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SOME REMARKS ON ORDINARY ABELIAN VARIETIES

By
Ryuji Sasaxki

Let &£ be an algebraically closed field of positive characteristic p. Let X be an
abelian variety over &, of dimension ¢g. If p° (0=<0=g) is the separable degree of
the isogeny px: X——X defined by x+— pz, then ¢ is called the p-rank of X.
Suppose p-rank of X is equal to ¢; such an abelian variety is said to be ordinary.
Let L be an ample invertible sheaf on X and P the Poincaré invertible sheaf on
the product XxX of X and the dual abelian variety X of X. For any closed
point a of X, we put P| xxiag=/F.. In the present paper we have two main pur-
poses, one of which is to prove which asserts:

Assume p>2. Then the canonical map

2 TLQPa ) QI (LP'QP-ury) —> ['(LPQPpi,)
a€(Xp) (k)
is surjective for any closed points B and y of X, where (X,)(k) denotes the group
of the closed points of X ,=ker (ps).

The other is to give a simple proof of [Theorem 4.1, which was first proved
by T. Sekiguchi [12], using the lifting theory of abelian varieties. The theorem
asserts:

Assume p=2. Then for any closed points B and y, there exists a non-empty
open subset U of X such that the canowical map

I(L*QPasp) QI (L*QP-ar;) —> I'(L*®Py+,)

1s surjective for all closed points a of U.

By virtue of these theorems, we see that the following theorem ([I1], Main
Theorem) holds as long as X is ordinary, even if char £=p is 2 or 3.

If @p: X—>P((L?) is the canonical embedding of X into the projective
spdce, then the image variety is ideal-theoretically an intersection of cubics.

®OH. Morikawa showed this to be the case for generic abelian varieties of
any characteristic. In view of a result of P. Norman and F. Oort to the effect
that generic abelian varieties are ordinary, we get another proof of this statement.

In §1, we recall some fundamental facts from the theory of theta functions in
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abstract geometry, which were established by D. Mumford {4], [5], [6D. In §2,
we shall give a fundamental theta relation from which every theta relation results
as its special case. The following two sections 3 and 4 are devouted to proving
our main results.

The author had conversation with Dr. T. Sekiguchi during the preparation of
this paper and obtained some useful suggestions from them, and thanks him for
asking a question concerning abelian varieties in characteristic p which led the
author to prove the results of this paper.

Notation and Terminology.

Throughout this paper we fix an algebraically closed field £ and we are concerned
with schemes over k. For a group scheme G over k and a scheme S over & (resp.
k-algebra R), we denote by G(S) (resp. G(R)) the group of the S-valued (resp. R-
valued) points of G. Since no confusion occurs in this paper, we treat S-valued
points of G as if they were k-valued points. For a finite group scheme F, F,eq
(resp. F,.) denotes the maximal reduced subgroup scheme (resp. the identity com-
ponent) of F and F is the dual of F. If X is an abelian variety, then X denotes
the dual abelian variety of X. For an integer », we denote by xnx the isogeny
defined by z — nz and by X, the kernel of ny. Let L be an invertible sheaf on
X. Then we define the homomorphism ¢z : X—>X by z+—— To*L®L™! and
denote the kernel of ¢, by K(L). The Euler-Poincaré characteristic y(X, L) is the
square root of the rank of K(L). P denotes the Poincaré invertible sheaf on Xx X
and P.xeX) is the pull-back of P via the inclusion XX {a}—>XxX.

§1. Preliminaries.

Let X be an abelian variety over 2 and L an ample invertible sheaf on X.
Then we denote by G(L) the group scheme over % defined as follows:
For every k-scheme S, the S-valued points of G(L) are functorially isomorphic to
the group of the pairs (x, ¢), where z is an S-valued point of X, and

¢: L®Os —> TH+LROs)

is an isomorphism, where T,: XXS——>XXS is the translation by z. It then fits
into an exact sequence of group schemes:

J
1 G —> G(L) —> K(L) — 1,

where j; is the canonical surjection. The canonical representation U of G(L) on
I'(X, L)=I'(L) is given as follows:

Tx* I'g)™
Ui g2 T'(LROs) —> I'(Te¥(LEOs)) —> I'(LKOs)
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for an S-valued point (z, ¢) of G(L).

