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ON CODIMENSION ONE ISOMETRIC IMMERSIONS
BETWEEN INDEFINITE SPACE FORMS

By

Larry K. GRAVES

Introduction

This paper considers codimension one isometric immersions between manifolds
which carry nondegenerate, though possibly indefinite, metrics and which have
the same constant sectional curvature. Its major purpose is to study the com-
pleteness properties of the relative nullity foliation of such an immersion in the
event that the source manifold is geodesically complete. In addition, those im-
mersions in the case of zero curvature (and source manifold completeness) are
classified.

In [G], [HN], and [N1], a similar program has been accomplished for flat
Euclidean and Lorentz spaces. For Riemannian manifolds, the completeness
properties of the relative nullity foliation have been studies extensively. See,
$e.g.$ , [N2].

Section 1 of the present paper presents notation and necessary preliminary
results. Symmetric tensors of a relevant type and associated nullity distributions,
including the relative nullity foliation, are examined in Section 2. The complete-
ness properties of the relative nullity foliations of the immersions under con-
sideration are developed in the third section, Theorem (3.11) being the major result.
This theorem is combined with techniques from [G] to classify the immersions
between flat indefinite spaces in Section 4; the classification appears as Theorem
(4.4).

1. Preliminaries

Consider an isometric immersion $f:M^{n}\rightarrow M^{n+1}(c)$ between manifolds carrying
nondegenerate metrics, denoted unambiguously by $\langle, \rangle$ , and where the target
manifold has constant sectional curvature $c$ . Since the metrics are nondegenerate,
each point of $M$ has a neighborhood (in $M$ ) on which is defined a vector field,
denoted by $\xi$ , of unit normals $(i.e., |\langle\xi, \xi\rangle|=1)$ .
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18 Larry K. GRAVES

Let the corresponding Levi-Civita connections on the source and target mani-
folds be denoted by $\nabla$ and $\nabla^{\prime}$ respectively. Then $\nabla$ and $\nabla^{\prime}$ satisfy the following
formulas. If $X$ and $Y$ are vector fields on (an open set in) $M$, then the Gauss

formula
(1.1) $\nabla_{X^{\prime}}Y=f_{*}(\nabla_{X}Y)+h(X, Y)\xi$

gives an orthogonal decomposition of $\nabla_{X^{\prime}}Y$ into components tangential and normal
to $M$ In (1.1), $h$ is a symmetric bilinear form, the second fundamental form. A
field $A$ of tangent space endomorphisms, called the second fundamental tensor, is
defined by the following Weingarten formula:
(1.2) $\nabla_{X^{\prime}}\xi=-f_{*}(AX)$ .
$A$ and $h$ satisfy

(1.3) $ h(X, Y)\cdot\langle\xi, \xi\rangle=\langle AX, Y\rangle$

and

(1.4) $\langle AX, Y\rangle=\langle X, AY\rangle$ .
If $R$ is the curvature tensor of the connection $\nabla$ on $M$, then the equation of

Gauss relates $R,$ $A$ , and the curvature $c$ of the target manifold:

(1.5) $c(X\wedge Y)=R(X, Y)-\langle\xi, \xi\rangle(AX\wedge AY)$ ,

where the operation $\wedge is$ defined by

(1.6) $(X\wedge Y)Z=\langle Z, Y\rangle X-\langle Z, X\rangle Y$ .

Finally, the second fundamental tensor satisfies the equation of Codazzi:

(1.7) $\nabla_{X}(AY)=\nabla_{Y}(AX)+A([X, Y])$ .

We recite some standard facts about nondegenerate metrics. If $V$ is a finite-
dimensional vector space, with nondegenerate metric (inner product) $\langle, \rangle$ , of which
$W$ is a (non-empty) subspace, then

$W^{1}=$ {$v\in V:\langle v,$ $w\rangle=0$ for all $w\in W$ }

is a subspace of $V$ whose dimension complements that of $W$ :

$\dim W+\dim W^{1}=\dim V$.

Moreover, $(W^{1})^{1}=W$. However, $V=W\oplus W^{1}$ if and only if the metric induced on
$W$ is nondegenerate.

The following lemma is from [GN]; see also, $e.g.,$ $[W]$ . A subspace of an
inner product space is (non) degenerate if the inner product induced on that
subspace is (non) degenerate.
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(1.8) Degeneracy Lemma. Suppose $X_{1}$ and $X_{2}$ are linearly independent vectors.
Then Span $\{X_{1}, X_{2}\}$ is nondegenerate if and only if the $2\times 2$ “ degeneracy
determinant”

$\det||\langle X_{i}, X_{j}\rangle||$ $i,j=1,2$

is nonzero.

