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LIMIT SYSTEMS AND CHAIN CONDITION
By

Katsuya EbpA

There is an interesting theorem about the countable chain condition of com-
plete Boolean algebras in [11]. Roughly speaking, the wellordered injective direct
limit of complete Boolean algebras which satisfy the countable chain condition
also satisfies the countable chain condition.

In this paper, we shall investigate relations among limit systems of topolo-
gical spaces, complete Boolean algebras and complete pseudo-Boolean algebras,
and state the application of the above theorem.

§1 is devoted to the basic definitions and preliminary results. Limit systems
and their relations are described in §2. And in §3, we shall discuss about the
chain conditions of the wellordered direct limits.

§1. Basic definitions and preliminary results.

We use the lattice theoretic symbols and the set theoretic ones. They are
usual ones, but we shall give a few remarks about the symbols concerning a
pseudo-Boolean algebra.

A pseudo-Boolean algebra is a lattice with the least element 0 and the
operation -, where a=b is the maximal element x such that a A x=<b.

A Boolean algebra or a pseudo-Boolean algebra is complete if every subset
of it has the least upper bound and the greatest lower bound.

V2 or A2 means the least upper bound or the greatest lowwer bound in B
respectively. If no confusion occurs we use \ or A instead of \/Z or A2 res-
pectively.

Many informations about the relationship between a Boolean algebra and a
pseudo-Boolean algebras are in [10].

Let A be a pseudo-Boolean algebra and R(A) be the set {a=>0; a=A4}. An
element of R(A) is called a regular element.

ProposiTION 1 [10]
R(A) ts a Boolean algebra the ordering of which is the restriction of the
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ordering of A. More precisely, the following hold.
For each x, ye R(A),

xVED y=((xV4y)=>0)=0
ANED y=x N4y
xVEDx0=1
X ANEDx0=0.

If A is complete, then R(A) is complete, where
VEDA=((V4A)=>0)=>0 and
N BDY = A 49

PROOF. Notice that ¢ <b implies b=>0=a=>0 and a>0=((a=0)>0)=>0 holds,
then it is easy to prove the above proposition.

For a topological space X, O(X) is the set of open subsets of X and RO(X)
is the set of regular open subsets of X. O(X) is a complete pseudo-Boolean
algebra and RO(X)=R(O(X)).

Let A and B be pseudo-Boolean algebras. A function ¢: A—B is a pseudo-
Boolean morphism if ¢ preserves the operations V, A and = and ¢(0)=0. ¢ is
a complete pseudo-Boolean morphism if ¢ is a pseudo-Boolean morphism and
preserves the operation \/, i.e. if /49 exists in A, then o(VA4A)=\/Bp"N.

When A and B are Boolean algebras, a function ¢: A—B is a Boolean
morphism if it is a pseudo-Boolean morphism. Notice that a=0 is the comple-
ment of a, when A is a Boolean algebra and consequently ¢ preserves the com-
plement operation —.

¢ is a complete Boolean morphism if it is a Boolean morphism and preserves
the operation /.

PROPOSITION 2. Let ¢: A—B be a pseudo-Boolean morphism, where A and
B are pseudo-Boolean algebras. Then, ¢ ! R(A) is a Bsolean morphism which
maps R(A) into R(B). In addition, if ¢ is complete, then ¢ P R(A) is also com-
plete.

PROOF. A routine by Prop. 1.

COROLLARY. Let f: X—Y be an open continuous function. Then, f* P O(Y)
is a complete pseudo-Boolean morphism from O(Y) to O(X). And consequently
711 RO(Y) is a complete Boolean morphism from RO(Y) to RO(X). Besides, if
f is surjective, f~' | O(Y) is injective.
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PrROOF. Let O and P are open subsets of Y.
fY(O>P)=f""int (O°J P)
=int (/7 O)°If1 P)
=f10>f'P
Similarly, the necessary property of f~! for the fact that /! O(Y) is a

complete pseudo-Boolean morphism is proved.
The rest of the corollary is clear by Prop. 2.

