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TITS’ SYSTEMS IN CHEVALLEY GROUPS OVER
LAURENT POLYNOMIAL RINGS

By
Jun MoriTA

0. Introduction.

Our aim is to show that the elementary subgroup of a Chevalley group over
a Laurent polynomial ring has the structure of a Tits’ system with an affine
Weyl group (as for Tits’ system, see [2]).

We let denote Z the rational integers.

Let 4 be a (reduced) root system (cf. [2], [4]). Then there is a finite dimen-
sional complex semisimple Lie algebra L=L(4), unique up to isomorphism, whose
root system is 4. Let p be a finite dimensional complex faithful representation
of L.

Let G be a Chevalley-Demazure group scheme associated with L and p (as for
the definition, see [I], [8). Since G is a representable covariant functor from the
category of commutative rings with 1 to the category of groups, we get a group
G(R) of the points of a commutative ring R, with 1. We call G(R) a Chevalley
group over R. For each root acd, there is a group isomorphism of the additive
group R* of R onto a subgroup X, of G(R) (cf. [1] [8]). The elementary sub-
group E(R) is defined to be the subgroup of G(R) generated by X, for all aed.

If 4 is of type A; and p is of universal type (cf. [4]), then G(R)=SL;.1(R) and
E(R) is the subgroup Ej.i(R) of SL;.:1(R) generated by I;;1+ae;; for all aeR and
l1<ixj</+1, where I, is the (/+1)X(/+1) identity matrix and e;; is a matrix
unit (1 in the i, j position, 0 elsewhere).

If R is a field, then E(R) has the structure of a Tits’ system associated with
the Weyl group of 4 (cf. [0). If R is a field with a discrete valuation, then E(R)
has the structure of a Tits’ system associated with the affine Weyl group of 4
(cf. [5). Let KI[T, T-'] be the ring of Laurent polynomials in T and T-' with
coefficients in a field K. In this paper, we will show that E(K[T, T-']) has the
structure of a Tits’ system associated with the affine Weyl group of 4. Let Lz
be a Chevalley lattice in L (cf. [4)) and set gx=K[T, T-'1®zLz. Then gg is iso-
morphic to a Euclidean Lie algebla (cf. [6]). Thus, if p is of adjoint type, and if
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char K=0 or >5, then our result correspons to the special case of

Let » and y be elements of a group, then the symbol [z, ¥] denotes the com-
mutator ryzx~'y~' of x and y. For two subgroups G. and G, of a group G, let
[G:, Gs] be the subgroup of G, generated by [z, y] for all zeG, and yeGs. We

shall write G1=G,-Gs; when a group G; is a semidirect product of two groups G,
and G;, and Gs normalizes G,.

The author wishes to express his hearty gratitude to Professor Eiichi Abe
for his valuable advice.

1. Characterization of affine Weyl groups.

Let 4 be a (reduced) root system of rank /, W the Weyl group of 4, and W*
the affine Weyl group of 4 (cf. [2], [4], [G]). Let H={a;, -, a;} be a simple sys-
tem of 4, and 4% (resp. 4-) the positive system (resp. negative system) of 4 with
respect to /1. Let « and B8 be in 4, then we abbreviate 2(B, a)/(e, @) by <B, a),
where (,) is a scalar product (cf. [4]). For each aed, w, denotes the reflection
with respect to a. Set 4,=4XZ, then an element of 4, is represented by a®™,
where ae4 and neZ. For each a™ed,, let w™ be a permutation on 4 defined by

W B = (w, ) ™8™
for any g™ed;. Let W, be the permutation group on 4, generated by w®™ for

all «™ed;. We shall identify W with the subgroup of W, generated by w®

for all wed. Set A =w™w® "' and let H, be the subgruop of W, generated by
A for all a™ed,.