3. Nullity Distributions of Symmetric $(1, 1)$-Type Tensors of Rank One

Let $f:M^{n}\rightarrow M^{n+1}$ be an isometric immersion between manifolds with non-
degenerate metrics and the same constant sectional curvature $c$ . Then the equation
of Gauss (1.5) implies that the second fundamental tensor $A$ has rank one when
it is nontrivial. According to (1.4), it is symmetric with respect to the metric
on $M$ In view of these facts, we turn our attention to symmetric $(1, 1)$ -type
tensors with rank at most one on $M$

Let $A$ denote such a tensor; if $x\in M^{n}$ , then define $T_{0}(x)$ to be the kemel of
$A_{x}$ . Then $T_{0}(x)$ has dimension $n$ or $n-1$ . If $W$ is the set of all $x\in M_{n}$ such that
$T_{0}(x)$ has dimension $n-1$ , then $W$ is precisely the set of all $x\in M^{n}$ such that $A_{x}$

is nonzero. Therefore, $W$ is open, and

$x-T_{0}(x)$

defines an $(n-1)$ -dimensional distribution on $W$, called the nullity distribution of
the tensor $A$ . In the case where $A$ is the second fundamental tensor of an
immersion $f:M^{n}\rightarrow M^{n+1}$ as described above, $T_{0}$ is called the relative nullity dis-
tribution of $f$, and $W$ may be called the ” umbilic-free” set (see [G], \S 4).

(2.1) LEMMA. If $x\in W$, then the image of $A_{x}$ is precisely the orthogonal com-
plement of $T_{0}(x)$ in $T_{x}M$

PROOF. Both spaces are one-dimensional, and if $X\in T_{0}(x)$ , then $\langle AZ, X\rangle=$

$\langle Z, AX\rangle=0$. QED.

(2.2) LEMMA. For a symmetric $(1, 1)$ -type tensor $A$ with rank one, the following
statements are equivalent.

(i) The kernel of $A$ is degenerate.

(ii) The image of $A$ is a light line.

(iii) $A^{2}\equiv 0$ .

PROOF. $(i)\Rightarrow(ii)$ . If $X\in T_{0}$ satisfies \langle X, $ Y\rangle$ $=0$ for all $Y\in T_{0}$ , then $X\in T_{0^{1}}$ , which
is the image of $A$ . Thus, the image of $A$ is Span {X}, but \langle X, $ X\rangle$ $=0$.
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(ii) $\Rightarrow(iii)$ . Denote the ambient (tangent) space by $R^{n}$ . Write $R^{n}$ as an alge-

braic direct sum

$R^{n}=T_{0}\oplus Span\{L\}$ .
If $X\in T_{0}$ , then $\langle A^{2}L, X\rangle=\langle AL, AX\rangle=0$ ; but also $\langle A^{2}L, L\rangle=\langle AL, AL\rangle=0$ . Thus,
$A^{2}L$ is orthogonal to $R^{n}$ and so $A^{2}L=0$, and $A^{2}\equiv 0$ .

$(iii)\Rightarrow(i)$ . If $A^{2}\equiv 0$ , then the image of $A$ is contained in $T_{0}$ . But the image

of $A$ is orthogonal to $T_{0}$ , and hence is the axis of degeneracy in $T_{0}$ . QED.

(2.3) COROLLARY. If $G$ is the set of those $x$ in $W$ for which $T_{0}(x)$ is non-
degenerate, then $G$ is open.

(2.4) PROPOSITION. $T_{0}$ is a differentiable distribution on $W$

PROOF. Let $y\in W$. Choose $L\not\in T_{0}(y)$ such that Span $\{L, AL\}$ is a nondegenerate

plane. If $L$ is extended to a vector field near $y$ , then the degeneracy determinant
for $\{L, AL\}$ remains nonzero (perhaps in some smaller neighborhood of $y$). So,

for points near $y$ , Span $\{L, AL\}$ has a nondegenerate, hence algebraically comple-

mentary, orthogonal complement $E$, of dimension $n-2$ . By Lemma (2.1), $E$ is

contained in $T_{0}$ .
Now, $L\not\in T_{0}$ so $\langle L, AL\rangle_{x}=\lambda(x)$ is nonzero at points $x$ near $y$ . Define $ V\in$

Span $\{L, AL\}$ by

$V=AL-(\langle AL, AL\rangle/\langle L, AL\rangle)L$ .
That \langle V, $ AL\rangle$ $=0$ implies that $V$ spans $T_{0}\cap Span\{L, AL\}$ . It follows that

