TITS' SYSTEMS IN CHEVALLEY GROUPS OVER LAURENT POLYNOMIAL RINGS

By Jun Morita

0. Introduction.

Our aim is to show that the elementary subgroup of a Chevalley group over a Laurent polynomial ring has the structure of a Tits' system with an affine Weyl group (as for Tits' system, see [2]).

We let denote Z the rational integers.

Let Δ be a (reduced) root system (cf. [2], [4]). Then there is a finite dimensional complex semisimple Lie algebra $L=L(\Delta)$, unique up to isomorphism, whose root system is Δ . Let ρ be a finite dimensional complex faithful representation of L.

Let G be a Chevalley-Demazure group scheme associated with L and ρ (as for the definition, see [1], [8]). Since G is a representable covariant functor from the category of commutative rings with 1 to the category of groups, we get a group G(R) of the points of a commutative ring R, with 1. We call G(R) a Chevalley group over R. For each root $\alpha \in \mathcal{A}$, there is a group isomorphism of the additive group R^+ of R onto a subgroup X_{α} of G(R) (cf. [1], [8]). The elementary subgroup E(R) is defined to be the subgroup of G(R) generated by X_{α} for all $\alpha \in \mathcal{A}$.

If Δ is of type A_l and ρ is of universal type (cf. [4]), then $G(R) = SL_{l+1}(R)$ and E(R) is the subgroup $E_{l+1}(R)$ of $SL_{l+1}(R)$ generated by $I_{l+1} + ae_{ij}$ for all $a \in R$ and $1 \le i \ne j \le l+1$, where I_{l+1} is the $(l+1) \times (l+1)$ identity matrix and e_{ij} is a matrix unit (1 in the i, j position, 0 elsewhere).

If R is a field, then E(R) has the structure of a Tits' system associated with the Weyl group of Δ (cf. [9]). If R is a field with a discrete valuation, then E(R) has the structure of a Tits' system associated with the affine Weyl group of Δ (cf. [5]). Let $K[T, T^{-1}]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K. In this paper, we will show that $E(K[T, T^{-1}])$ has the structure of a Tits' system associated with the affine Weyl group of Δ . Let L_Z be a Chevalley lattice in L (cf. [4]) and set $\mathfrak{g}_K = K[T, T^{-1}] \otimes_{\mathbf{Z}} L_Z$. Then \mathfrak{g}_K is isomorphic to a Euclidean Lie algebla (cf. [6]). Thus, if ρ is of adjoint type, and if

char K=0 or ≥ 5 , then our result correspons to the special case of [7].

Let x and y be elements of a group, then the symbol [x, y] denotes the commutator $xyx^{-1}y^{-1}$ of x and y. For two subgroups G_2 and G_3 of a group G_1 , let $[G_2, G_3]$ be the subgroup of G_1 generated by [x, y] for all $x \in G_2$ and $y \in G_3$. We shall write $G_1 = G_2 \cdot G_3$ when a group G_1 is a semidirect product of two groups G_2 and G_3 , and G_3 normalizes G_2 .

The author wishes to express his hearty gratitude to Professor Eiichi Abe for his valuable advice.

1. Characterization of affine Weyl groups.

Let Δ be a (reduced) root system of rank l, W the Weyl group of Δ , and W^* the affine Weyl group of Δ (cf. [2], [4], [5]). Let $\Pi = \{\alpha_1, \dots, \alpha_l\}$ be a simple system of Δ , and Δ^+ (resp. Δ^-) the positive system (resp. negative system) of Δ with respect to Π . Let α and β be in Δ , then we abbreviate $2(\beta, \alpha)/(\alpha, \alpha)$ by $\langle \beta, \alpha \rangle$, where (,) is a scalar product (cf. [4]). For each $\alpha \in \Delta$, w_{α} denotes the reflection with respect to α . Set $\Delta_1 = \Delta \times \mathbf{Z}$, then an element of Δ_1 is represented by $\alpha^{(n)}$, where $\alpha \in \Delta$ and $n \in \mathbf{Z}$. For each $\alpha^{(n)} \in \Delta_1$, let $w_{\alpha}^{(n)}$ be a permutation on Δ defined by

$$w_{\alpha}^{(n)}\beta^{(m)} = (w_{\alpha}\beta)^{(m-\langle \beta, \alpha \rangle n)}$$

for any $\beta^{(m)} \in \Delta_1$. Let W_1 be the permutation group on Δ_1 generated by $w_{\alpha}^{(n)}$ for all $\alpha^{(n)} \in \Delta_1$. We shall identify W with the subgroup of W_1 generated by $w_{\alpha}^{(0)}$ for all $\alpha \in \Delta$. Set $h_{\alpha}^{(n)} = w_{\alpha}^{(n)} w_{\alpha}^{(0)-1}$ and let H_1 be the subgroup of W_1 generated by $h_{\alpha}^{(n)}$ for all $\alpha^{(n)} \in \Delta_1$.