For any two S-valued points @, b of G(L), aba='b"" is an S-valued point of G,
and it depends only on j.(a) and j.(b). Define e”: K(L)X K(L)—>Gn by eX(ji(a),
ji(b)=aba"'b~*. Then e’ is skew-symmetric and bi-multiplicative. By the defini-
tion of el, we see that a subgroup H of K(L) satisfies the property el gn=1 if
and only if there exists a group section p: H——G(L) of jz. Such p is called a
lifter of H and the image o(H) is called a level subgroup of G(L) over M.

Now we can state the fundamental theorem of Mumford’s theory, which asserts:

THEOREM 1.1. (Theta structure theovem). Let L be an ample invertible sheaf
on an abelian variety X over k. Then I'(L) is an irreducible G(L)-module under the
action U. Moreover, it is the unique irreducible representation of G(L) for which
G.. acts by its natural charvacter. If H is a maximal subgroup of K(L) such that
el\yu=1, then

dim ,(I'(L)"") =1

where H* is a level subgroup of G(L) over H.
(cf. [4], §1 Th. 2 and [10], Appendix)
Such a subgroup H of K(L) as in is said to be maximal isotropic.
In terms of theta groups, the descent theory of invertible sheaves on abelian

varieties is translated as follows:

TuEOREM 1.2. Let n: X——Y be an isogeny of abelian varieties and L an
ample invertible sheaf on X. Then there is a natural one-to-one corrvespondence
between the sets of
(a) isomorphism classes of invertible sheaves M on Y swuch that z*M=L, and
(b) homomorphisms «: ker i——G(L) lifting the inclusion ker r—X.

(cf. §23 Th. 2)

For such M as in (a), the corresponding hommorphism a is called the descent data
on L for = associated with the descended sheaf M.

THEOREM 1.3. Let 7: X——Y be an isogeny of abelian varieties and L and
M ample invertible sheaves on X and Y, respectively, such that m*M=L. Let o be
the descent data on L associated with M. Then
(1) = {(K(M))cK(L),
(2) the centralizer G* of a(ker ) in G(L) is j~'[='(K(L))], where j: GUL)y—>K(L)
is the natural projection,
(3) GWM)=G*/a(ker ), canonically.

(cf. [6], §23)
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As for the product of theta groups, we have the following which is proved in
the same method as in [4, §3 Lemma 1].

ProposiTION 1.4. Let L and M be ample invertible sheaves on abelian varieties
X and Y, respectively. Let i: Gn—G(L) and iy : Gu—>G(M) be the canonical
inclusions. Then we have an exact sequence:

Gz, i)
1 > Gn >» G(L)XG(M) —> G(px*LRpy*M) —> 1

where px and py are projections from XX Y to X and Y, respectively.
We here recall an addition formula of sheaves.

ProrosiTION 1.5 Let L be a symmetric (ie., (—1x)*L~L) invertible sheaf on
an abelian variety X. Let a and b be integers. If we define an isogeny £&: XX
X— XXX by (z, v) — (x~by, x+ay), then we have

EX(PM(LQP)Rp:* (LPQ Py))
=M (LAPQPas ) QDXL DR Pop_pa)
for any a, peX(k), where p; is the i-th projection of XX X.
(cf. [9], Lemma 4.1)

Before bringing this section to an end, we give the following lemma, which is
the positive characteristic version of Lemma 2.1 in [2].

LemMA 1.6. Let K be a field of positive characteristic p and let Elg) be an

elementary abelian p-group of rank g. Suppose {T(@)|lacE(g)} is a set of independent
variable over K. If we define a p?xXp° -matvix M by

A‘IZET(a—b)](a,b)eEm)xE(g) )
then we have
det M=( X T(a))‘”’ .
E(g)

ae

Proor. If we regard M as the matrix with the coefficients in Z[¢][---, T(a),
---], where { is a primitive p-th root of unity in the field of the complex numbers,
then we can easily see that

det M= 11 ( X y(a)T(a))

XEE(y)* a€E(g)

in which El(g)* is the dual group of E(g) (cf. loc. cit.). Since we can specialize ¢
to 1 over the canonical homomorphism Z—>Z/(p), we have
det M (in the ring K[---, T(a), ---])=(X T(a))?’
Q.E.D.
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§2. A fundamental formula of theta relations

We start this section with the following definition.

