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ON A PROBLEM ABOUT SKOLEM’S PARADOX OF
TAKEUTT'S VERSION

By

Masazumi HANAZAWA

§1. Introduction.

In his paper [2], Takeuti gave a theorem as a proof-theoretical interpretation
of so-called Skolem’s paradox. He showed as a corollary that Godel-Bernays set
theory with the additional axioms

VX3zecow(f(z)=X)

is consistent, where f is a newly introduced function symbol.
Concerning it, we are interested here in the question whether we can add
consistently the axiom schema

V(FHO)AVa(@@)->F(x+1) > VaoeF(a)»»

bisides with an axiom Vz3yew(f(y)=x) to any consistent set theory.
We show in this paper that the above question is affirmative for any con
sistent extension of ZF.®

§2. Results.

2.1. CoNVENTION. In the first order predicate calculus with equality, we
regard the equality axioms as logical axioms. It means that equility axioms for
any language are provided always tacitly.

f, 9, &, ... denote function symbols.
8, t, u, ... denote terms.
A, B, €, ... denote formulae.

8 is a unary function symbol and s(t) is abbreviated by t’.
seq is a binary function symbol and seq (3, f) is abbreviated by 4.
P, Q, R, ... denote predicate symbols.

1) 791 denotes the universal closure of a formula 9.

2) The formula $F(0) contains possibly the newly introduced function symbol f.

3) See where the rather folklore result that the question is affirmative for any con-
sistent extension of ZFC is shown.
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N is a unary predicate symbol.
Iq is a binary predicate symbol and Iq(8,t) is abbreviated by &<t.

2.2. THEOREM 1. Let I' be a consistent theory in which the sentences of
the following forms are provable:

NUOAV2(N(x)->Nx) AVzx(z' 1) AVaVyla' =y >z =y).

V(Ql(l)/\Vx(%l(x)—+?I(x’))’—>Vx(N(x)~—>‘JI(x))) for any formula A(x),

Va(N(z)—> N1z <IA1<z' AVy(N(y)—z' <y'e>x<y)),

VazVyV2(N(2)—>Iw(Vo(N@) Av<z—z'v=w'v) A\w'z=y)).
Then the theory 4 which is obtained from I" by adjoining the following axioms
is consistent:

_‘{xiy(N(y)/\f(y)=x),

V(@FD AV2(F(z)->F(x)—>V2(N(z)—>F(x),
where f is a function symbol not in I and $(x) is any formula containing the
function symbol f.

2.3. Proor of Theorem 1. Let Lr and L, be the languages of I" and 4 re-
spectively. +r A means the formula % is provable in I'. %A means the formula
A is provable from only logical axioms. We shall use the following abbreviation:

Cond(x) is the L,-formula N(z‘l),

z[yl is the Ly-term (x‘2)y ¥,

rCcy is the Ly-formula

Cond(x) ACond(y) Azl = ¥y'1AV2(N(2) Az<z'1—x[2]=y[2]).

The letters p, g,  are used as variables that range over Cond(k): e.g. IpUA(P)
denotes the formula 3x(Cond(x) AU(x)). In the same sense, the letters i, 7, &, [, m,
n are used as variables ranging over N(3%).
For each L,formula A (resp. Lsterm t) we define its rank o) (resp. p(1))
inductively as follows:
1) px)=0;
2) (gt -+ t))=pMt)+---+o(t)+1;
3) p@B=t)=p@B)+2-p(1);
4) For a predicate symbol P different from=,
p(P(t, -+ t))=p(t)+--+pt,)+1;
5 p(MW=pN)+1;
6) pANAB)=pN)+p(B)+1;
7 pAxW=pA)+1.
For every pair of L,-formula A and an individual variable #, we define an

4) “2” stands for “1'”,
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Lr-formula denoted by [¢+~2] by induction on the rank p(N) as follows:

D
2)
3)

4)

5)

6)

7)
8)
9)

iy
2)

3)
4)
5)
6)

7
8)
9)
10)

x=y] is x=vy;

vi-f(x)=v] is (Nx)Az<v'lAvx]=y)V(TINx)Ay=1);
For a function symbol ¢ different from f£,

[Vi-g(x1, =, ) =y] is g(x1, =, 2)=Y;

If o)+ +p(t)>0, then [wig(ti, -+, t,)=2x] is

Ay, Ay, -9y, - v =2IALIL =y A Alv-t,=v,]);
If p(t)>0, then

[vi-8=t] is Ax((vi-8=zx]A[vI-t=2[);

For a predicate symbol P different from =, [vIP(t;, -, 1,)] is
dzy---Az, (-t =z A - Alv-t, =2, A Play, -+, 2,)) ;
vi-1A] is T @pDv)[pI-AT;

WIFAADB] is [PIFA]A[vI-B];

wi-3xU(x)] is yvi-A(y)1>.