LEMMA 1.1

(1) Let $\alpha^{(n)}$ and $\beta^{(m)}$ be in Δ_1 . Then

$$h_{\alpha}^{(n)}\beta^{(m)}=\beta^{(m+\langle\beta,\alpha\rangle n)}.$$

- (2) H_1 is a free abelian group generated by $h_{\alpha_i}^{(1)}$ for all $\alpha_i \in \Pi$.
- (3) Let $\alpha^{(n)}$ and $\beta^{(m)}$ be in Δ_1 , and set $\gamma = w_{\alpha}\beta$. Then

$$w_{\alpha}^{(n)}h_{\beta}^{(m)}w_{\alpha}^{(n)-1}=h_{r}^{(m)}.$$

PROOF. (1) and (3) are confirmed by direct calculation. We will show (2). Set $\alpha^* = 2\alpha/(\alpha, \alpha)$ for each $\alpha \in \Delta$, then $\Delta^* = \{\alpha^*; \alpha \in \Delta\}$ is also a root system and $\Pi^* = \{\alpha_i^*; \alpha_i \in \Pi\}$ a simple system of Δ^* . Let α be in Δ and write $\alpha^* = \sum_{i=1}^l c_i \alpha_i^*$ ($c_i \in \mathbb{Z}$), then we have $h_{\alpha_1}^{(1)} = h_{\alpha_1}^{(c_1)} h_{\alpha_2}^{(c_2)} \cdots h_{\alpha_l}^{(c_l)}$. On the other hand, $h_{\alpha_1}^{(n)} = (h_{\alpha_1}^{(1)})^n$. Hence H_1 is generated by $h_{\alpha_l}^{(1)}$ for all $1 \le i \le l$. Next assume $h_{\alpha_1}^{(m_1)} \cdots h_{\alpha_l}^{(m_l)} = 1$ ($m_j \in \mathbb{Z}$, $1 \le j \le l$). This yields $\sum_{i=1}^l \langle \beta, \alpha_j \rangle m_j = 0$ for all $\beta \in \Delta$. Thus $m_j = 0$ for all j. q.e.d.

PROPOSITION 1.2 Let W, W*, W_1 and H_1 be as above. Then $W_1=H_1 \cdot W$. In particular, $W_1 \simeq W^*$.

PROOF Lemma 1.1 implies $H_1 \triangleleft W_1$ and $H_1 \cap W = 1$. For any $\alpha^{(n)} \in \Delta_1$, $w_{\alpha}^{(n)} = h_{\alpha}^{(n)} w_{\alpha}^{(0)} \in H_1 W$. q. e. d.

LEMMA 1.3 Let $\alpha^{(m)}$ be in Δ_1 and w in W_1 , and set $\beta^{(n)} = w\alpha^{(m)}$. Then $ww_{\alpha}^{(m)}w^{-1}=w_{\beta}^{(n)}$.

PROOF We can assume $w=w_{\gamma}^{(k)}$ for some $\gamma^{(k)} \in \mathcal{L}_1$. For any $\delta^{(c)} \in \mathcal{L}_1$, we have $w_{\gamma}^{(k)} w_{\alpha}^{(m)} w_{\gamma}^{(k)-1} \delta^{(c)} = w_{\beta}^{(n)} \delta^{(c)}$ by the following formula:

$$\langle \delta, \gamma \rangle + \langle w_{\alpha} w_{\gamma} \delta, \gamma \rangle + \langle \delta, w_{\gamma} \alpha \rangle \langle \alpha, \gamma \rangle = 0.$$

q.e.d.

Let $\Delta = \Delta^{(1)} \cup \Delta^{(2)} \cup \cdots \cup \Delta^{(r)}$ be the irreducible decomposition of Δ (cf. [2], [4]), and set $\Pi^{(j)} = \Delta^{(j)} \cap \Pi$ for each j ($1 \le j \le r$). Let β_j be the unique highest root of $\Delta^{(j)}$ with respect to $\Pi^{(j)}$ for each j. Set $\Pi_1 = \{-\alpha_i^{(0)}, \beta_j^{(1)}; 1 \le i \le l, 1 \le j \le r\}$ and $Y = \{w_a^{(n)}; \alpha^{(n)} \in \Pi_1\}$.

Proposition 1.4 Let W_1 and Y be as above. Then Y generates W_1 .

PROOF We can assume Δ is irreducible. Let X be the subgroup of W_1 generated by Y. If Δ has only one root length, then $w_{\alpha}^{(1)} \in X$ for all $\alpha \in \Delta$ by Lemma 1.3. Thus $h_{\alpha}^{(1)} \in X$ for all $\alpha \in \Delta$, and $X = W_1$. Assume that Δ has two root lengths. Then we can choose α and β in Π such that α is short, β long, and $\langle \alpha, \beta \rangle = -1$. By Lemma 1.3, $w_{\beta}^{(1)} w_{\alpha}^{(0)} w_{\beta}^{(1)-1} = w_{\tau}^{(1)} \in X$, where $\gamma = w_{\beta}\alpha$. Hence $w_{\alpha}^{(1)} \in X$ for all $\alpha \in \Delta$, which yields $X = W_1$. q.e.d.

When $w \in W_1$ is written as $w_1 w_2 \cdots w_k$ ($w_j \in Y$, k minimal), we write l(w) = k: this is the length of w. Set $\Delta_1^+ = (\Delta^+ \times \mathbb{Z}_{>0}) \cup (\Delta^- \times \mathbb{Z}_{\geq 0})$ and $\Delta_1^- = \Delta_1 - \Delta_1^+$. For each $w \in W_1$, set $\Gamma(w) = \{\alpha^{(n)} \in \Delta_1^+ ; w\alpha^{(n)} \in \Delta_1^-\}$ and $N(w) = Card \Gamma(w)$. We will show N(w) = l(w). The following proposition is easily verified.

PROPOSITION 1.5 Let $\alpha^{(n)}$ be in Π_1 and w in W_1 . Then:

- $(1) \quad \Gamma(w_{\alpha}^{(n)}) = \{\alpha^{(n)}\},\,$
- (2) $w_{\alpha}^{(n)}(\Gamma(w) \{\alpha^{(n)}\}) = \Gamma(ww_{\alpha}^{(n)}) \{\alpha^{(n)}\},$
- (3) $\alpha^{(n)}$ is in precisely one of $\Gamma(w)$ or $\Gamma(ww_{\alpha}^{(n)})$,
- (4) $N(ww_{\alpha}^{(n)}) = N(w) 1$ if $\alpha^{(n)} \in \Gamma(w)$, $N(ww_{\alpha}^{(n)}) = N(w) + 1$ if $\alpha^{(n)} \notin \Gamma(w)$.

