in S} O_{\alpha} \cap \{x_{\alpha}; \alpha < \omega_1\} = \phi$,
- v) $x_{\alpha} \in O_{\beta}$ for any $\beta > \alpha$, or
- vi) $x_{\alpha} \in O_{\beta}$ for any $\beta < \alpha$, according to ϕ is 1), 2), 3), 4), 5) or 6), respectively.

We may take the above $O_{\alpha}(\alpha < \omega_1)$ from $\subset V$. By Lemma 3, without a loss of generality we can assume that $\{O_{\alpha}; \alpha < \omega_1\}$ satisfies the conditions a) and b) of Lemma 3.

Now, we apply the assumption and Lemma 2 to $\{x_{\alpha}; \alpha < \omega_1\}$. Then, there exists a co-countable subset A of I such that $p_A''\{x_{\alpha}; \alpha < \omega_1\}$ satisfies ϕ and $\bigcap \{\operatorname{dom} O_{\alpha}; \alpha < \omega_1\} \bigcap A$ is empty. Since $\{\operatorname{dom} O_{\alpha}; \alpha < \omega_1\}$ is quasi-disjoint, we may assume $\operatorname{dom} O_{\alpha} - \bigcap \{\operatorname{dom} O_{\alpha}; \alpha < \omega_1\} \subseteq A$ for $\alpha < \omega_1$. There exists(s)

- i)' α such that $p_A(x_\alpha) \in p_A''O_\beta \cap p_A''O_\gamma$ for some $\beta \neq \gamma$,
- ii)' an uncountable subset S of ω_1 such that $p''_A O_\alpha \cap p''_A O_\beta \cap p''_A \{x_\alpha; \alpha < \omega_1\} \neq \phi$ for each distinct $\alpha, \beta \in S$,
- iii)' an uncountable subset S of ω_1 such that $\bigcap_{\alpha \in F} p_A'' O_\alpha \cap p_A'' \{x_\alpha; \alpha < \omega_1\} \neq \phi$ for any finite $F \subseteq S$,

- iv)' α and an uncountable subset S of ω_1 such that $p_A(x_\alpha) \in \bigcap_{\alpha \in S} p''_A O_\alpha$,
- v)' α such that $p_A(x_\alpha) \in p_A''O_\beta$ for some $\beta > \alpha$, or
- vi)' α such that $p_A(x_\alpha) \in p_A''O_\beta$ for some $\beta < \alpha$, according that ϕ is 1), 2), 3), 4), 5) or 6), respectively.

By the assumption of A and the fact $x_{\alpha} \in O_{\alpha'} p_A(x_{\alpha}) \in p_A''O_{\beta}$ holds if and only if $x_{\alpha} \in O_{\beta}$ holds, for each α , β . So, i)', ..., or vi)' contradicts to i), ..., or vi) respectively.

Now, the proof is complete.

Since the hereditary separability is equivalent to the hereditary caliber- \aleph_1 property, it is a little interesting to compare the two cases 4) and 5) in the
theorem.

References

- [1] Juhasz, I., Cardinal Functions in Topology, Amsterdam (1971).
- [2] Kunen, K. and Tall, F.D., Between Martin's Axiom and Souslin's Hypothesis, Fundamenta Mathematicae CII. 3 (1979).

Institute of Mathematics University of Tsukuba Sakura-Mura Ibaraki 305 Japan