For XC A, X is dense if for any e A, a+0, there is an element x& X such
that 0=x=a.

If B, is a Boolean algebra, every complete Boolean algebra that contains B,
as a dense subalgebra is isomorphic to each other. (See [6]) So, such a com-
plete Boolean algebra is called the canonical completion of B,.

PROPOSITION 3. Let A be a complete pseudo-Boolean algebra which contains
A, as a dense subalgebra. Then, R(A) is the canonical completion of R(A,).

PrROOF. By Prop. 1 and Prop. 2, R(A) is a complete Boolean algebra which
contains R(A,) as a subalgebra. It is easy to check that R(A,) is dense in R(A).

COROLLARY. Let X be a topological space and V be a base of X which is a
subalgebra of O(X). Then, RO(X) is the canonical completion of R(V).

ProoF. Clear by Prop. 3.

§2. Limit systems.

elements a, € M there is an element 7 of M such that a=<y and S=7.
{Aq Qap; @, BEM and a=<pf)> is a direct system of pseudo-Boolean alge-
bras, if A, is a pseudo-Boolean algebra for each a€M and ¢.; is a pseudo-

Let M be a directed set, i.e. M is partially ordered by < and for each two

Boolean morphism which maps A, into A; for @, f€ M, where ¢, is the identity
and ¢g;°Q.3=¢ar holds for each a, 8, €M such that a=<p & B=7y.

{Aup@ap: a, EM and a=p) is a direct system of complete pseudo-Boolean
algebras, if it is a direct system of pseudo-Boolean algebras and A, is complete
and ¢.p is a complete pseudo-Boolean morphism.

A direct system of Boolean algebras and a direct system of complete Boolean
algebras are defined similarly. A direct system is injective, if its morphisms are
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injective.

{Xa, fap; @, BEM and a=p)> is an inverse system of topological spaces,
if X, is a topological spaces for each a=M and f,p is a continuous function
which maps X; into X, for each a, fe M(a= B) where f.. is the identity and
fapofsr=Far for each a, B, €M such that asp & B=r.

lim A, is the ordinary direct limit of an direct system <A, ¢ap; @, BEM
acM
and a<p) in the category of pseudo-Boolean algebras. And, @q= is the morphism

that maps A, into lim A, naturally. We shall use the same notations for the

acEM
Boolean algebras.

lim X, is the ordinary inverse limit of an inverse system <{X,, fap; @, BEM

acM
and a=p) of topological spaces. (See [3] or [5].)

faw is the function that maps lim X, into X, naturally. {f.z'O; aeM & O

acM
is open in X,} is a topological base for the topological space lim X,.
aEM

An inverse system {X,, fas; @ BEM & a< ) of topological spaces is reflec-

tive if for any non-empty open set OC X,, f o='O is non-empty for each a€ M.

It is point-reflective if for any x= X, there is an element yelim X, such

aEM
that x=f,.(y) for each a=M. Of course, the point-refectiveness implies the

reflectiveness.

PROPOSITION 4. Let {A,, @ap; @ BEM and a=p> be a direct system of

pseudo-Boolean algebras. Then, lim A, is a pseudo-Boolean algebra and ¢u« is a
aEM

pseudo-Boolean morphism. And, {R(Aa), ¢ap | R(Ad); a, BEM and a<f> is a
direct system of Boolean algebras. Consequently, R(lim Ag)=lim R(A.). If @ap

aEM aEM
is complete for each a, BEM such that a=<p, @a~ is also complete.

PROOF. A routine.

PROPOSITION 5. Let {Xa, fap; @ BEM and a=p)> be an inverse system of
topological spaces and fa.p be an open function for each a, BEM such that a=p.
Then, <O(Xa), fap' I O(Xa); a, BEM and a=p> is a direct system of complete
pseudo-Boolean algebras.