LEMMA 1.6 Let t be in $\mathbb{Z}_{>1}$ and $\alpha^{(n)}$ in Π_1 . Let w_j be in Y $(j=1, 2, \dots, t-1)$ and set $w_t=w_{\alpha}^{(n)}$. Suppose $w_1w_2\cdots w_{t-1}\alpha^{(n)}$ is in Δ_1^- . Then $w_1\cdots w_t=w_1\cdots w_{s-1}w_{s+1}\cdots w_{t-1}$ for some index $1\leq s\leq t-1$.

Proof Write $\gamma_k = w_{k+1} w_{k+2} \cdots w_{t-1} \alpha^{(n)}$ $(0 \le k \le t-2)$, $\gamma_{t-1} = \alpha^{(n)}$. Since $\gamma_0 \in \mathcal{A}_1^-$ and

 $\gamma_{t-1} \in \Delta_1^+$, we can find a smallest index s for which $\gamma_s \in \Delta_1^+$. Then $w_s \gamma_s = \gamma_{s-1} \in \Delta_1^-$, so $\gamma_s \in H_1$. Thus $w_s = w_t^{(m)}$, where $\gamma^{(m)} = \gamma_s$. By Lemma 1.3, $w_s = (w_{s+1} \cdots w_{t-1}) w_t (w_{t-1} \cdots w_{s+1})$, which yields the lemma. q.e.d.

COROLLARY 1.7 If $w = w_1 w_2 \cdots w_t$ $(w_j \in Y, 1 \le j \le t)$ is a reduced expression (i.e. l(w) = t), and if $w_t = w_a^{(n)}$ for some $\alpha^{(n)} \in \Pi_1$, then $w\alpha^{(n)} \in \Delta_1^-$.

Proposition 1.8 Let w be in W_1 . Then N(w)=l(w).

PROOF Proceed by induction on l(w). If l(w)=0, then w=1, so N(w)=0. Assume l(w)>0, and write $w=w_1w_2\cdots w_t$ as a reduced expression, where $w_j\in Y$, $1\leq j\leq t$. For some $\alpha^{(n)}\in\Pi_1$, $w_t=w_\alpha^{(n)}$. By Corollary 1.7, $w\alpha^{(n)}\in J_1^-$ and $\alpha^{(n)}\in \Gamma(w)$. Thus $N(ww_\alpha^{(n)})=N(w)-1$ by Proposition 1.5(4). On the other hand, $l(ww_\alpha^{(n)})=l(w)-1$. By induction, $N(ww_\alpha^{(n)})=l(ww_\alpha^{(n)})$, which implies N(w)=l(w). q.e.d.

2. The statement of Main Theorem, some basic results.

Let Δ be a (reduced) root system of rank l and $\Pi = \{\alpha_1, \dots, \alpha_l\}$ a simple system of Δ (cf. [2], [4]). Let $L = L(\Delta)$ be a finite dimensional complex semisimple Lie algebra whose root system with respect to a Cartan subalgebra \mathfrak{h} of L is Δ , and let ρ be a finite dimensional complex faithful representation of L. Let G be a Chevalley-Demazure group scheme associated with L and ρ (as for the definition, see [1], [8]). Let $\{h_i, e_\alpha; 1 \le i \le l, \alpha \in \Delta\}$ be a Chevalley basis of L (cf. [3]). Then we have a Chevalley lattice $L_{\mathbf{Z}} = \sum_{i=1}^{l} \mathbf{Z} h_i + \sum_{\alpha \in \mathbf{Z}} \mathbf{Z} e_\alpha$ in L. Let \mathcal{U} be a universal enveloping algebra of L and $\mathcal{U}_{\mathbf{Z}}$ the subring of \mathcal{U} generated by 1 and $e_\alpha^k/k!$ for all $\alpha \in \Delta$ and $k \in \mathbf{Z}_{>0}$. Then $L_{\mathbf{Z}}$ is a $\mathcal{U}_{\mathbf{Z}}$ -module. Let V be the representation space of ρ , Λ the weights of V with respect to \mathfrak{h} , and $V = \coprod_{\mu \in \Lambda} V_\mu$ the weight decomposition of V. Let M be an admissible lattice in V (cf. [4], [9]), and set $M_\mu = M \cap V_\mu$. Let $K[T, T^{-1}]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K. Set $M' = K[T, T^{-1}] \otimes_{\mathbf{Z}} M$ and $M'_\mu = K[T, T^{-1}] \otimes_{\mathbf{Z}} M_\mu$. For each $t \in K$, $n \in \mathbf{Z}$ and $\alpha \in \Delta$,

$$\exp t T^n \rho(e_\alpha) = 1 + t T^n \rho(e_\alpha) / 1! + t^2 T^{2n} \rho(e_\alpha)^2 / 2! + \cdots$$

induces an automorphism of M' under the following action:

$$(t^k T^{kn} \rho(e_\alpha)^k / k!)(f \otimes v) = (t^k T^{kn} f) \otimes (\rho(e_\alpha)^k / k!)v,$$

where $f \in K[T, T^{-1}]$ and $v \in M$. Then $X_{\alpha} = \langle \exp t T^{n} \rho(e_{\alpha}); t \in K, n \in \mathbb{Z} \rangle$ is a subgroup of $G(K[T, T^{-1}])$ and isomorphic to the additive group of $K[T, T^{-1}]$. Let $E(K[T, T^{-1}])$ denote the subgroup of $G(K[T, T^{-1}])$ generated by X_{α} for all $\alpha \in \mathcal{A}$. We shall write $x_{\alpha}^{(n)}(t) = \exp t T^{n} \rho(e_{\alpha})$ for each $\alpha \in \mathcal{A}$, $n \in \mathbb{Z}$, and $t \in K$. Let K^{*} be the multiplicative group of K. For each $\alpha \in \mathcal{A}$, $n \in \mathbb{Z}$, and $t \in K^{*}$, we write

$$w_{\alpha}^{(n)}(t) = x_{\alpha}^{(n)}(t)x_{-\alpha}^{(-n)}(-t^{-1})x_{\alpha}^{(n)}(t),$$