$T_{0}=E\oplus Span\{V\}$

near $y$ , where the direct sum is an orthogonal sum as well. To see that $T_{0}$ is
differentiable, it now suffices to see that the $(n-2)$ -dimensional distribution $ x\vdash\rightarrow$

$E(x)$ is differentiable.
Give $E(y)$ an orthonormal basis $\{Y_{j}\}(j=1,\cdots, n-2)$ , and then extend $Y_{j}$ near

$y$ to a vector field $Z_{j}$ , for each $j$ . Because the degeneracy determinant of $\{L, AL\}$

is nonzero near $y$ , the solutions of the linear system

$\langle L, Z_{j}\rangle=c_{j}\langle L, L\rangle+d_{j}\langle AL, L\rangle$

$\langle AL, Z_{j}\rangle=c_{j}\langle AL, L\rangle=d_{j}\langle AL, AL\rangle$

are smooth functions of inner products among $L,$ $AL$ , and $Z_{f}$. Hence,

$Z_{f^{\prime}}=Z_{j}-c_{j}L-d_{j}AL$ $j=1,\cdots,$ $n-2$

are smooth vector fields near $y$ . Moreover, $(Z_{j^{\prime}})_{y}=Y_{j}$ so the set $\{Z_{j^{\prime}}\}(j=1,\cdots, n-2)$
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is linearly independent near $y$ . Since each $Z_{j^{\prime}}$ is orthogonal to Span $\{L, AL\}$ , the
set spans $E$. QED.

In the case when $A$ is a relative nullity distribution of such a codimension
one isometric immersion as described at the beginning of this section, we can
say more.

(2.5) PROPOSITION. The relative nullity distribution of an isometric immersion
$f:M^{n}(c)\rightarrow M^{n+1}(c)$ is integrable.

PROOF. If $X,$ $Y\in T_{0}$ , then $A([X, Y])=\nabla_{X}(AY)-\nabla_{Y}(AX)=0$ , so [X, $Y$] $\in T_{0}$ . QED.
Proposition (2.5) says that $T_{0}$ , the relative nullity distribution of $f$, is a

foliation of the umbilic-free set $W$ We shall refer to $T_{0}$ as the relative nullity

foliation.

(2.6) PROPOSITION. The image of $A$ is parallel in any $T_{0}$ direction.

PROOF. If $X\in T_{0}$ and $L\not\in T_{0}$ , then

$\nabla_{X}(AL)=\nabla_{L}(AX)+A([X, L])$

$=A([X, L])$

and so lies in the image of $A$ . QED.

(2.7) PROPOSITION. If $X,$ $Y\in T_{0}$ , then $\nabla_{X}Y\in T_{0}$ .

PROOF. Choose $L\not\in T_{0}$ . Then Proposition (2.6) and the fact that $A$ has rank
one imply that

$\langle\nabla_{X}Y, AL\rangle=X\cdot\langle Y, AL\rangle-\langle Y, \nabla_{X}(AL)\rangle$

$=k\cdot\langle Y, AL\rangle$

for some constant $k$ . By Lemma (2.1), $\langle Y, AL\rangle$ vanishes, and then also $\nabla_{X}Y\in T_{0}$ .
QED.

A distribution (or foliation) $D$ which satisfies $\nabla_{X}Y\in D$ whenever $X,$ $Y\in D$ is
said to be totally geodesic. (If $D$ is a foliation, which is so in the presence of
zero torsion, then its integral submanifolds, called its leaves, are totally geodesic
as submanifolds. For a discussion of totally geodesic submanifolds, see [KN] or
[N2].)

We now have the following result for the relative nullity foliation $T_{0}$ of an
isometric immersion $f:M^{n}(c)\rightarrow M^{n+1}(c)$ . $W$ denotes the umbilic-free set.

(2.8) THEOREM. $T_{0}$ is a totally geodesic foliation of $W$
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3. Completeness Properties of the Relative Nullity Foliation

This section will study the relative nullity foliation of an isometric immersion
$f:M^{n}(c)\rightarrow M^{n+I}(c)$ , where the source manifold $M^{n}$ is (geodesically) complete; that
is, any geodesic in $M^{n}$ may be extended to all values of its affine parameter.

A totally deodesic foliation $F$ has the following property (see, $e.g.$ , [KN]).