If the inverse system is point-reflective, <O(Xa), fo3' I O(Xa); a, B M, az=p>

is injective and lim O(X,) is a dense subalgebra of O(lim X,).
aEM aEM

If the inverse system is reflective, <RO(Xa), fap' | RO(X4); @, BEM, a=p>
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is injective and RO(lim X,) is the canonical completion of lim RO(X.,).
acEM acM

PROOF. By to Prop. 2, the first proposition is obvious. The point-
reflectiveness implies that f,s is an open continuous surjection for S€M or f=
co. So, the second one holds.

The reflectiveness implies that f45X; is dense open in X,. So, fa3' | RO(X4)
is injective. Let 1: ligl RO(Xa)—>RO(1(i_r_n X,) be a function such that 1,.(b)=

acM aEM

int f,='b for such a that b€ RO(X,).
Then, { is an injective Boolean morphism and the range of i is dense in
RO(lim X,). Now, the third proposition has been proved.

aceM

§3. The chain condition.

In this chapter, £ stands always for a regular cardinal and A stands always
for an ordinal where an ordinal is a set of ordinals less than it and a cardinal
is an initial ordinal. cf’A is the cofinality of 4, i.e. ¢f’4 is the least cardinal of
X such that X<©A1 & sup X=A4A.

A subset X of A is closed unbounded if X is unbounded in 4 and closed
under the order-topology.

A subset S of A is stationary if S intersects with every closed unbounded
subset X of A.

A pseudo-Boolean algebra A satisfies «-c.c., if every subset of A each two
elements of which have the meet 0 has the cardinality less than &.

A topological space X satisfies k-c.c., if every pair-wise disjoint family of
open subsets of X has the cardinality less than .

The following is clear.

PROPOSITION 6. A pseudo-Boolean algebra A satisfies k-c.c. if and only if
R(A) satisfies it.
And a topological space X satisfies k-c.c. if and only if RO(X) satisfies it.

PROPOSITION 7. Let ¢: B—C be a complete Boolean morphism, where B is
complete and satisfies k-c. c.
Then, ¢” B is a complete subalgebra of C and satisfies k-c.c.

PrOOF. The fact that ¢” @ is a complete subalgebra of C is clear.
Let S be a pairwise disjoint family of non-zero elements of ¢” % and b,=
VA{b; @(b)=0}.

Let s’ be an element of # such that ¢(s")=s for s&S.
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Then, @(s’—bg)=¢(s’) —¢@(by)=s for s&S. And so, s#i(s, tS) implies
s’—by#t’—b,. Now, the family {s’—b,; s&S} is a pairwise disjoint family of
non-zero elements with the same cardinality of S. Hence, the second proposition
holds.

PROPOSITION 8. Let {Ba, @ap; a, BEM, a=p> be a direct system of com-
plete Boolean algebras and B be the canonical completion of its diredt limit and
¢ be a complete Boolean morphism that maps B into C.

Then, ¢” 8 is the canonical completion of a\eJMgaogozm.‘Ba.

Proor. Easy to check.

We shall restate the theorem of [11], concerning the chain condition of a
complete Boolean algebra, with a little modification and give an out-line of the
proof. So, if one desires the complete proof, see §6 of [11].

From now on, a limit system is always a wellordered limit system, i.e. M
is an ordinal. So, instead of M we use the notation A.