 $h_{\alpha}^{(n)}(t) = w_{\alpha}^{(n)}(t)w_{\alpha}^{(0)}(1)^{-1}.$

Let U be the subgroup of $E(K[T, T^{-1}])$ generated by $x_{\alpha}^{(n)}(t)$ for all $\alpha^{(n)} \in \mathcal{L}_1^+$ and $t \in K$, H_0 the subgroup generated by $h_{\alpha}^{(0)}(t)$ for all $\alpha \in \mathcal{L}$ and $t \in K^*$, B the subgroup generated by U and H_0 , and N the subgroup generated by $w_{\alpha}^{(n)}(t)$ for all $\alpha^{(n)} \in \mathcal{L}_1$ and $t \in K^*$.

THEOREM 2.1 (Main Theorem) Notation is as above. Set $E = E(K[T, T^{-1}])$ and let Y be as in § 1. Then (E, B, N, Y) is a Tits' system.

The proof of Theorem 2.1 will be completed in § 4.

LEMMA 2.2 Let $\alpha^{(n)}$ and $\beta^{(n)}$ be in Δ_1 , and assume $\alpha + \beta \neq 0$. Then

$$[x_{\alpha}^{(m)}(t), x_{\beta}^{(n)}(u)] = \prod x_{i\alpha+j\beta}^{(im+jn)}(c_{ij}t^{i}u^{j})$$

for all $t, u \in K$, where the product is taken over all roots of the form $i\alpha + j\beta$, $i, j \in \mathbb{Z}_{>0}$ in some fixed order, and c_{ij} is as in [9, Lemma 15].

PROOF Let ξ and η be indeterminates, and let α and β be in Δ such that $\alpha + \beta = 0$, then we have

$$[\exp \xi e_{\alpha}, \exp \eta e_{\beta}] = \Pi \exp c_{ij} \xi^{i} \eta^{j} e_{i\alpha+j\beta} \text{ in } \mathcal{U}_{\mathbf{Z}}[[\xi, \eta]],$$

where $c_{ij} \in \mathbb{Z}$ (cf. [9, Lemma 15]). The representation ρ induces a map, also denoted ρ , of $\mathcal{U}_{\mathbb{Z}}$ to $\operatorname{End}(M)$ because M is admissible. Following this with the map $\varphi \to \operatorname{id} \otimes \varphi$ of $\operatorname{End}(M)$ to $\operatorname{End}(M')$ yields a map, again called ρ , of $\mathcal{U}_{\mathbb{Z}}$ to $\operatorname{End}(M')$. Next, map $\mathcal{U}_{\mathbb{Z}}[\xi, \eta]$ to $\operatorname{End}(M')$ as follows: (for $t, u \in K$, and $u_{ij} \in \mathcal{U}_{\mathbb{Z}}$)

$$\sum_{i,j} u_{ij} \xi^i \eta^j \to \sum_{i,j} t^i u^j T^{im+jn} \rho(u_{ij}),$$

where in general, if $f \in K[T, T^{-1}]$, $g \in End(M')$ then fg is the element in End(M') which is "first act by g and then left multiply by f." Then our lemma is established. q. e. d.

LEMMA 2.3 Let $\alpha^{(n)}$ and $\beta^{(m)}$ be in Δ_1 and set $\gamma = w_{\alpha}\beta$. Then:

- (1) $w_{\alpha}^{(n)}(1)h_{\beta}^{(m)}(t)w_{\alpha}^{(n)}(1)^{-1}=h_{\tau}^{(m)}(t)$ for any $t \in K^*$.
- (2) $w_{\alpha}^{(n)}(1)x_{\beta}^{(m)}(t)w_{\alpha}^{(n)}(1)^{-1} = x_{\gamma}^{(m-\langle \beta,\alpha\rangle n)}$ (ct) for any $t \in K$, where c is as in [9, Lemma 19].
- (3) $h_{\alpha}^{(n)}(t)x_{\beta}^{(m)}(u)h_{\alpha}^{(n)}(t)^{-1}=x_{\beta}^{(m+\langle \beta,\alpha\rangle n)}(t^{\langle \beta,\alpha\rangle}u)$ for any $t\in K^*$ and $u\in K$.

Proof These follw as in [9, Lemma 20].

LEMMA 2.4 (cf. [3], [9]) Let α be in Δ , m and n in Z, and t and u in K^* . Then:

- (1) $h_{\alpha}^{(n)}(t)$ acts as multiplication on M'_{μ} by $t^{\langle \mu, \alpha \rangle} T^{\langle \mu, \alpha \rangle n}$.
- (2) $h_{\alpha}^{(m)}(t)h_{\alpha}^{(n)}(u)=h_{\alpha}^{(m+n)}(tu).$
- (3) $w_{\alpha}^{(n)}(t) = w_{-\alpha}^{(-n)}(-t^{-1}).$

Let N_0 be the subgroup of $E(K[T, T^{-1}])$ generated by $w_{\alpha}^{(0)}(t)$ for all $\alpha \in A$ and $t \in K^*$, and H the subgroup generated by $h_{\alpha}^{(n)}(t)$ for all $\alpha^{(n)} \in A_1$ and $t \in K^*$.