Given a point $x_{0}$ , if $x_{t}$ is a geodesic whose tangent vector $x_{0}-$ at $x_{0}$ lies in $F(x_{0})$ ,

then $x_{t}$ lies in the leaf of $F$ through $x_{0}$ for all $t$ in some neighborhood of $0$. A
totally geodesic foliation is called complete if every affinely-parametrized geodesic

which is tangent to the foliation can be extended to all values of the parameter

and still lie in a leaf of the foliation.
It has been seen (Theorem (2.8)) that the relative nullity foliation under

consideration is totally geodesic. The purpose of this section is to show that

(if $M^{n}$ is complete) this foliation is complete.
$T_{0}$ will denote the foliation, and $W$ will denote the “ umbilic-free” set, on

which the $(n-1)$ -dimensional $T_{0}$ lives. Let $x_{0}\in W$ and let $X_{0}\in T_{0}(x_{0})$ . Let $x_{t}$ be
an affinely-parametrized geodesic such that $x_{0}=X_{0}-$ , and let $x_{t}$ be extended to all

values of $t$ in the complete manifold $M^{n}$ . Suppose $b>0$ satisfies that $x_{t}$ lies in

the leaf of $T_{0}$ through $x_{0}$ for $0\leq t<b$ ; such a $b$ exists by Theorem (2.8). The
proof of the following lemma is essentially that of Lemma (5.9) of [G], which

argument also appears in [N1].

(3.1) LEMMA. If $x_{b}\in W$, then there exists a positive $\epsilon$ such that for $0\leq t<b+\epsilon,$ $x_{t}$

lies in the leaf of $T_{0}$ through $x_{0}$ .

Hence, to show that $T_{0}$ is complete, it is imperative to show that $x_{b}\in W$ In what
follows, $y=x_{t_{1}}$ will always denote a fixed point of the geodesic $x_{t}$ at which some
pertinent differentiation or function evaluation will occur. The second fundamental
tensor at a point $x$ will be denoted $A(x)$ .

Let $\Omega$ generate the image of $A(x_{0})$ . Extend $\Omega$ as a parallel vector field along

all of $x_{t}$ to a vector field $\Omega_{l}$ . By Proposition (2.6), $\Omega_{t}$ generates the image of $A(x_{t})$

if $t<b$ . Choose $L\not\in T_{0}(x_{0})$ such that $\langle L, \Omega\rangle=-1$ . Extend $L$ as a parallel vector

field along $x_{t}$ , for all $t$. For $t<b,$ $L_{l}\not\in T_{0}(x_{t})$ . Also define a smooth function $p$ ;

$R\rightarrow R$ by

(3.2) $p(t)=\langle AL, L\rangle|_{x_{t}}$ .
$p$ is defined for all $t$, but if $t<b$ , then

(3.3) $AL_{x_{l}}=-p(t)\Omega_{l}$ .
Near any point $y$ on the geodesic, we may extend x- $(l_{1})$ to a $T_{0}- fieldX$ such
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that $X(x_{t})=x_{l}-$ for each point $x_{t}$ of the geodesic near $y$ . $X$ will be called a $T_{0^{-}}$

extension (of x- $(t_{1})$ ) near $y$ , and is constructed as follows. Choose a normal coor-
dinate system $(x^{1},\cdots, x^{n})$ at $y$ such that the geodesic $x_{t}$ is described by $x^{2}=\cdots=x^{n}$

$=0$. Choose a $T_{0}- field$ on $x^{1}=0$ extending $x_{0}-$ , and consider the geodesics in those
directions. Their tangent vectors form a $T_{0}$-extension near $y$ .

We will also need extensions of $L$ and $\Omega$ in certain directions transverse to
the geodesic $x_{t}$ . Define a map $h:R^{2}\rightarrow M^{n}$ by

$h(t, u)=\exp_{x_{t}}(uL_{l})$ .
Since

$h_{(t.0)}(\partial/\partial t)=x_{l}-,$ $h_{(l,0)}*(\partial/\partial u)=L_{l}$ ,

for each $t$, there is a neighborhood $U$ of $(t, 0)$ such that $h:U\rightarrow h(U)$ is an em-
bedding. These U-neighborhoods form a neighborhood $V$ of $\{(t, 0):t\in R\}$ . The
vector field $h_{*}(\partial/\partial u)$ is an extension of $L$ to $h(V)$ . By shrinking the neighborhood
$V$, if need be, and restricting $l$ to $[0, b$), we may assume that $AL\neq 0$ ; since $L\not\in T_{0}$ ,
$\langle AL, L\rangle\neq 0$ . Now let

$\Omega=(-1/\langle AL, L\rangle)AL$ .