THEOREM 1. Let <B,, ¢ap; a, <A and a=p> be a direct system of complete
Boolean algebras, where B, satisfies k—c.c. for each a<A. If cf'2+k, then the
direct limit also satisfies k-c.c.. If ¢f'A=k and {a; B, is the canonical comple-

tion of lim Bg} is stationary in A, then the divect limit also satisfies k—c.c..
ﬂ?a
Outline of the proof. The proof in the case cf’A#«k is a trivial one, so we

omit it. In the case cf'A=«, without any loss of generality, we may assume
A=kt and ¢, is an inclusion map for each «, 8 by Prop. 7 and Prop. 8. Let
hag: Bg— B(a<B<k or [ =o0) be the basic projection, i.e. hqp(b)=
NBaf{c; b=ip(c) & cEB,}. hap(iapb))=0b for each b= B, and hagohgr="hay for

each a, 8, y<#k(y=o0) such that a<8 and f=y. Let S be a subset of lim B,
a<lk
such that the meet of any different two elements of S is equal to 0. By the

assumption, we may assume lim B,= gBa. Let S,=S"\B, and g,=\V“*2h,."S.
—_— a
a<lx

By #x-c.c. of B, there exists an ordinal function ¢: x—& such that o,=

V2ah,”"Ss>. The subset {r: ¢(a)<r holds for any a<y} is closed unbounded
in £. So, there exists an ordinal 7, such that ¢(a)<7, for any a<y, and B, is

the canonical completion of \U B,. We claim that S=S,,.
a<ro

Otherwise, there exists b&S—S,,. Then, h;(b)Ay=0 for each yeS,,.
There exist z and a,<7, such that 0<z=<h,(b) and z€ B,,. Then, zA y=0 for
each y€§S,, and s0 zA 0., =2AV2%haw"Ssap=2A\V Pa%hay,”S;,=0 and this
contradicts to the fact hgpw(b)<0oq,.
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S,, is of the cardinality less than &, by £-c.c. of By, So, the cardinality of
S is less than «.

COROLLARY 1. Let {Aq, @ag; @, B<A and a=f) be a direct system of com-
plete pseudo-Boolean algebras. If cf’A+r and A, satisfies k-c.c. for each a<A4,
then lim A, satisfies k-c.c.. If cf'A=k and A, satisfies k-c.c. for each a<4 and

a<i

{a; im Ag is dense in A.} is stationary in A, then lim A, satisfies k-c.c..
— ‘S —
B<a a>2

PrROOF. Clear by Prop. 2, Prop. 3, Prop. 4, Prop. 6 and Th. 1.

COROLLARY 2. Let {Xa, fag; a, B<A and a=p) be a reflective inverse
system of topological spaces and faop be open. If cf'2+rk and X, satisfies k-c.c.

for each a<A, then lim X, also satisfies k-c. c..
a<l
If ¢f/A=k and X, satisfies k-c.c. for each a<4 and {a: Xa:].iLnXﬂ} is

. ) . . B<a
stationary in 4, then lim X, also satisfies &-c. c.

a<li

Proor. By Prop. 5 and Prop. 6, the k-c.c. of lim RO(X,) implies the k-c.c.

a<’i
of lim X,. X,=lim X, and the reflectiveness imply that <X,, f3s; r<a and 7=0)
a<i <a .
is reflective. So, by Prop. 5, RO(X,) is the canonical completion of lim RO(X,).

<a

Now, the corollary is clear.

COROLLARY 3.* Let <X, fag; @, B<A and a=p) be an inverse system of
topological spaces and fa.p be an open surjection and X,=lim X; for each Limit a.

<a
If X, satisfies £-c.c. for each a<4, then lim X, also satisfies x-c. c.
a<i

REMARK 1. In §2, we have investigated the relationship between the inverse
limit of topological spaces and the direct limit of their open algebras. There is
a more direct relationship between the direct limit of topological spaces and the
inverse limit of their open algebras. (A,, t.5; a, BPEM, a= ) is a weak inverse
system of complete pseudo-Boolean algebras, if A, is a complete pseudo-Boolean
algebra and i,5: Ap— A, is a complete weakly pseudo-Boolean morphism, i.e. 14p
preserves \/ and A and i,5(1)=L1

Let lim“A, be an inverse limit of the above system. Then, lim*A, is a

-
acM acEM
complete pseudo-Boolean algebra and the related morphism i,.: lim¥A4,—A, is
aEM

a complete weakly pseudo-Boolean morphism.
* This result is well-known and can be seen in [13].
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Now, let <X,, fap; @ BEM, a=p) be a direct system of topological spaces,
i.e. fup is a continuous function which maps X. into Xz Then, {O(Xa),
faB T1OXp); a, BEM, a= B> is a weak inverse system of complete pseudo-Boolean

algebras and lim* O(X,) is isomorphic to O(lim X,), where lim X, is a usual direct
agM a?M a_e_)M
limit of topological spaces. See [3], for the definition of the direct limit of

topological spaces.