Lemma 2.5

- (1) $B = U \cdot H_0$.
- (2) H_0 and H are normal subgroups of N.
- (3) $N=HN_0$ and $H \cap N_0=H_0$.

PROOF (1): Any element of U is a superdiagonal unipotent matrix of infinite degree and any element of H_0 is a diagonal matrix of infinite degree with respect to an appropriate choice of a K-basis of M'. Hence $U \cap H_0 = 1$. By Lemma 2.3(3), H_0 normalizes U. Thus $B = U \cdot H_0$. (2): By Lemma 2.3(1), we see that N normalizes H_0 and H. (3): For any $\alpha^{(n)} \in \Delta_1$ and $t \in K^*$, we have $w_{\alpha}^{(n)}(t) = h_{\alpha}^{(n)}(t)w_{\alpha}^{(0)}(1) \in HN_0$, so $N = HN_0$. Clearly $H \cap N_0 \supseteq H_0$. Conversely we take $h \in H \cap N_0$ and write $h = \prod_{i=1}^{l} h_{\alpha_j}^{(m_j)}(t_j)$ ($\alpha_j \in \Pi$, $m_j \in \mathbb{Z}$, $t_j \in K^*$). Then h maps $K \otimes_{\mathbb{Z}} M_\mu$ to itself and hence, by Lemma 2.4(1), $\sum_{j=1}^{l} \langle \mu, \alpha_j \rangle m_j = 0$ for all weights μ of the module. Thus we have $m_j = 0$, which implies $h \in H_0$. q. e. d.

THEOREM 2.6 Notation is as above. Then $N/H_0 \simeq W_1$.

PROOF By Lemma 2.5, we have $N/H_0 = (H/H_0) \cdot (N_0/H_0)$. Since $H/H_0 \simeq H_1$ and $N_0/H_0 \simeq W$, our theorem is established by Lemma 1.1(3), Proposition 1.2 and Lemma 2.3(1). q. e. d.

We sometimes identify an element of W_1 with a representative in N of N/H_0 through the isomorphism in Theorem 2.6.

3. The case of rank 1.

In this section, we assume Δ is of rank 1, i.e. $\Delta = \{\pm \alpha\}$. Then we have $\Delta_1 = \{\alpha^{(n)}, -\alpha^{(n)}; n \in \mathbb{Z}\}$ and $\Delta_1^+ = \{\alpha^{(m)}, -\alpha^{(n)}; m \in \mathbb{Z}_{\geq 0}\}$. Set $E = E(K[T, T^{-1}])$, and for each $\beta^{(m)} \in \Delta_1$ let $X_{\beta}^{(m)}$ be the subgroup of E generated by $x_{\beta}^{(m)}(t)$ for all $t \in K$. We identify $w_{\alpha}^{(0)}$ (resp. $w_{\alpha}^{(1)}$) in W_1 with $w_{\alpha}^{(0)}(1)$ (resp. $w_{\alpha}^{(1)}(1)$) in N, and simply write $w_{\lambda} = w_{\alpha}^{(1)}$ for $\lambda = 0$, 1. Set $S_{\lambda} = B \cup Bw_{\lambda}B$. Our purpose in this section is to establish the following theorem.

THEOREM 3.1 Notation is as above. Then S_{λ} is a subgroup of E for $\lambda=0, 1$.

The proof of Theorem 3.1 is given by the next proposition.

Proposition 3.2 Let $\lambda=0$, 1. Then $w_{\lambda}Uw_{\lambda}^{-1}\subseteq S_{\lambda}$.

We shall give the proof of this proposition after Lemma 3.7.

Lemma 3.3 The following statements hold.

- (1) $w_0 X_{\alpha}^{(n)} w_0^{-1} = X_{-\alpha}^{(n)} \subseteq B \text{ if } n \ge 1.$
- (2) $w_0 X_{-\alpha}^{(n)} w_0^{-1} = X_{\alpha}^{(n)} \subseteq B \text{ if } n \ge 1.$
- (3) $w_0 X_{-\alpha}^{(0)} w_0^{-1} = X_{\alpha}^{(0)} \subseteq S_0$.
- (4) $w_1 X_{\alpha}^{(n)} w_1^{-1} = X_{-\alpha}^{(n-2)} \subseteq B \text{ if } n \ge 2.$
- (5) $w_1 X_{-\alpha}^{(n)} w_1^{-1} = X_{\alpha}^{(n+2)} \subseteq B \text{ if } n \ge 0.$
- (6) $w_1 X_{\alpha}^{(1)} w_1^{-1} = X_{-\alpha}^{(-1)} \subseteq S_1$.

PROOF (1), (2), (4) and (5) are clear. (3): For any $t \in K^*$, $x_{\alpha}^{(0)}(t) = x_{-\alpha}^{(0)}(t^{-1})w_{-\alpha}^{(0)}(-t^{-1})x_{-\alpha}^{(0)}(t^{-1}) \in S_0$, hence $w_0 X_{-\alpha}^{(0)} w_0^{-1} = X_{\alpha}^{(0)} \subseteq S_0$. (6) is similarly shown. q. e. d.

Definition Let x be in E.