This extends $\Omega$ to $h(V)$ . Finally, note that if $Z$ is a vector field near $y=x(t_{1})$ ,

then $(\nabla_{L}Z)_{y}$ depends only on the behavior of $Z$ along the curve $u\rightarrow h(t_{1}, u)$ . In
particular, with the above extensions, $(\nabla_{L}\Omega)_{x_{t}}$ is a well-defined vector field along
the geodesic $x_{l}$ .

Now we examine Codazzi’s equation (1.7) near $y$, using $L$ and a $T_{0}$-extension
$X$ near $y$ . Using zero torsion, the Codazzi equation reduces to

$\nabla_{X}(AL)=-A(\nabla_{L}X)$ ,

since $L$ is parallel along $x_{l}$ , and $X\in T_{0}$ .
Next we consider the derivative of the function $p$ of (3.2) and (3.3):

$\frac{dp}{dt}=X\cdot\langle AL, L\rangle$

$=\langle\nabla_{X}(AL), L\rangle+\langle AL, \nabla_{X}L\rangle$

$=-\langle A(\nabla_{L}X), L\rangle$

$=-\langle\nabla_{L}X, AL\rangle$ ,

so

(3.4) $\frac{dp}{dt}=p(t)\langle\nabla_{L}X, \Omega\rangle_{l}$ .

Since $p$ is well-defined and smooth for all $t$, (3.4) implies that the function $Q(t)=$
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$\langle\nabla_{L}X, \Omega\rangle_{t}$ is well-defined and smooth on the interval $0\leq t<b$ . (In particular, $Q(t)$

is independent of the $T_{0}$-extension near $x_{t}$ , for each $t.$ ) Let us pause to study
the behavior of $Q(t)$ along the geodesic $x_{t}$ .

By the Gauss equation (1.5) of the immersion,

(3.5) $R(X, L)X=c\langle X, L\rangle X-c\langle X, X\rangle L$ .
Since there is no torsion,

(3.6) $R(X, L)X=\nabla_{X}\nabla_{L}X-\nabla_{L}\nabla_{x}X-(\nabla_{r_{\chi^{L-}}r_{J},x}X)$ .
Equations (3.5) and (3.6) can be combined to give

(3.7) $\nabla_{X}\nabla_{L}X=c\langle X, L\rangle X-c\langle X, X\rangle L+\nabla_{L}\nabla_{X}X+\nabla_{r_{X^{L}}}X-\nabla_{r_{L}x}X$.
Now,

$\frac{dQ}{dt}=X\cdot\langle\nabla_{L}X, \Omega\rangle$

$=\langle\nabla_{X}\nabla_{L}X, \Omega\rangle+\langle\nabla_{L}X, \nabla_{X}\Omega\rangle$

$=\langle\nabla_{X}\nabla_{L}X, \Omega\rangle$ ,

since $\Omega$ is parallel along $x_{t}$ . From (3.7) the following equation obtains:

$\frac{dQ}{dt}=c\langle X, L\rangle\langle X, \Omega\rangle-c\langle X, X\rangle\langle L, \Omega\rangle+\langle\nabla_{L}\nabla_{X}X, \Omega\rangle$

(3.8)

$+\langle\nabla_{r_{\chi^{L}}}X, \Omega\rangle-\langle\nabla_{r_{L^{X}}}X, \Omega\rangle$ .
(3.9) LEMMA. The function $Q$ satisfies the following differential equation on the

interval $0\leq t<b$ :

$\frac{dQ}{dt}=Q(t)^{2}+c\langle xx_{t}\rangle$ .

REMARK. Note that $c$ and $\langle\overline{x}_{t},\overline{x}_{l}\rangle$ are constants.

PROOF. Each term of the right-hand side of (3.8) is to be evaluated at $y=x(t_{1})$

where $0\leq t_{1}<b$ .
Since $\Omega_{y}$ generates the image of $A_{y}$ , the first term vanishes. By design,

$\langle L, \Omega\rangle_{t}=-1$ ; since $X_{t}=x_{t}-$ , the second term equals $ c\langle\overline{x}_{t},\overline{x}_{t}\rangle$ . At $y,$ $\nabla_{X}L$ is zero $(L$

is parallel along $x_{t}$); therefore, $(\nabla_{r_{X^{L}}}X)_{y}$, and the fourth term, vanish.
That the third term vanishes can be seen as follows. At $y$ , near which a

fixed $T_{0}$-extension has been established, consider the equation

$\langle\nabla_{L}\nabla_{X}X, \Omega\rangle_{y}=L_{y}\langle\nabla_{X}X, \Omega\rangle-\langle(\nabla_{X}X)_{y}, (\nabla_{L}\Omega)_{y}\rangle$

$=L_{y}\langle\nabla_{X}X, \Omega\rangle$ .
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Near $y,$ $\nabla_{X}X\in T_{0}$ . Since $\Omega$ generates the image of $A$ for points on the integral
curves of $L$ constructed previously, $\langle\nabla_{X}X, \Omega\rangle$ vanishes on those curves. There-
fore, $ L_{y}\langle\nabla_{X}X, \Omega\rangle$ is zero.