LEmMMa 1.1
(1) Let a™ and ™ be in 4,. Then

™ Bimd = gem g m)

(2) H, is a free abelian group gemerated by ke for all asell.
() Let a™ and B™ be in 4., and set y=w.p. Then

W B w1 = i,

Proor. (1) and (3) are confirmed by direct calculation. We will show (2).
Set a*=2a/(a, a) for each aed, then 4*={a*; aed} is also a root system and IT*=
{as*; a;ell} a simple system of 4*. Let a be in 4 and write a*= Zc,m (cied),
then we have AL =hAS A2k, On the other hand, A™ =(A®)". Hence H, is gene-
rated by hg) for all 1<i</ Next assume hiP--hiW =1 (mseZ, 1<j<l). This
yields Z {B,appm;=0 for all Bed. Thus m;=0 for all j. q.e.d.
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ProrosiTION 1.2  Let W, W*, Wy and H, be as above. Then Wi=H,-W. In
particular, Wi~ WH*.

Proor [Lemma 1.1 implies H,<]W; and HiN W=1. For any a™ed;, w®=
APw®e HiW. q.e.d.

LeMMA 1.3 Let a™ be in 4, and w in Wi, and set ™ =wa™. Then
wwPw =wi".

Proor We can assume w=w® for some y*®ed4,. For any ¢®ed,, we have
wPWPwP 15O =™ by the following formula:

<9, T> +<wawr5: 7> + <5’ w,a'><a, T> =0.
q.e.d.

Let 4=4®Uy4® y---U4™ be the irreducible decomposition of 4 (cf.[2], [4)),
and set [I’=49NII for each j (1<j<7). Let g; be the unique highest root of
49 with respect to I1 for each j. Set II,={—af, f; 1<i<l, 1<j<r} and Y=
{w™; a™ell,}.

ProrosITION 1.4 Let W, and Y be as above. Then Y generates W,.

Proor We can assume 4 is irreducible. Let X be the subgroup of W,
generated by Y. If 4 has only one root length, then w®eX for all aed by Lem-
ma 1.3. Thus A2PeX for all aed, and X=W,. Assume that 4 has two root
lengths. Then we can choose a and g in /I such that « is short, 8 long, and
{a, pp=—1. By Lemma 1.3, wPwPwP '=w®eX, where y=wsa. Hence w®eX
for all aed, which yields X=W,;. q.e.d.

When we W, is written as wiw,---wi (w;e Y, k& minimal), we write {(w)=Fk: this
is the length of w. Set d}=(4*XZ-o)U (4~ X Z>) and 47 =4,—4;}. For each we W,,
set I'lw)={a™ed}; wa™ed;} and Nw)=Card I'(w). We will show Nw)=Iw).
The following proposition is easily verified.

ProrosiTION 1.5 Let a™ be in I, and w in Wi. Then:
1) I'ewd)={a™},
@) W W) —{a ™) =@w)—{a ™),
3) a™ is in precisely one of I'(w) or I'(ww™),
4) NwwP®)=Nw)—1 if a™el'w), Nuww)=Nuw)+1 if a™¢l(w).

LemMmA 1.6 Let t be in Z., and a™ in II,. Let w; be in Y (=1, 2, -, i—1)
and set w,=w™ . Suppose wiws - wi—1a™ is in 47. Then wi - w,=w, - Ws_y Ws. 1+
we—y for some index 1<s<t—1.

Proor Write yx=wis1 Wiz - wi-1a™ 0<k<t—2), ri-1=a™. Since roedy and
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7i-1€4f, we can find a smallest index s for which ys:€4f. Then wsys=rs1€45,
SO r,eﬂl. Thus w,=w§"”, where r(m)=ra. BY .3, ws=(wu—1'”wt—-l)wc(wt—l
-+-ws1), Which yields the lemma. q.e.d.

CoroLLARY 1.7 If w=wws-w, (wseY, 1<j<t) is a reduced expression (i.e.
lw)=t), and if w,=w for some a™ell:, then wa™ed;.

ProposiTION 1.8 Let w be in Wy. Then Nw)=Iw).