Lemmata 1, 2, 3 and 4 below follow from routine arguments.

LemmA 1.

Except for v, all variables occurring free in [vI-U] occur free in %;
If both # and y are different from », then

Subj [vI-%A] is [vI-SubfA® ;

rz=y A[DI-A(x)]->[p-A(Y)];

Frai=yiA - A=Y NP, o 2) ][I WYs, 05 y)]5
ripHt=x]A[pHt=ylox=y;

ripgQ., -+, 1,)=8l¢>

Az, Az y(PHti=2 A APt =2 IA[DIF8=YIA[PIg(z1, -+, 2,)=3]);
Frg2p AlpHAI-[g-AL;

r VpIgopAuwlqi-t=w], for each term t;

Fr [pi-t=w]l->(p-AD =[P U(w))) ;

If A is an Ly-formula, then —Ae{pI-A].

For an L-formula %, we shall denote by A* the L,-formula Vpdgop [gi-%A)].

LemMma 2. If A is an Ly-formula, then A« U*.
LemMmA 3. If %, then +rA*.
LemmaA 4. If —rUA* and +r(A—>B)*, then +rB*.
LEMMA 5. - r(VzIy(f(y)=x))*

5)
6)

The variable y is any variable not occurring free in [v I~ 32%(x)],
Subi¥ means the substitution of y for x (occurring free) in ¥ (tacitly assuming that
y is free for x in A).
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Proor. Since +rVaVyVildz(Vj<i(zj=z)Az'i=vy), it follows that
Fr Y2Vp3gDpIi(gli]=x) which implies +  Vp(pi-Vz3Ii(f(@)=xz)].

LEMmMA 6. p(V(%}(l)/\Vx(%(x)—>%(x’))~+Vx(N(x)—+%(x)))*, for any L,-formula
F(x).
Proor. It suffices to show that for any L,-formula §(x),
- VAIF(0)—3i(F @) A VG <i TFGN)*

We explain the proof informally to save the space. In general, it holds that
Fr (VaW)*«>VaA* and +r A->B)*V p((p-A—Ag0pg-B]). So it is sufficient
to prove 3¢Dplg-i(FE) AV <iTF())] assuming [pI-IiFGE)]. Suppose [pi-TiFE)].
Note that “dgDplg-F()]” is an Lr-formula. Hence by means of the mathematical
induction in I', we obtain the following in I:

3i(Agoplq-F@D—Ai(Agoplgi-F@)I AV <i 1 (gD plg-F (NI

Since [pI-3iF ()] implies 3i(IgDplgi-F(i)]), there exist ; and ¢ such that
aOPNA[@-FOINVYI<iVgop g+ F)]. Then Vji<ilgh1%(G)], which implies
(g V7 <i(AFONI.

Hence 3¢2plg-Fi(FE)AVI<iIFG))].

LemMma 7. If an L,-formula U is provable in 4, then A*.

Proor. Besides Lemmata 5 and 6, it holds that rU* for every theorem %
of I' because of Lemma 2. Thus, +,%* for every axiom % in 4. So, by Lem-
mata 3 and 4, ,A* for every theorem U in 4.

CoNcLusION. 4 is consistent.

Proor. If not, I" should be inconsistent by Lemmata 2 and 7.

2.4. Remarks.

2.4.1. CoroLLARY 1. If I' is any consistent extension of Zermelo’s set theory
Z but its language is the same as Z, then the theory which is obtained from I"
by adjoining the following axiom is consistent:

Vrdyeo(f(y)=x)
and all the sentences of the form
V(F(0) A V2(@(@)>F(@ + 1)~ VaocuH (),

where f is a newly introduced function symbol and $(x) is any formula of the
language LrU{f}.