Finally, the fifth term depends on $(\nabla_{L}X)_{y}$ , a vector well-defined at $y$ since the
$T_{0}$ -extension $X$ and the integral curve of $L$ through $y$ are fixed. Now, if $Z=\nabla_{L}X$

$+\langle\nabla_{L}X, \Omega\rangle L$ , then $\langle Z, \Omega\rangle=0$ , and hence $Z\in T_{0}(y)$ . As well, $(\nabla_{Z}X)_{y}$ lies in $T_{0}(y)$ ; so
$\langle\nabla_{Z}X, \Omega\rangle_{y}=0$ . This implies that

$\langle\nabla_{r_{L}x}X, \Omega\rangle_{y}=-\langle\nabla_{\langle F_{L}X.\Omega\rangle L}X, \Omega\rangle_{y}$

$=-\langle\nabla_{L}X, \Omega\rangle_{y^{2}}$

$=-Q(t_{1})^{2}$ .

In summary, then, equation (3.8) reduces to

$\frac{dQ}{dt}|_{tt_{1}}==c\langle\overline{x}_{t_{1}}, .\overline{x}_{l_{1}}\rangle-(-Q(t_{1}))^{2}$

independently of the $T_{0}$ -extension near $y$ . QED.

Now, to see whether the relative nullity is complete, which (by Lemma (3.1))

is equivalent to whether $x_{b}\in W$, we consider the differential equations in (3.4) and
(3.9), according to different cases for the constant $ c\langle-x_{t},\underline{x}_{l}\rangle$ .

First, suppose that $c\langle\overline{x}x\rangle=0$ . Then, from (3.9), $Q$ satisfies the differential
equation

$\frac{dQ}{dt}=Q^{2}$ .

It follows that either $Q\equiv 0$ on $[0, b$) or

$Q(t)=\frac{Q(.0)}{1-tQ(0)}$ .

Then (3.4) implies that either $p(t)\equiv p(O)$ on $[0, b$) or

$p(t)=\frac{p(0)}{|1-t\cdot Q(0)|}$

(see [G]). In either case $\lim_{l\rightarrow b}p(t)=p(b)$ is nonzero, and $x_{b}\in W$

Next, suppose there is some $r$ such that $c$ \langle x $ x_{l}\rangle$ $=-r^{2}$ . The differential
equation for $Q$ given by (3.9) is

$\frac{dQ}{dt}=Q^{2}-\gamma^{2}$

for which $Q(t)\equiv r$ is a solution; in this event, $p(t)=p(0)e^{rt}$ , so $p(b)$ is nonzero.
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If $Q\neq r$, then it is easy to see that

$ Q(t)=r\coth$ (k-rt)

where $k$ is the inverse hyperbolic cotangent of $Q(O)/r$. $Q(l)$ is well-defined for
$0\leq t<b$ , so $k/r\not\in[0, b$). Now, from (3.4) it follows that for $0\leq t<b$ ,

$p(t)=p(0)\exp(\int_{0}^{l}Q(s)ds)$

$=p(0)\exp[\log(\frac{\sin hk}{\sin h(h-rl)})]$ .

(NOTE: since $k/r\not\in[0,$ $b$), the quantities $\sin hk$ and $\sin h(k-rt)$ have the same sign.)

So

$p(t)=(p(O)\sin hk)/\sin h(k-rt))$ .
Since $k\neq 0,$ $p(t)\neq 0(0\leq t<b)$ . Were $k$ equal to $rb,$

$\lim_{t\rightarrow b}p(t)$ would be infinite. How-
ever, $p$ is well-defined and smooth for all $t$. Therefore, the limit exists and is
nonzero, and $x_{b}\in W$

In the cases where $ c\langle xx_{t}\rangle$ is nonpositive, it has been shown that $x_{b}\in W$

Lemma (3.1) now implies that

$\sup$ {$t;x_{u}\in W$ for $0\leq u<t$}

cannot be finite. Therefore, the (complete) geodesic $x_{t}$ lies in $W$

Finally, consider the case where $c\langle xx_{t}\rangle=r^{2}$ for some $r$. Then (3.9) implies
that