Proor Proceed by induction on {w). If /(w)=0, then w=1, so Nw)=0. As-
sume /(w)>0, and write w=w,w.---w. as a reduced expression, where w;eY, 1<j
<t. For some a™ell,, w,=w. By [Corollary 1.7, wa™ed; and a‘™el'(w).
Thus Nww™)=Nw)—1 by [Proposition 1.5/(4). On the other hand, {(ww{)=I(w)
—1. By induction, Nww™)=I(ww), which implies Nw)=/(w). q.e.d.

2. The statement of Main Theorem, some basic results.

Let 4 be a (reduced) root system of rank / and /1=f{a;, ---, a;} a simple sys-
tem of 4 (cf. [2], [4). Let L=L(4) be a finite dimensional complex semisimple
Lie algebra whose root system with respect to a Cartan subalgebra §) of L is 4,
and let p be a finite dimensional complex faithful representation of L. Let G be
a Chevalley-Demazure group scheme associated with L and p (as for the definition,
see [1], [8). Let {A:, e.; 1<i<], aeA} be a Chevalley basis of L (cf. [3)). Then
we have a Chevalley lattice Lz= ZZh + ):}Zar in L. Let @ be a universal
enveloping algebra of L and Uz the subrmg of U generated by 1 and e%/k! for
all aed and keZ.,. Then Lz is a U zmodule. Let V be the representation space
of o, A the weights of V' with respect to b, and V=1I,,V, the weight decomposi-
tion of V. Let M be an admissible lattice in V (cf. [4}, [9]), and set M,=MNV,.
Let KT, T-'] be the ring of Laurent polynomials in 7" and 7' with coefficients
in a field K. Set M'=K[T, T-'1®zM and M.=K[T, T-'1®zM,.. For each teK,
neZ and aed,

exp tT"o(e.) =1+tT"p(e) /11 +t> T*" p(eq)?/21 4+
induces an automorphism of M’ under the following action:
(t*T*" p(e)*| k) fQv) = E*T*"f )Q(plex) kv,

where feK[T, T-'] and veM. Then X,.=<exptT"ple.); teK, neZ) is a subgroup
of G(K[T, T-'])) and isomorphic to the additive group of KI[7, T ']. Let
E(K[T, T-']) denote the subgroup of G(K[T, T-']) generated by X, for all a€d.
We shall write x™()=exptT"po(e.) for each aed, neZ, and te K. Let K* be the
multiplicative group of K. For each a€d, neZ, and te K*, we write
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Wi (E) = 2P(E) 2 (— )T (@),
B =P OO (1).

Let U be the subgroup of E(K[T, T-']) generated by z™() for all a“™edy and
teK, H, the subgroup generated by A®() for all aed and te K*, B the subgroup

generated by U and H,, and N the subgroup generated by w{() for all a™e4,
and teK*.

THEOREM 2.1 (Main Theovem) Notation is as above. Set E=FE(K[T, T']) and
let Y be as in §1. Then (E, B, N, Y) is a Tits’ system.

The proof of [Theorem 2.1 will be completed in § 4.
LEMMA 2.2 Let a and B be in 4., and assume a+pB=0. Then
(2™ (@), zf”(u)]=Tx&5E (cost'n)
Jor all t, ue K, where the product is taken over all roots of the form ia-+jp, i,j€Zs,

in some fixed ovder, and c;; is as in [9, Lemma 15].

Proor Let & and 7 be indeterminates, and let « and 3 be in 4 such that
a+ =0, then we have

[exp e, exp nepl=II exXp ¢i;E% €ias s In U 2[[&, 7],

where c¢;;€Z (cf. [9, Lemma 15]). The representation p induces a map, also de-
noted o, of Uz to End(M) because M is admissible. Following this with the map
0o—1d®e of End(M) to End (M’) yields a map, again called o, of Uz to End(M).
Next, map U¢, 5] to End(M’) as follows: (for ¢, ue K, and ui;€ U z)

iZj Uil — ,-Z} tuw T 0(usg)

where in general, if feK[7T, T '], geEnd(M’) then fg is the element in End(M’)
which is “first act by ¢ and then left multiply by f.” Then our lemma is estab-
lished. q.e.d.