DerFINITION 2.1. Let L be an ample invertible sheaf on an abelian variety X.
Let H, and H. be two subgroup schemes of K(L) such that K(L)=H,®PH,. This
decomposition is called a Gopel decomposition of K(L) with respect to e if e|H;

X H;=1 for i=1,2 and Hz——»K(L)—I—»(K(L))A—r—e—S;(Iﬂ)" is an isomorphism where y
is the canonical isomorphism associated to e* and res. is the restriction map.

It is well-known that if K(L) is reduced, then it has always a GOpel decompo-
sition. But, unfortunately, K(L) need not have a GoOpel decomposition unless K(L)
is reduced. Take, for instance, an ample invertible sheaf L of degree p on a super-
singular elliptic curve.

The following argument in this section is a slight generalization of §3 in our
paper [9]

Suppose we are in the following situation:

T
X—Y

L «—— M.
é

Here = is an isogeny of abelian varieties, L and M are ample invertible sheaves

*)

and ¢ is an isomorphism z*M=L. Then (z, ¢) induces a linear map:
o*: I'(Y, M) —I'(X, L).

Let d: ker r——>G(L) be the descent data on L for r associated with M. Then

we have, by [Theorem 1.3, the exact sequence:
d T
0 — kerr — G(L)* — GM) — 1,

where G(L)* is the centralizer of d(ker z) in G(L) and T is the canonical surjection.
Assume that there exists a GOpel decomposition K(L)=H(LYPH,(L) satisfying the
following properties:
(i) Hi(L) is reduced.
(ii) If we put Ki=ker N Hi(L) and K,=Kker nN Hy(L), then ker n=K,PK,.

We then have the following :
7 res.
(iii) If we put (K;)*=ker [K(L) — (K(L))» —> (Ki)"INHHL) for i, j=1,2 and i+

j, then we have

K(M)=n((K2)")Dr((£1)*)
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and this is a Gopel decomposition. Put z((K3)*)=H,(M) and =((K,)*)=H,(M) ; hence
(M) is reduced.

LEMMA 2.2. There exist lifters pi(L): Hy(L) —> G(L) and pi(M): Hy(M) —>
G(M) for 1=1,2 satisfying the following properties :
(1) p(L)y=d on K; for 1=1,2 and
(il) the following diagram is commutative :

Pi(L)
(Kj) ————— G(L)*<G(L)
77,_—-7?'(1{])1' T
Hy(M) —— G(M)

pi( M)

for ¢, 7=1,2 and i+].

Proor. Since pi(L) - d=* : K;——>G(L) factors through G, it defines an element
a’ of (Ky)"(k). Let a be an element of [H;(L)}\(k) which induces a’ in (K;)"(k). If
a corresponds to the homomorphism y: Hy(L)—>Gn, then ' - p;(L) is equal to d
on K; and it is also a lifter. As for (ii), we have the equalities K;=Kker =N (K;)*
=ker (Top;(L))N(K;)*. Since =’ is surjective, there exists a lifter p;(M) such that
it fits into the above diagram.

Since H:(L) (resp. Hy(M)) is a maximal isotropic subgroup of K(L) (resp. K(M)),
it follows that there is a unique (up to constant multiple) non-zero element 6(L)[0]
(resp. O(M)[0]) of I'(X, L) (resp. I'(Y, M)) invariant under the action of p,(L)[Hy(L)]
(resp. p:( M) H(M)]). Moreover, if we put U, @ L)0]=0(L)a] for ac Hi\(L)(k)
and U,y @0(M)[0]=0(M)[a] for acH,(M)(k), then we see that {0(L)[a]|lae H\(L)(k)}
and {#(M)[a]lae H/(M)(k)} form the bases of /'(X, L) and I'(Y, M), respectively.
Such bases are called the canonical bases defined by pi’s.

Now we can state our fundamental theta relation. It plays the same role in
this paper as Koizumi’s basic formula (cf. [1], Th. 1.3) and Mumford’s general
formula (cf. [4], §1, Th. 4).