(1) x is called a (QS, 0)-element if x can be written as

$$x_{-\alpha}^{(0)}(t)x_{\alpha}^{(0)}(u)x_{\beta_1}^{(m_1)}(t_1)\cdots x_{\beta_k}^{(m_k)}(t_k)x_{-\alpha}^{(0)}(v),$$

where $\beta_j^{(mj)} \in \mathcal{A}_1^+ - \{-\alpha^{(0)}\}, k \in \mathbb{Z}_{\geq 0}, t, u, t_1, \dots, t_k \in K, \text{ and } v \in K^*.$

(2) x is called a (QS, 1)-element if x can be written as

$$x_{\alpha_{\mathbf{i}}}^{(1)}(t)x_{-\alpha}^{(-1)}(u)x_{\beta_{\mathbf{i}}}^{(m_{\mathbf{i}})}(t_{\mathbf{i}})\cdots x_{\alpha_{\mathbf{k}}}^{(m_{\mathbf{k}})}(t_{\mathbf{k}})x_{\alpha}^{(1)}(v),$$

where $\beta_j^{(m_j)} \in \mathcal{A}_1^+ - \{\alpha^{(1)}\}, k \in \mathbb{Z}_{\geq 0}, t, u, t_1, \dots, t_k \in K$, and $v \in K^*$.

(3) x is called an (S, 0)-element (resp. (S, 1)-element) if x is a (QS, 0)-element (resp. (QS, 1)-element) with u=0.

LEMMA 3.4 Let x be in E and $\lambda=0$, 1. If x is an (S, λ) -element, then $w_{\lambda}xw_{\lambda}^{-1} \in S_{\lambda}$.

PROOF Set $\lambda=0$. We proceed by induction on k. If t=0, clearly $w_0xw_0^{-1} \in S_0$ by Lemma 3.3. Assume $t \neq 0$. If $\beta_1^{(m_1)} = -a^{(m)}$, m>0, then

$$w_0 x w_0^{-1} = w_0 x_{-\alpha}^{(0)}(t) x_{-\alpha}^{(m)}(t_1) x_{\beta_2}^{(m_2)}(t_2) \cdots x_{\beta_k}^{(m_k)}(t_k) x_{-\alpha}^{(0)}(v) w_0^{-1}$$

$$= w_0 x_{-\alpha}^{(m)}(t_1) x_{-\alpha}^{(0)}(t) x_{\beta_2}^{(m_2)}(t_2) \cdots x_{\beta_k}^{(m_k)}(t_k) x_{-\alpha}^{(0)}(v) w_0^{-1} \in X_{\alpha}^{(m)} S_0 = S_0.$$

If $\beta_1^{(m_1)} = \alpha^{(m)}$, m > 0, then

$$w_{0}xw_{0}^{-1} = x_{\alpha}^{(0)}(-t)x_{-\alpha}^{(m)}(-t_{1})x_{2}\cdots x_{k}x_{\alpha}^{(0)}(-v)$$

$$= x_{-\alpha}^{(0)}(-t^{-1})w_{-\alpha}^{(0)}(t^{-1})x_{-\alpha}^{(0)}(-t^{-1})x_{-\alpha}^{(m)}(-t_{1})x_{2}\cdots x_{k}x_{-\alpha}^{(0)}(-v^{-1})w_{-\alpha}^{(0)}(v^{-1})x_{-\alpha}^{(0)}(-v^{-1})$$

$$\in Bw_{0}x_{-\alpha}^{(0)}(-t^{-1})x_{-\alpha}^{(m)}(-t_{1})x_{2}\cdots x_{k}x_{-\alpha}^{(0)}(-v^{-1})w_{0}^{-1}B\subseteq BS_{0}B=S_{0},$$

where $x_j = w_0 x_{\beta j}^{(mj)}(t_j) w_0^{-1}$, $2 \le j \le k$. The case when $\lambda = 1$ is similarly shown. q.e.d.

LEMMA 3.5 Let x be in E.

- (1) If x is an (S, 0)-element, then $w_0 x w_0^{-1} \in Bw_0 X_{-\alpha}^{(0)} X_{\alpha}^{(0)} w_0^{-1}$.
- (2) If x is an (S, 1)-element, then $w_1 x w_1^{-1} \in Bw_1 X_{\alpha}^{(1)} X_{-\alpha}^{(-1)} w_1^{-1}$.

PROOF Proceed by induction on k as in Lemma 3.4. Then we have (1) and

(2). q. e. d.

LEMMA 3.6 Let x be in E and $\lambda=0$, 1. If x is a (QS, λ) -element, then $w_{\lambda}xw_{\lambda}^{-1} \in S_{\lambda}$.

PROOF Set $\lambda=0$. If t=0, clearly $w_0xw_0^{-1} \in S_0$ by Lemma 3.3. Assume $t \neq 0$. Then

$$w_{0}xw_{0}^{-1} = x_{-\alpha}^{(0)}(-t^{-1})w_{-\alpha}^{(0)}(t^{-1})x_{-\alpha}^{(0)}(-t^{-1})x_{-\alpha}^{(0)}(-u)$$

$$\times x_{1}\cdots x_{k}x_{-\alpha}^{(0)}(-v^{-1})w_{-\alpha}^{(0)}(v^{-1})x_{-\alpha}^{(0)}(-v^{-1})$$

$$\in Bw_{0}x_{-\alpha}^{(0)}(-t^{-1}-u)x_{1}\cdots x_{k}x_{-\alpha}^{(0)}(-v^{-1})w_{0}B\subseteq BS_{0}B=S_{0},$$

where $x_j = w_0 x_{\beta j}^{(mj)}(t_j) w_0^{-1}$, $1 \le j \le k$. The case when $\lambda = 1$ is similarly shown. q.e.d.

LEMMA 3.7 Let x be in E.

(1) If x is a (QS, 0)-element, then

$$w_0 x w_0^{-1} \in B w_0 X_{-\alpha}^{(0)} X_{\alpha}^{(0)} w_0^{-1}$$
.