REMARK 2. Here, we show that the conditions of the preceding theorem or
corollaries are somewhat necessary. For that purpose, we give two examples.
For the simplicity, we treat the case of w,-c.c., where w, is the least uncountable
cardinal. Usually, w,-c.c. is called the countable chain condition, abbreviated by

C.C.C..

EXAMPLE 1. This example is a trivial one. Let X,=a-+1, ie. the set of
ordinals less than or equal to a. The topology of X, is the usual ordertopology.
Let fap(x)=x for x<a and fas(x)=a for x=a for each a, §; a<p. Then, f,5 is

a continuos surjection form Xz to X, for a, f; a=B. For limit «, X.=lim Xy
<a
holds. And the system is point-reflective. X, satifies c.c.c. for a<w,, but Xy

of course, does not satisfies c.c.c..

ExaMpLE 2. For this example, we use an w,-Aronszajn tree. See or
[7], for an Aroszajn tree. Let T=<(T, <> be the w,-Aronszajn that is defined
using the rational numbers, for example, one in §1 of [7] Then, T satisfies
the following :

i) T is an w;-tree without an w,-branch.

ii) Every level of T is countable.

iii) 7 contains an uncountable antichain.

Let T.={x; xT and level of x is less than a}, and B(T.)=the set of
branches through T,, where a branch is a maximal linear ordered subset of Ta.

Now, we induce a topology into B(T) and B(T.) in the following way.
{b; b B(T) & x<b} is a basic open set of B(T) for each x&T. {b; b= B(T.)
& x<b) is a basic open set of B(T,) for each x&€T,. In addition, {b} is a
basic open set of B(T,), if there exists y&T such that x=y holds for any
x=b.

Let fo5: B(Tg)—B(T,) be the function defined by the postulate: f.s(b)=
bN\T., for each a, B; a=<p. Then, f,3is an open continuous surjection and B(T)

=lim B(T,). And the system is point-reflective. B(T,) satisfies c.c.c. by ii), but
¢X<(|l1
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B(T) does not satisfy c.c.c. by iii).

The countable chain codition is deeply concerned by Martin’s axiom. Under
Martin’s axiom and the negation of the continuum hypothesis, c.c.c. is equivalent
to the precaliber property. (See or [4].) The precaliber property is preserved
under the cartesian product of topological spaces. But, the cartesian product of
a Suslin line with itself does not satisfy c.c.c. (See [9]) We can ask whether
the precaliber property is preserved under the restricted limit system as in the
theorem or corollaries. We do not know the answer. But, we know the follow-
ing two facts. The precaliber property is preserved under the systems that
satisfy the condition of [Theorem 1, [Corollary 1] or [Corollary 2, replaced “sta-
tionary” by “closed unbounded”. This is a corollary of the proof in 81 A
Suslin line is not the inverse limit of the inverse system of spaces which have
the precaliber property, which satisfies the condition of

For, if S is the inverse limit of the retricted inverse system {Xa, fap; @, B
<>, where X, has the precaliber property for each «, then S><S=I‘i_9 XX X,.
X,XX, also has the precaliber property for each a and so satigétas c.c.C.
Consequently, SXS satisfies c.c.c. by the corollary. On the other hand, as
stated before, the cartesian product of a Suslin line with itself does not satisfy
c.c.c.. And so, S cannot be a Suslin line.
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