THEOREM 2.3. Under the notation as above, there is a scalar 1ek* such that
for all ae(K:)*(k),
a*(O(M)[ral)=4- 3 (L) a+p].
peEK (k)

Remark. By suitably choosing our bases, we can always assume 4=1. In the
sequel, we will always assume that this has been done.
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Proor. First of all, we note that =* is injective and that its image is the
subspace I'(X, L)**® consisting of the elements of I'(X, L) invariant under the
action of d(ker n). Moreover, I'(X, L)2**® is a module over G’=G(L)*/d(ker r).
In fact, I'(X, L)3®™ as a G’-module is isomorphic to I'(Y, M) as G(M)-module.
This means the commutativity of the diagram:

G(LY*X I'(X, L)ddker= — (X, Lyi®er»
IX(@*)™ l ‘ (@*)~
GM)XI'lY, M) ————I'(Y, M)
Let us first prove the assertion for ¢=0. We may put

n*(ﬁ(M)[0])=p 2, Cp- (L) D]

€H1 (L) (k)

with cp,ek. Then, for all k-algebras R and all R-valued points x of (K;)*, we get
the following:

Uppcrs @y (@*O(M)[0]) =a*(Uro pycr> oy 0(M)[0D)
=1*(Up,5 an 0(M)[0])
=a*6(M)[0]
by the commutativity of the above diagram, and

U.Dz(L)(.t)(pe 2 cp - 0D =2 cpUpycry (L)L D]

Hi(L) (k)

=2 CP(UPz(L)(:L‘)(Upl(L) @ ()[0]))
=2, cpel(x, P)(Up,(L)(p)(Upz(L)<z)0(L)[0]))
=2 ¢p - ez, p) - H(L)P].

Therefore if ¢,#0, then eX(x, p)=1 for all R-valued points x of (K;)*. Hence p is
contained in K,(k) by the definition of (K;)*. Thus we have

o O(M)I0D) = 2 cp- 6(L)p]
PEK1 (k)
Since z*(6(M)[0)) is d(ker z)-invariant and d=p,;(L) on K, it follows that
a*OM)O0D)=Uax( 23 cp - 0L D))
PEK1(k)

=21 cp(Upy s (L) )

=2 ¢p - HL)p+q]
for all geK, (k). Therefore there is 1€k* such that

a*OM)0D=2- 2 (LD
PeK, (k)
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As for the assertion in general, apply U,y With ae(K:)*(k) to this equation.
We see that
U o1y ar(@*(0(M)[01)) = 7*(Ur o 5,25 (M )[0])
:W*(Umw) ay0(M)[0])

=¥ (0(M)[xa))
and that
Ujyryaw@+ X 0LpD=2- 2 0(L)[p+a].
peEK1(k) PEN (k)
Thus we have obtained our formula. Q.E.D.

§3. Main theorem I.

In this section, the characteristic of % is not equal to 2. For a section s of an
invertible sheaf M on an abelian variety X, we denote by s(x) (x€X(k)) the image
of s in the fiber M(x). If we choose an isomorphism M(x)=~k, then we can con-
sider s(z) to be a scalar. In what follows, we will always assume that this has
been done.

ProposiTION 3.1. Let X be an abelian variety over k, L a principal (i.e., ample
and y(X, L)=1) invertible sheaf on X and K(L®-v@-22= H D H,, with H, reduced,
a Gopel decomposition. Let p; be a lifter of H; to G(L®-DP-F) (;=1,2) and
(O(LP->@-Pg)|aec Hy(R)} the basis of ['(LP-PP-) defined by pi's. Then

0(L(P—1)(P—2)p3)[a+b](0)¢0
aeHi(p) (k)

for some be H(p—1)(k). Here Hi(n)=((p—1)(p—2)p*/n)H; when n|(p—1)(p—2)p°.

Proor. For simplicity, we put (p—1)(p—2)p*=qg. Let L, be a symmetric
ample invertible sheaf such that Ls@QP.=~L for some aeX (k). Let {: XXxX—X
x X be the isogeny defined by (x, y) — (z—py, z+p(p—2)y). If we put B=(p—
1)p%a, then we have

CX D (Lo P2 P)Qp*(Lo"@Pp)]= p1*(Lo P~ P PQPp)Xp2* (L)
As in §2 if we put
ker (N{H((p— D)X Hi}=K: (i=1,2),
then we have
LK) I=Hi((p—2)p) X Hi(p) (157) -

Moreover, it follows that
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Xep-0p X Xp={Hi((p—2)p) X Hi(p)}DIHa(p—2)p) X Halp)}

is a Gopel decomposition with respect to e where M=p*(Lo P PP)Qp*(Lo*QPs).
We put N=p*(L,PPPQP;)Qp*L?. Let d: ker {—>G(N) be the descent data for
€ on N associated with M, and G* the centralizer of d(ker{) in G(N). Then there
exist lifters

pi, P H; ——> G(LY),
pi((p—1)p) 1 Hi(p—1)p) —> G(Lo*~-PPQP),
oi(P) P Hi(p) ———— G(LS"QP;)

and
ol(p—2p): Hi((p—2)p) —> G(L,y®-»7)

such that the following diagram is commutative :

res. of ge(pi((p—1)p)X pi’)