LemMA 2.3 Let a™ and B™ be in 4, and set y=w.p. Then:
1) wPA)APOwP Q) =h"(t) for any te K*.
2) wPL)zPw 1) t=gm=<Eom (cf) for any te K, where c is as in [9, Lemma 19].
(3) APz (WA E) =gt EOM(EP0y) for any te K* and ueK.

Proor These follw as in [9, Lemma 20].

LEmMA 2.4 (cf. [3],[9]) Let a be in 4, m and n in Z, and t and u in K*. Then:
(1) AQ®) acts as multiplication on M/, by =T ",
2) AR (w)=hT ™ (tu).
(B) w™@E)=wSP(—¢t).
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Let N, be the subgroup of E(K[T, T-']) generated by w®(¢) for all ae4 and
teK*, and H the subgroup generated by A{™(¢) for all a™ed, and teK*.

LEmmMA 2.5
(1) B=U-H,.

(2) H, and H are normal subgroups of N.
(3) N=HN, and HNN,=H,.

Proor (1): Any element of U is a superdiagonal unipotent matrix of infinite
degree and any element of H, is a diagonal matrix of infinite degree with respect
to an appropriate choice of a K-basis of M’. Hence UNH,=1. By Lemma 2.3(3),
H, normalizes U. Thus B=U-H,. (2): By Lemma 2.3(1), we see that N normalizes
H, and H. (3): For any a™e4, and teK*, we have w{(f)= h‘"’(t)w‘”(l)eHNo, SO
N=HN,. Clearly HN N,2H,. Conversely we take ze HN N, and write A= IIh (¢ )
(ajell, mjeZ, t;cK*). Then kA maps K®zM, to itself and hence, by m
2.4(1), jé(p, a;ym;=0 for all weights g of the module. Thus we have m;=0,
which implies ke H,. q.e.d.

THEOREM 2.6 Notation is as above. Then N|/H,~

Proor By [Lemma 2.5, we have N/H,=(H|H,)-(No/H,). Since H|/H,~H, and
No/Hy=~ W, our theorem is established by Lemma 1I.1(3), Proposition 1.2 and Lemma
2.3(1). q.e.d.

We sometimes identify an element of W, with a representative in N of N/H,
through the isomorphism in

3. The case of rank 1.

In this section, we assume 4 is of rank 1, i.e. 4={+a}. Then we have 4,=
{a™, —a™; neZ} and 4} ={a™, —a™; meZ,, neZso}. Set E=F(K[T, T-']), and
for each B™ed, let Xy be the subgroup of E generated by x§™(¢) for all teK.
We identify w® (resp. w®) in W, with w®1) (resp. w®(1)) in N, and simply
write w,=w?® for 1=0,1. Set S,=BU Bw;B. Our purpose in this section is to es-
tablish the following theorem.

THEOREM 3.1 Notation is as above. Then S, is a subgroup of E for 1=0, 1.
The proof of is given by the next proposition.

ProposiTION 3.2 Let 2=0, 1. Then w,Uw,"'CS;.

We shall give the proof of this proposition after Lemma 3.7.

LEMMA 3.3 The following statements hold.
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1) w XPwy'=X"-c B if n>1.
2) wXNw;i't=X™mcB if n>1.
B) wXQuw'=XPcCS,.

4) wXPuwl=X""?cCB if n>2.
B) i XRw=X""?CB if n>0.
6) wiXPwi'=XPCS,.

Proor (1), (2), (4) and (5) are clear. (3): For any teK*,
O =29 F DwS (—t 2 ¢ eS,, hence w XQuw;'=XP<S,. (6) is similarly

shown. q.e.d.