$Q(t)=r\tan(rt+k)$

where $k=\arctan(Q(0)/r)$ . Note that $k\neq\pi/2$, since $Q(t)$ is well-defined on $[0, b$). For
the same reason, the quantity

$b^{\prime}=\frac{\pi-2k}{2r}$

does not lie in $[0, b$). This fact and (3.4) give

$p(t)=p(0)\exp\int_{0}^{l}r\tan(rs+k)ds$

SO

(3.10) $p(t)=(p(O)\cos k)/\cos(rt+k)$ .
Now, $\cos k\neq 0$ since $Q(O)$ is not infinite. However, since $M^{n}$ is complete, $b^{\prime}$ is an
admissible parameter value, and so $p(b^{\prime})$ must be well-defined (and smooth there).
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But, by (3.10), $\lim_{l\rightarrow b^{\prime}}p(t)$ does not exist, engendering a contradiction. The only viable
conclusion is that, if $M^{n}$ is complete, the case where $ c\langle\rho_{l},-x_{l}\rangle$ is positive cannot
occur.

The basic completeness properties of the relative nullity foliation, derived in
this section, are summarized by the following theorem.

(3.11) THEOREM. Let $f:M^{n}\rightarrow M^{n+1}$ be an isometric immersion, where
(i) $M^{n}$ and $M^{n+1}$ have indefinite nondegenerate metrics;

(ii) $M^{n}$ and $M^{n+1}$ have the same constant curvature $c$ ; and
(iii) $M^{n}$ is (geodesically) complete.

Let $W$ be the umbilic-free set of the immersion, and let $x_{l}$ be an (affinely

parametrized) geodesic passing through a point of $W$. Then:
(1) $ c\langle\rho x\rangle$ is a nonpositive constant;

and (2) $x_{l}$ lies in $W$ for all $t$.

If $M^{n}$ is not complete, then it can be asserted that $x_{t}\in W$ for those values to
which the geodesic can be extended from a particular value $t_{0}$ for which $x_{t_{0}}\in W$

If $ c\langle\rho_{l}, \rho_{t}\rangle$ is positive, then the contradiction involving $b^{\prime}$ engendered during the
development of Theorem (3.11) can at best imply that $b^{\prime}$ is not a value to which
the geodesic can be extended.

4. Codimension One Isometric Immersions Between Indefinite Euclidean Spaces

Let $R_{s}^{n}$ be the n-dimensional real vector space together with an indefinite
metric (inner product) of signature $(s, n-s)$ given by

$\langle x, y\rangle=-\sum_{j=1}^{\epsilon}x^{j}y^{j}+\sum_{k=s+1}^{n}x^{k}y^{k}$

for $x=(x^{1},\cdots, x^{n})$ and $y=(y^{1},\cdots, y^{n})$ . $R_{s}^{n}$ will be called the indefinite (n-dimensional)

Euclidean space (wilh signature $s$). If $s=0$ , then $R_{s}^{n}$ is just the ordinary Euclidean
space $E^{n}$ . If $s=1$ , then $R_{s}^{n}$ is what is usually called the n-dimensional Lorentz
space, $L^{n}$ . Note that there is a natural isomorphism between $R_{s}^{n}$ and $R_{n-s}^{n}$ . Under
this isomorphism, geometric properties of one correspond to geometric properties
of the other. This ” independence of sign convention “ has long been exploited
in the case of $L^{n}$ versus $R_{n-1}^{n}$ .

The purpose of this section is to outline the classification of isometric im-
mersions of $R_{s}^{n}$ into $R_{s}^{n+1}$ . The case $s=0$ was done by Hartman and Nirenberg
[HN]; a proof also appears in [N1]. The classification in the case $s=1$ appears in
[G]. All classifications are based upon the completeness properties of the relative
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nullity foliation. The natural isomorphism between $R_{s}^{n}$ and $R_{n-s}^{n}$ may be applied
to the classification of immersions $R_{s}^{n}\rightarrow R_{l}^{n+1}$ to classify the immersions $R_{s}^{n}\rightarrow R_{s+1}^{n+1}$

as well.
Let $M_{0}(x)$ denote the leaf through $x\in R_{s}^{n}$ of the relative nullity foliation of

an immersion $R_{s}^{n}\rightarrow R_{s}^{n+1}$ .

(4.1) THEOREM. The umbilic-free set $W$ is a union of parallel hyperplanes.

PROOF. By (2) of Theorem (3.11), $M_{0}(x)$ is contained in the $(n-1)$ -dimensional
subspace tangent to it at $x$ , for $x\in W$. Now, the hyperplanes $M_{0}(x)$ are the maximal
connected integral submanifolds of the relative nullity foliation. Distinct hyper-
planes therefore cannot intersect; but nonintersecting hyperplanes must be parallel.
QED.