On the Problem About Skolem’s Paradox of Takeuti’s Version 57

2.4.2. Following the proof of [Theorem 1, we obtain the following model
theoretical theorem which seems to have an independent interest:

THEOREM 2. Let M= M, 71, 0, x’, x4+, *-%, x%, -..> be a countable model
satisfying
1) MiE=(Peano arithmetic)¥V ?,
2) ME V(‘)I(O)/\Vx(QI(x)—%QI(x’))ﬂVx(N(x)—»QI(x))) for all formulae A of the lan-
guage for M,
3) MEVaeVaVidy(Vi<i(zi=v9) Av'i=a).

Then there exists a function /% H—.H such that

1) AT 3: 1—>HM is surjective,
2) (M, //})l=V(%(O)/\Vx(%(x)—»%(x’))—»Vx(N(x)—)%(x))) for all formulae %(x) of the
language for (M, ).

Proor. Call an ordered pair (i, p) a forcing condition if i€ 77 and pe M. Define
the relation (i, p)3(4, ¢) by “WkEi<j and VkeJl (ME(k=i—p'k=q'k)". Define
the forcing condition (i, p)I-% between a forcing condition (7, p) and a sentence %A
of the language for (M, /, @)aem as follows:

D G D)rv=wiv=w;
2) @ P-F)=u=, we MG, PI-{t=vAu=w) and ((vel and ME W<iApv
=w)) or (v¢ J and w=0)));
3) If ¢ is a function symbol different from f, then (i, p)Ig(;, -+, 1) =u &
Aoy, 0., we MMEG@s, -+, 0,)=w and (G, p)I-(h=v:1A- At,=0, Au=w));
4) G PP, 1)
@y, - 0.e DM E P, -, 0IAG, D) I-(h=v1A AL =0,));
5 @ D)IFAAB S (@, p)IFA and (4, p) -B;
6) (G 2)F 1A VieNVge MG, p)30, 9= 10, O I-W);
7 G P)I-32W(x) & Jve MG, p)I-UW)).
Now, take a complete sequence (i, po)3(1, p1)3 =3, )3+ and define )
—M by “ Ax)=y <> (., p.) I-f(z)=y)”. Then the function /” has the desired
property as easily seen from the proof of Theorem.

2.4.3. As a by-product of the result, we obtain the result below, which
concerns the problem of elimination of e-symbol in the first order predicate cal-
culus.

In the following, the e-predicate calculus means the system obtained from the
first order predicate calculus by adjoining the e-symol.

7) (...)N means the relativization by N.



58 Masazumi HANAZAWA

THEOREM 3. Let I' be any theory satisfying the condition mentioned in
Theorem 1. Let I'. be the theory in e-predicate calculus which is obtained from
I’ by adjoining an axiom schema of mathematical induction of the strengthened
form

YV (G(0) A V26 (2)>E(z"))— V2 N(z)—E(x)))

where €(x) is any formula of e-predicate calculus.

Then, if a sentence & is provable in I'. and is e-symbol free, © is provable
in I'.

Proor. It suffices to prove I, is consistent, By Theorem 1, the theory 4=
I'U{VzIy(Ny) Af(y)=2)} ULV (FO) A V2(F(2)>F(z") >V o(N(x)->F(x))) | §: a formula
of LrU{f}} is consistent. Bisides ¢xW(x) can be interpreted in 4 as follows:

ex(W(z) = (z((A2A(2)>W(x)) A Yy(N() A (A2U(2) > A(F(v)))—~
Jw(Nw) Aw=y A f(w)=x))).

The following corollary is put to assess the meaning of this assertion:

COROLLARY 2. ZF+ '|AC+{V(S0(0)AVx(¢(x)—+go(x+1))—+Vxewgo(x)| ¢: a fomula
possibly containing e-symbols} is consistent in e-predicate calculus.®

This is an extension of the well-known fact that ZF'+ 7 AC is consistent even
in e-predicate calculus.”
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8) We assume here the consistency of ZF.
9) Of course, the axiom schema of replacement must be understood to be a set of axioms,
i.e. that schema is not applied to formulae containing e-symbols:
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