DerFINITION Let x be in E.
(1) =z is called a (QS, 0)-element if x can be written as
xO )2 (W) x5 (81) - 2P L)z % V),
where prPedf —{—a®}, keZso, ¢, u, t1, -+, k€K, and ve K*.
(2) =z is called a (@S, 1)-element if x can be written as
2RO (W) (E) - 2P (Ee) 2 (),
where giPedi —{a®}, k€eZxo, t, #, t1, -+, tx€K, and veK*.
(3) z is called an (S, 0)-element (resp. (S, 1)-element) if z is a (@S, 0)-element (resp.
(QS, 1)-element) with u=0.

LEMMA 3.4 Let =z be in E and 2=0,1. If z is an (S, A)-element, then

w;.%‘uh_lesl .

Proor Set 1=0. We proceed by induction on k. If =0, clearly woxws'€S,
by Lemma 3.3. Assume £x0. If g™ =—a™, m>0, then
Woxwy =wox®, (1) ()22 (t2) - 2P (1) 2% (W)wy5
=wex™ (1) )z {2 () - 2GR tr)x < (V)W € XTPSo=Ss.
If g™ =a™, m>0, then
woxw; ' =P (—x™(— t)xe - xxxO(— V)
=z — NS Dz (—t )2 (—t)xse 282 % (— 0 WS, ()L (—v7Y)
€ Bwox @ (—t D)™ (—t)xs 252 (— 0w BS BSoB=3S,,
where x;=wox{3?(t)ws’, 2<j<k. The case when 1=1 is similarly shown. q.e.d.

LemMmA 3.5 Let x be in E.
Q) If x is an (S, 0)-element, then
woxwy € Buwo X, X Pw;i.
(2) If x is an (S, 1)-element, then
wrxwite Bun XP X wrt.

Proor Proceed by induction on % as in Then we have (1) and
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(2). q.e.d.

LEMMA 3.6 Let x be in E and 2=0,1. If x is a (QS, A)-element, then
W, zwieS;.

ProoF Set 2=0. If t=0, clearly woxw;'e€S, by Lemma 3.3. Assume #30. Then
woxw;' =z0 (—t w9 )z (— )29, (—u)
X &1 220 (— o~ Hw®, (v~ )2 (—0v?)
€ Bwox® (—t ' —u)z, 2129 (— 0 \woBS BS,B=S,,
where z;=woxf}”({)jws', 1<j<k. The case when A1=1 is similarly shown. q.e.d.

LEmMA 3.7 Let x be in E.
1) If x is a (QS, 0)-element, then

woxwy '€ Bw X% X ®w;.

(2) If z is a (QS, 1)-element, then

wizwi'€ Bw, XP XS wi.
Proor [Lemma 3.5 implies this lemma. q.e.d.

Proor oF ProposITION 3.2 Set =0 and let = be in U. We can assume x=
Z1---xx, Wwhere x; is an (S, 0)-element, 1<j<k. If k=1, wexw;'eS, by Lemma 3.4.
Assume k2>1. By [Lemma 3.5, worw;'e BwoX® X®w;!. Thus we have wozz.w;’
=bawoy:wy', where b€ B and vy, is a (QS, 0)-element. By [Lemma 3.7, wox1x:xsw;?
=bswoysw; !, where b3¢B and y; is a (QS, 0)-element. Recurrently we have worw;!
=bwyyw;', where beB and y is a (QS, 0)-element. By Lemma 3.6, werw;'€S,.
The case when A=1 is similarly shown. q.e.d.

4. Proof of Main Theorem.

Notation is as in §2. A quadruple (G*, B*, N*, S*) consisting of four sets
G*, B*, N*, and S* is called a Tits’ system if the following axioms are satisfied
(cf. [2]:

(T'1) G* is a group, and B* and N* are subgroups of G* such that G* is gener-
ated by B* and N*, and B*NN*<N*;

(T'2) S* is a subset of the group N*|(B*NN¥*) consisting of involutions and gen-
erates N*[(B*NN*);

(T'3) For any deS* and we N*|(B*NN*), wB*¢< B*wB* U B*wsB*;

(T'4) For any oeS*, aB*e & B*.