{H((p—1)p) X Hi} N Hi((p—2)p) X Hi( D)) > G*
Hi((p—2)p) X Hi(p) —> G(LoP2?) X G(L" QR Py) > G(M)
pi((p—2)p) X pi(D) canonical

where ¢: G(Ly®PPQP;) X G(LY)—>G* is the canonical homomorphism and that
$o{oi((p—1)p) X pi}=d on K;. Since ker {C{Xp_1 X Xp-1yp}, We may assume that
pi’ =p; on Hy(p—2). Then we get bieH(p—1) (i=1,2) and @ eHi(p*) such that
o/ =eX%by, —) - p1 and p’=el%ai+b, —) - ps.  Let {O(LY[a]}, {6(LeP-PPRPy)al},
{0(Lo*~®P)[a]} and {#(L,"®Ps)(a]} be the bases defined by pi’, p:(p—1)p, pi((p—2)p)
and pi(p), respectively. Then we get, by [Theorem 2.3,

CHULo P~ 0P) e — p(p—1)*BIQI( Lo @ Ps)c — p(p—1)(p—2)b]}
= X N Lo P~ PPQPp)c — (p—2)p*b +pal®6’' (L)[b+a]

a€Hy((p—1)p) (k)

(T, 0 E0D+a+d])RUL-DPQP e~ (p— 20 +pd
deH1(p—1) (k) \a€H1(p)(K)

for any (c—(p—2)pb, b)e(K:)*(k)={(c—(p—2)P%, b)lceH\(p)(k), beH\(k)). Let ¢:
X—> XXX be the inclusion defined by x+—— (z, 0) and 4: X——>XxX be the
diagonal morphism. Then {et=4. Hence we have

AHO(LyP=2P) e —p(p—1)*BIQO( LR Pyl c—p(p—1)(p—2)bl}

( 0 (LY[b+a +d](0)> X O(LyPPPQRPy)c—(p—2)2b+pd] .
de€H 1 (p—1) (k) \u€Hi(p)(k)
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The left hand side of this equation is not the zero section. Hence, for any be H,(k),
there exists deH,(p—1)(k) such that

PN )0’(L‘1)[b+a+d](0)¢0.

a€H1(p)(k

On the other hand, the relations between p;/ and p; give the following theta rela-
tion :

0'(LY)[b]=eX%b,, b) - O(LY[b+a,+bi]
for any beH,(k). Therefore we have the following theta relation:

Z 0(Lq)|:a+b:|= Z eLq(bz, a; +b1—a“b)o,(Lq)[d-f'b_al—bl:]

aeHi(p) (k) aeH1(p) (k)
=eLP by, P (p—2)0+by). X (LY a+b—ai—bi]
a€H1(p)(k)
Hence the left hand side of this equation is not zero at the origin. Q.E.D.

COROLLARY 3.2. Let X and L be as in Proposition 3.1. Let K(L®-V?)=H,((p—
DP)YDH((p—1)p), with Hy(p—1)p) reduced, be a Gipel decomposition, pi((p—1)p) a
lifter of Hy((p—1)p) to GLPP?) (i=1,2) and {H(L¥ PP)allac Hi(p—1p)(E)} the
basis of I'(L?-Y?) defined by pi((p—1)p)'s. Then

O(LP-DP)a+b)0)+0

aeHy(p(K)

for some bell\(p—1)(k), where [L(p)=(p—DIL({(p—1p) and H(p—1)=pH\(p—1)p).