Since parallel hyperplanes inherit the same metric from $R_{s}^{n}$ , the following
theorem is immediate.

(4.2) THEOREM. Either $ G=\emptyset$ or $G=W$.

Now, if $x_{0}$ is a fixed origin in $W\subseteq R_{s}^{n}$ , write $M_{0}=M_{0}(x_{0})$ . Choose a vector $L$

at $x_{0}$ such that $L\not\in T_{0}(x_{0})$ ; if $T_{0}(x_{0})$ is nondegenerate, choose $L$ to be orthogonal
to $T_{0}$ . Then

(4.3) $M_{0}\oplus Span\{L\}=R_{s}^{n}$

describes $R_{s}^{n}$ as a direct sum of vector spaces which is orthogonal if $M_{0}$ is non-
degenerate. If $f$ is the immersion, then define $f_{0}$ : $M_{0}\rightarrow R_{s}^{n+\iota}$ and $f_{1}$ : $Span\{L\}\rightarrow R_{s}^{n+1}$

by

$f_{0}(x)=f(x, 0)$ , if $x\in M_{0}$ ;

$fi(s)=f_{1}(sL)=f(x_{0}, s)$ .
Invoking the “ Moore Lemma” in [G] gives

$f(x, s)=f_{0}(x)+f_{1}(s)$ .
Using the Gauss formula (1.1), it is easy to see that $f_{0}$ is an isometry of $M_{0}$ onto
an $(n-1)$-plane in $R_{s}^{n+1}$ . If $M_{0}$ is nondegenerate, and $L$ is chosen orthogonal to
$M_{0}$ , then $f_{1}$ maps $Span\{L\}$ into the orthogonal complement of $f(M_{0})$ in $R_{s}^{n+1}$ . If
$M_{0}$ is degenerate, then for some $(n-2)$-plane $E$ and nonzero vector $\Omega$ ,

$M_{0}=E\oplus Span\{\Omega\}$

describes $M_{0}$ as a direct and orthogonal sum of a nondegenerate $(n-2)$ -plane and
an axis of degeneracy. Let the vector $L$ of (4.3) be chosen orthogonal to $E$. Since
$R_{s}^{n}$ has a nondegenerate metric, $\langle L, \Omega\rangle\neq 0$ . From the additional fact that $\langle\Omega, \Omega\rangle=0$ ,
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it follows that $Span\{L, \Omega\}$ is an indefinite Euclidean plane with signature 1, $i.e.$ ,
an $L^{g}$, which is orthogonal to $E$. The isometry $f_{0}$ : $M_{0}\rightarrow f(M_{0})$ induces an isometry
of $E$ onto an $(n-2)$-plane $f(E)$ , and $f(Span\{L, \Omega\})$ lies in that $L^{3}$ which is the
orthogonal complement of $f(E)$ in $R_{s}^{n+1}$ . The methods of [G] now apply virtually
verbatim to establish the following theorem.

(4.4) THEOREM. Up to a proper motion of $R_{s}^{n+1}$ , an isometric immersion $ R_{\epsilon}^{n}\rightarrow$

$R_{\$}^{n+1}$ has one of the following forms.

(i) $id\times c:R_{s-1}^{n-1}\times L^{1}\rightarrow R_{\epsilon-1}^{n-1}\times L^{2}$

(ii) $id\times c:R_{s}^{n-1}\times E^{1}\rightarrow R_{l}^{n-1}\times E^{2}$

(iii) $id\times g:R_{l-1}^{n-2}\times L^{2}\rightarrow R_{S-1}^{n-2}\times L^{3}$

where: in (i), $c:L^{1}\rightarrow L^{2}$ is a “ unit-speed” time-like curve $(\langle dc/dt, dc/dt\rangle=$

$-1)$ in $L^{2}$ ; in (ii), $c:E^{1}\rightarrow E^{2}$ is a unit-speed Euclidean plane curve; in each
case “ id “ is the appropriate identity map; and in (iii), $g$ is an immersion
of $L^{2}$ into $L^{8}$ with degenerate relative nullity (as classified in [G]). More-
over, class (iii) consists of precisely those immersions $R_{s}^{n}\rightarrow R_{\epsilon}^{n+1}$ with
degenerate relative nullities.

It should be noted that those immersions with nondegenerate relative nullities
are cylinders over curves, in analogy with the Hartman-Nirenberg result, whereas
the description (iii) is the best possible for those immersions with degenerate
relative nullities.
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