(2) If x is a (QS, 1)-element, then

$$w_1 x w_1^{-1} \in Bw_1 X_{\alpha}^{(1)} X_{-\alpha}^{(-1)} w_1^{-1}$$
.

Proof Lemma 3.5 implies this lemma. q.e.d.

PROOF OF PROPOSITION 3.2 Set $\lambda=0$ and let x be in U. We can assume $x=x_1\cdots x_k$, where x_j is an (S,0)-element, $1\leq j\leq k$. If k=1, $w_0xw_0^{-1}\in S_0$ by Lemma 3.4. Assume k>1. By Lemma 3.5, $w_0x_1w_0^{-1}\in Bw_0X_{-\alpha}^{(0)}X_{\alpha}^{(0)}w_0^{-1}$. Thus we have $w_0x_1x_2w_0^{-1}=b_2w_0y_2w_0^{-1}$, where $b_2\in B$ and y_2 is a (QS,0)-element. By Lemma 3.7, $w_0x_1x_2x_3w_0^{-1}=b_3w_0y_3w_0^{-1}$, where $b_3\in B$ and y_3 is a (QS,0)-element. Recurrently we have $w_0xw_0^{-1}=bw_0yw_0^{-1}$, where $b\in B$ and y is a (QS,0)-element. By Lemma 3.6, $w_0xw_0^{-1}\in S_0$. The case when $\lambda=1$ is similarly shown. q. e. d.

4. Proof of Main Theorem.

Notation is as in § 2. A quadruple (G^*, B^*, N^*, S^*) consisting of four sets G^* , B^* , N^* , and S^* is called a Tits' system if the following axioms are satisfied (cf. [2]):

- (T1) G^* is a group, and B^* and N^* are subgroups of G^* such that G^* is generated by B^* and N^* , and $B^* \cap N^* \triangleleft N^*$;
- (T2) S^* is a subset of the group $N^*/(B^* \cap N^*)$ consisting of involutions and generates $N^*/(B^* \cap N^*)$;
- (T3) For any $\sigma \in S^*$ and $w \in N^*/(B^* \cap N^*)$, $wB^*\sigma \subseteq B^*wB^* \cup B^*w\sigma B^*$;
- (T4) For any $\sigma \in S^*$, $\sigma B^* \sigma \subseteq B^*$.

To prove Theorem 2.1 we proceed in steps. For each $\alpha^{(n)} \in \mathcal{A}_1$, let $X_{\alpha}^{(n)}$ be the subgroup of $E(K[T, T^{-1}])$ generated by $x_{\alpha}^{(n)}(t)$ for all $t \in K$. Let $\alpha^{(m)}$ and $\beta^{(n)}$

be in Δ_1 such that $\alpha + \beta \neq 0$. Then, by Lemma 2.2,

$$(4.1) [X_{\alpha}^{(m)}, X_{\beta}^{(n)}] \subseteq \langle X_{\gamma}^{(k)}; \gamma = i\alpha + j\beta \in \Delta, k = im + jn, i, j \in \mathbb{Z}_{>0} \rangle.$$

For each $\alpha \in \Delta^+$, set $P_{\alpha} = \langle X_{\alpha}^{(m)}, X_{-\alpha}^{(n)}; m \in \mathbb{Z}_{>0}, n \in \mathbb{Z}_{\geq 0} \rangle$ and $Q_{\alpha} = \langle X_{\beta}^{(m)}, X_{\beta}^{(n)}; \beta \in \Delta^+ -\{\alpha\}, m \in \mathbb{Z}_{>0}, n \in \mathbb{Z}_{\geq 0} \rangle$. Then (4.1) implies

$$(4.2) U = P_{\alpha}Q_{\alpha}.$$

Let σ be in Y. We can write $\sigma = w_{\alpha}^{(n)}$ for some $\alpha \in \mathcal{A}^+$ and $n \in \mathbb{Z}$ because $w_{\alpha}^{(n)}$ coincides with $w_{-\alpha}^{(-n)}$. Then, by Theorem 3.1 and (4.2),

$$\sigma B \sigma^{-1} = \sigma (P_{\alpha} Q_{\alpha} H_0) \sigma^{-1}$$

$$= (\sigma P_{\alpha} \sigma^{-1}) (\sigma Q_{\alpha} \sigma^{-1}) (\sigma H_0 \sigma^{-1})$$

$$\subseteq (B \cup B \sigma B) B H_0$$

$$= B \cup B \sigma B.$$

Hence

(4.3) $B \cup B \sigma B$ is a subgroup of E.

We see that $E(K[T, T^{-1}])$ acts on $\mathfrak{q}_K = K[T, T^{-1}] \otimes_{\mathbb{Z}} L_{\mathbb{Z}}$ naturally, i.e.

$$x_{\alpha}^{(n)}(t)(f \otimes v) = (\exp \operatorname{ad} tT^{n}e_{\alpha})(f \otimes v),$$