Proor. Let (p—1)(p—2)p*=q and K(LY)=H DH, be a Gbpel decomposition
with H; reduced and (p—2)p*H,=H;((p—1)p). Let =: X——»X’/gbL[HI((p—Z)pZ)]:f’
be the canonical surjection. Then we have an exact sequence:

v
0—>K—X—>Y—0,

where K is a subgroup of Y isomorphic to Hx((p—2)p?), and we have an invertible
sheaf Mon Y such that y(Y, M)=1 and z*L~M®-»?,  Then there exists a Gopel
decomposition K(M%=H,'@H, with H,’ reduced, ker n=K=H,((p—2)p*) and =[H,’
(p—1)]=Hi(p—1). Here H, (p—2)p*) denote (p—1)pH,’ and so on. Moreover, we
have (K):*=H/((p—1)p), a[H/(p—1)p))=H\(p—1)p) and =(IL')=Hx((p—1)p). Let
d' : K—>G(M9Y) be the descent data on M? for = associated with L~ ? and G'* .
the centralizer of &’(K). Then there exist lifters o/ : H/ —>G(M?) and p:((p—1)p):
H((p—1)p) —> G(LPV?) such that
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rest. of p//
H No [H(p—Dp) ———— G'F
H{(p=1)p) > G(L-7)
p:i((p—1)p)

commutes (i=1,2) and that g,’=d’ on K. We may then assume that g ((p—1)p)=
0(p—1)p) and p((p—1)p)=e>C (a1, —) - pa((p—1)p) for some aie Hi(p—1)p)(R).
As usual if we denote by {0(L®-V?)allac H\(p—1)p)(k)} the basis of I'(LP-DP)
defined by §:’s, then the relations between p;((p—1)p) and p:((p—1)p) give the theta

relations :
g(Lw—np)[d] — 0(L(p—1)p)[a +a]

for all ac Hi(p—1)p)k). Let {0(MY[allacH,'(k)} be the basis of I'(M9) defined by
p;’s. Then, by [Theorem 2.3, we have

a*(@(LP~P)ral)| =6(MY)a]
for all ae(K)“(k)=H,((p—L)p)(k). Hence we have
o 3N L PP a+abl)= X O(M9[a+b]

aeH1(p) (k) acHy’ (p)(k)

for all beH,'(p—1)(k). Thus we have our conclusion by [Proposition 3.1, Q.E.D.
Now we shall prove our first main theorem:

THEOREM 3.3. Let X be an ordinary abelian variety over an algebraically closed
field k of characteristic p>2. Let L be an ample invertible sheaf on X. Then the
canonical map

S INL@QPui)QI(LP*Q@Ps-;) —> I'(L’QFPaxs)

1€(E) k)

is surjective for all a, Be X (k).

Proor. First of all, we may assume (X, L)=1. Indeed let H be a maximal
isotropic subgroup of K(L) containing K(L).... Since X is ordinary, it follows that
HN (Xp)rea=1{0} and H is reduced. Let 7: X——X/H=1Y be the canonical projection.
Then there exists an ample invertible sheaf M on Y such that z*M=L and x(Y,
M)=1. We denote by H* the kernel of #. Since H* is isomorphic to H, H* is
reduced ; hence we have, for any positive integer » and any a’e(?)(k),

I(L"®Pi@n)= 2 (M "QF w4

o’ €H*(k)

where P’ is the Poincaré invertible sheaf on Y'X Y. Moreover, we have the follow-
ing commutative diagram:
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2 INLQPui)QI(LP ' QPp-;) ———— I'(LPQPurp)

re(X)p(k) I

J’GAE:*(k)( Z F(M®P,a’+r’+ﬁ’)®r(Mp—l®P,ﬂ’—r')> - Z F(Mp®Pla'+ﬁ'+6')

71€(F)pk) 3’ € H*(k)

where o/, ,B’e?(k) and #(a’)=a, #(f’)=p. This diagram reduces the proof to the
case y(X, L)=1.

Since there exists ae X(k) such that LQP, is symmetric, we may assume L to
be symmetric. For simplicity, we prove the theorem when a=8=0. If a or B is
not zero, the same proof works. Now we shall prove the theorem when L is
symmetric and y(X, L)=1 and a=8=0. If we define an isogeny ¢: XX X—>Xx X
by (z, y)—(x—(p—1)y, x+y), then we have

SO (LQP)RQpH (L7~ Q Py) = pr¥(LPQ P ) Qp2* (L P PPQ Py (p-1ya)

for all a, BeX(k). The kernel of & is the image of X, via the homomorphism X
—> XX X define by 2——((p—1)x, z). Since X is ordinary, K(L?),, and K(L?).
are maximal isotropic subgroups of K(L?). If we denote K(L?),, and K(L"),. by
H\(p) and Hy(p), respectively, then we see that KL =H,(p)DHy(p) is a Gopel
decomposition. Let K(L?~')=H,(p—1)PHx(p—1) be an arbitrary Gopel decomposition.
Then we see that

K(M)={H\(p)x Hi((p—1)p)}D{H:(p) X Ho((p—1)p}

is a GOpel decomposition, where M=p,*L?Qpo*L-V? and H;((p—1)p)=Hi(p)DHi(p
—1) (i=1,2). For ye(X)y(k), let d,: ker E—>G(M) be the descent data on M for
§ associated with the descended sheaf N,=p*(LQP,)QRp.*(L*'QP-,). Among the
d,’s, there exist the following relations.