To prove [Theorem 2.1 we proceed in steps. For each a™ed,, let X™ be
the subgroup of E(K[T, T-']) generated by z{(f) for all teK. Let a and g™



Tits’ Systems in Chevalley Groups Over Laurent Polynomial Rings 49

be in 4; such that a+8x0. Then, by Lemma 2.2,
4.1) (X, X¢C(X®; y=ia+iped, k=im+in, i,jc Zso).
For each aed*, set P.={(X™, X% meZ.,, neZsoy and Q.=<(X{, X{; ped*
—{a}, meZ,,, neZ-o>. Then implies
4.2) U=P.Q..

Let ¢ be in Y. We can write o=w®™ for some aed* and neZ because w™
coincides with w”. Then, by [Theorem 3.1| and (4.2),

0B '=0(P,Q.Ho)o™!
=(0P,07)(06Q.07 )0 Hyo™)
< (BUBsB)BH,
=BUBosB.

Hence
(4.3) BUBosB is a subgroup of E.
We see that E(K[T, T-']) acts on gx=KI[T, T-']J®zLz naturally, i.e.
wP()(f@v)=(exp ad tT"e.)(f @),

where a™ed,, teK, feK[T, T-'] and veLz. For each p™ed;, set ef™=T"e,
hs=[es, e_5] and Af®=T"hs; in gx. Let g be in U and a" in [I,, and set J{
22 smegt—am; Kef™.  Write gel;P=eC" +LhP —(%e(+2, where {eK and zeJ™.
Let 6 be a map of U onto K defined by 0™(g)={( As ¢gh®=hr"—2Le+2'
(27€J() and ¢gJ™cJ™, the map 6 is a group homomorphism of U onto the addi-
tive group K+ of K. Let D{® be the kernel of the homomorphism #{. By (4.3),

wDPw™-c BUBwW™B.

For any zeD{™, (w®xw™ e =e™ 42" (2'’e¢J™), so wPxw' can not be in
Bw™B. Thus,

(4.4) w®DPw™C B,
If g is in U, a®™ell, and 05 (g)={, then gxz™(—{)eD{’. Hence,
(4.5) | U=Dm. X®.

Let a™ be in 7, and w in W,, and set o=w{. If N(ws)>Nw), then and
imply
(BwB)(BoB)=Bw(X{™ D™ H,)o B
= BwX ®w-"Ywo(a-D®s) (o~ Hyo) B
=BwsB,
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Assume Nwoe)<Nw). Set w’=wa, then Nw’'c)>Nw’). Thus,
(BwB)(BeB)=(Buw’sB)(BsB)

=(Buw’ B)(BeB)(BsB)
c(Bw’ B)(BU BsB)
=(Bw’B) U(Bw’'BB¢B)
=(BweB)U (BwB).

In general, we have

(4.6) (BwB)(BeB) < (BweB) U(Bw).

By the definition, BN N2H,. Conversely let x be in BNN. Then zeW,,
where # is the image of x under the canonical homomorphism ~— of N onto N/
H,. Since z is in B, x4} <4}, hence N()=0. Thus #=1 and x€H,. This implies

4.7 BNN=H,.
These facts show that (E, B, N, S) is a Tits’ system.

REMARKS

1. There exists a canonical group homomorphism of the group Gx defined by
Moody and Teo (cf. [7]) onto our group E under the following conditions: (1)
Gx is defined over a 1-tiered Euclidean Cartan matrix, (2) char K=0 or>5, (3) e
is of adjoint type.

2. If the scheme G is simply connected (i.e. ¢ is of universal type), then G(K[7,
T N)=EKI[T, T').

3. The group E(K[T, T7']) is not simple. Congruence subgroups, for example,
are normal subgroups.

4. For 2-tiered or 3-tiered Euclidean types, the corresponding groups would be
the twisted Chevalley groups over K[7, T-1].
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