where $\alpha^{(n)} \in \mathcal{A}_1$, $t \in K$, $f \in K[T, T^{-1}]$ and $v \in L_{\mathbf{Z}}$. For each $\beta^{(m)} \in \mathcal{A}_1$, set $e_{\beta}^{(m)} = T^m e_{\beta}$, $h_{\beta} = [e_{\beta}, e_{-\beta}]$ and $h_{\beta}^{(m)} = T^m h_{\beta}$ in \mathfrak{g}_K . Let g be in U and $\alpha^{(n)}$ in Π_1 , and set $J_{\alpha}^{(n)} = \sum_{\beta^{(m)} \in \mathcal{A}_1^{+} - \{\alpha^{(n)}\}} K e_{\beta}^{(m)}$. Write $g e_{-\alpha}^{(-n)} = e_{-\alpha}^{(-n)} + \zeta h_{\alpha}^{(0)} - \zeta^2 e_{\alpha}^{(n)} + z$, where $\zeta \in K$ and $z \in J_{\alpha}^{(n)}$. Let $\theta_{\alpha}^{(n)}$ be a map of U onto K defined by $\theta_{\alpha}^{(n)}(g) = \zeta$. As $g h_{\alpha}^{(0)} = h_{\alpha}^{(0)} - 2\zeta e_{\alpha}^{(n)} + z'$ $(z' \in J_{\alpha}^{(n)})$ and $g J_{\alpha}^{(n)} \subseteq J_{\alpha}^{(n)}$, the map $\theta_{\alpha}^{(n)}$ is a group homomorphism of U onto the additive group K^+ of K. Let $D_{\alpha}^{(n)}$ be the kernel of the homomorphism $\theta_{\alpha}^{(n)}$. By (4.3),

$$w_{\alpha}^{(n)}D_{\alpha}^{(n)}w_{\alpha}^{(n)-1}\subseteq B\cup Bw_{\alpha}^{(n)}B.$$

For any $x \in D_{\alpha}^{(n)}$, $(w_{\alpha}^{(n)} x w_{\alpha}^{(n)-1}) e_{\alpha}^{(n)} = e_{\alpha}^{(n)} + z'' \ (z'' \in J_{\alpha}^{(n)})$, so $w_{\alpha}^{(n)} x w_{\alpha}^{(n)-1}$ can not be in $Bw_{\alpha}^{(n)}B$. Thus,

$$(4.4) w_a^{(n)} D_a^{(n)} w_a^{(n)-1} \subseteq B.$$

If g is in U, $\alpha^{(n)} \in \Pi_1$ and $\theta_{\alpha}^{(n)}(g) = \zeta$, then $gx_{\alpha}^{(n)}(-\zeta) \in D_{\alpha}^{(n)}$. Hence,

$$(4.5) U=D_{\alpha}^{(n)}\cdot X_{\alpha}^{(n)}.$$

Let $\alpha^{(n)}$ be in Π_1 and w in W_1 , and set $\sigma = w_{\alpha}^{(n)}$. If $N(w\sigma) > N(w)$, then (4.4) and (4.5) imply

$$(BwB)(B\sigma B) = Bw(X_{\alpha}^{(n)}D_{\alpha}^{(n)}H_{0})\sigma B$$

$$= B(wX_{\alpha}^{(n)}w^{-1})w\sigma(\sigma^{-1}D_{\alpha}^{(n)}\sigma)(\sigma^{-1}H_{0}\sigma)B$$

$$= Bw\sigma B,$$

Assume $N(w\sigma) < N(w)$. Set $w' = w\sigma$, then $N(w'\sigma) > N(w')$. Thus,

$$(BwB)(B\sigma B) = (Bw'\sigma B)(B\sigma B)$$

$$= (Bw'B)(B\sigma B)(B\sigma B)$$

$$\subseteq (Bw'B)(B \cup B\sigma B)$$

$$= (Bw'B) \cup (Bw'BB\sigma B)$$

$$= (Bw\sigma B) \cup (BwB).$$

In general, we have

$$(4.6) (BwB)(B\sigma B) \subseteq (Bw\sigma B) \cup (Bw).$$

By the definition, $B \cap N \supseteq H_0$. Conversely let x be in $B \cap N$. Then $\bar{x} \in W_1$, where \bar{x} is the image of x under the canonical homomorphism — of N onto N/H_0 . Since x is in B, $\bar{x} \mathcal{L}_1^+ \subseteq \mathcal{L}_1^+$, hence $N(\bar{x}) = 0$. Thus $\bar{x} = 1$ and $x \in H_0$. This implies

$$(4.7) B \cap N = H_0.$$

These facts show that (E, B, N, S) is a Tits' system.

REMARKS

- 1. There exists a canonical group homomorphism of the group G_K defined by Moody and Teo (cf. [7]) onto our group E under the following conditions: (1) G_K is defined over a 1-tiered Euclidean Cartan matrix, (2) char K=0 or ≥ 5 , (3) ρ is of adjoint type.
- 2. If the scheme G is simply connected (i.e. ρ is of universal type), then $G(K[T, T^{-1}]) = E(K[T, T^{-1}])$.
- 3. The group $E(K[T, T^{-1}])$ is not simple. Congruence subgroups, for example, are normal subgroups.
- 4. For 2-tiered or 3-tiered Euclidean types, the corresponding groups would be the twisted Chevalley groups over $K[T, T^{-1}]$.

References

- [1] Abe, E.: Chevalley groups over local rings, Tôhoku Math. J., 21 (1969), 474-494.
- [2] Bourbaki, N.: "Groupes et algèbres de Lie," Chap. 4-6, Hermann, Paris, 1968.
- [3] Carter, R. W.: "Simple Groups of Lie Type," J. Wiley & Sons, London, New York, Sydney, Tronto, 1972.
- [4] Humphreys, J. E.: "Introduction to Lie Algebras and Representation Theory," Springer-Verlag, New York, Heidelberg, Berlin, 1972.
- [5] Iwahori, N. and Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I. H. E. S., 25 (1965), 5-48.
- [6] Moody, R. V.: Euclidean Lie algebras, Canad. J. Math., 21 (1969), 1432-1454.
- [7] Moody, R. V. and Teo, K. L.: Tits' Systems with Crystallographic Weyl Groups, J.

Algebra, 21 (1972), 178-190.

- [8] Stein, M.: Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math., 93 (1971), 965-1004.
- [9] Steinberg, R.: "Lectures on Chevalley groups," Yale Univ. Lecture notes, 1967/68.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305, Japan