Lemma 3.4. (i) If we put c=¢17(y), then d,=e¥(—, (c, 0)) - d where d=d,.
(ii) The centralizer G* of d,(ker ¢&) in G(M) does not depend on 7

Proor. The second assertion immediately follows from the first. Let us now
prove (i). If we abbreviate p,*L®p,*L?-'=N, then we have

§*(D* Py Qpe™ P =¥ pr*(T* LOL ) Qpe* (T HLP*QL-7)]
= Tee.of(P* LQP* LP R (D1 * LQpo* LP 1) 7]
=¥ Te.o NQN]
= Tee.(§*N)RE* N
~Hom(¢*N, Tie.p*N).
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The last sheaf is trivial, so there exists a nowhere vanishing section which is
unique up to scalars. This section naturally corresponds to the isomorphism ¢:
gxN—£*N covering the translation T.o. For a k-algebra R, let x be an R-valued
point of ker & Then d(x): &*N—&*N is the natural isomorphism covering Tz
and the natural action of z on the sheaf Hom(¢*N, T¢.n&*N) is defined by ¢—s
d(z)o¢od(x)~. Since d(x)egod(x) ¢ '=e"V(z, (c, 0)), the ratio of d,(z) to d(x) is
equal to e¥(x, (c, 0)), and thus we have
Now we put, for 7, 7=1,2 and i#j,
Ki=ker ¢N{Hi(p) X Hi((p—1)p)}
and
S g
(Ki)t=ker[K(M) — K(M)" —> (E)"IN{H{p) X H{((p—1)p)} ,
where f is the isomorphism induced by e¥, and g is the restriction. Then we see
that ker £=K.@K; and &[(K;)*]={0} x Hi(p—1). Moreover, we have lifters p;: Hi(p)
X Hy((p—1)p)—>G(M) for i=1,2 such that p;=d on K;. If we put p;,=e¥(—, (¢,
0)) - o: with ¢,=¢z7'(y), then we have, by the above lemma and the definition of
d,, that p;,=d, on K;. Since ¢L“1[(X)p,md]=Xp,,ed:Hl(p), it follows that p.,=m
and pz,(a, b)=et’(a, c,) - ps(a, b) for all R-valued points (@, b) of Hy(p)X Ha((p—1)p).
Therefore we have lifters pi(n) of Hy(n) to G(L") for m=p and (p—1)p (i=1,2)
which fit into the commutative diagram :

i, (D)X pi((p—1)D)

Hi(p) X (Hi((p—1)p) Y G(LP) X G(L®-1P
T |
Oi,r \_) G(pl*Lp®p2*L(p_1)p)

where p,(p)=p:(p) and ps,,(p)=e"(—, c,) - pa(p). For ye(X)y(k), let pi,(p—1) be
a lifter of Hi(p—1) to G(LP'®P_,) (i=1,2) which fits into the following commuta-
tive diagram:

pivr

{H(p)x H(p— 1P NE O X H(p—1)] ———

— G*

{0} X H(p—1) ——— G(LQP,) X G(L*'QP-;) ——> G(N,) .
{0} X o:,,(p—1) canonical
Let {§(L®-D?)[allac Hy((p—1)p)(k)} (resp. {0,(LP)allac Hi(p)(R)}, {6,(LPNallae Hi(p—1)
(B)}) be the basis of I'(L®¥-Y?) (resp. I'(L?), ['(LP'QP-,)) defined by pi(p—1)p)
(resp. pi(9), pi,(p—1)) and let 6,(L) be a non-zero element of I'(LQF;), which is
uniquely determined up to scalars. By the relations between pi(p) and p;,,(p), we
easily have the following theta relations:
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0,(LP)al=0(L")la— ¢ (y)]

for all aeH,(p)(k) and ye(X),y(k), where {0(L?)[a]lac H\(p)(k)} is the basis of I'(L?)
defined by pi(p)’s. Therefore we have, by and the above relations,

EOLQOLP b= 2 0(LP)aIQNLPP)a+Db]

a€H1(p)(k)

= 2 LA a—¢L  ()IQNLP PP a+b]

a€H1(p)(k)

for all beH,(p—1)(k). Here note that (K3)*(k)={(a, a+b)lac H\(p)(k), be Hy(p—1)(k)}.
If c: X—> XXX is the inclusion defined defined by z——(x, 0), then &-c=the dia-
gonal morphism 4. Hence we have

4*(0,(L)R0,(LP~)[b]) = *6*(0,(L)RI,(LP~1)[b])
= 2 0L PPa+b)0) - (L) a—éL(r)]

a€H1(p)(k)
= X 0 LPPPNa+¢L () +b)0) - 0(L7)a] .

Thus we have the following relation :

a* [0,(L)®6’,T(L” ")[b]] = [0(L"’ PR —a+¢r7(r) +b](0)]
: 1€ p (>

(T.Q)EE(X)pXHl(P)](k)

X [0(Lp)f[—a]]

acH 1 (p) (k)

By we have

det([ﬂ(L“"“”)[ —a+a’ +b](0)}

(@, )e[H (P> le(p)](k))

=(_ 3 LPP)a+b)0)*,

aeH1(p) (k)

where ¢ is the dimension of X. This is not zero for some be H,(p—1)(k) by Corol-
lary 3.2. Therefore we see that the canonical map in the theorem is surjective.
Q.E.D.

§4. Main theorem II.
Our task in this section is to prove the following theorem.
THEOREM 4.1. Assume char k=2. Let X be an ordinary abelian variety k and

let L be an ample invertible sheaf on X. Then for any «a, ,BGX' (B) there exists a
non-empty open subset U of X such that the canonical map
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F(L*QPa )ROI'(L*QPg-;) —> I'(L*QPass)

is surjective for all yeU(R).

ProoF. As in the proof of Theorem 3.5, we may assume that L is symmetric
and (X, L)=1. Moreover, it is enough to prove the theorem in the case a=g=0.
If we define the isogeny &: XX X— XXX by (z, y)—(x—v, x+v), then we have

EX (P *L2Rpo* L) = pr ¥ L Qp.* L*

and the kernel of & is the image of X, via the diagonal morphism 4: X—> XX X.
If we denote K(L)... (resp. K(L),..) by Hi(4) (resp. Hy(4)), then we see that K(L*)
=X,=H,(4)DH>(4) is a GOpel decomposition. Let H;(2) be the image of H;(4) by
2x. Then Hy(2)=K(L%.q and H,2)=K(L?),. For simplicity, we put p*L&pe*L =
N. Then one can easily see that K(N™) ={H,(n) X Hy(n)}D{H,(n) X Hy(n)} (n=2,4) is
a GOpel decomposition. If we put ker éN{H;4) X Hy(4)}=K; (i=1,2) and define (K;)*
as in §1, then we have &[(K)*]=Hy(2)X Hy(2) (i, =1,2 and i#j). By
we get lifters p;°(n): Hy(n)—>G(L"™) (i, j=1,2 and n=2, 4) satisfying the following
properties :

(i) ¢p@e{oP @)X ps®A)}=d on K; (i=1,2),

(ii) the following diagram is commutative :

{H(4) X H(4)} N E-THi(2) X H(2)] S o

Hi(2) X Hy(2) ——> G(L) XG(L?) ———> G(N?)

i (2) X pi®(2) $(2)
Here ¢(n) : G(L")XG(L™)—>G(N™) (n=2,4) is the canonical homomorphism, d: ker
§—>G(N*) is the descent data on N* for & associated with N2, G* is the centralizer
of dker§) in G(N*) and res. is the restriction of ¢(4),{e:®(4)Xp:®(4)}. Since no
confusion occurs, we identify p;’(#) with o;®(r) and denote them by pi(#). For
n=2,4, let {0.[a]lacH,(n)(k)} be the basis of I'(L") defined by pi#n). Then, by
we have

§¥(0:[0]Q0:[2a +b])= 3 Ola+qI®0[a+b+q]
q€H1(2) (k)
for all (@, a+b)e(Ky)*(k)={(a, a+b)lacH,(4)(k), beH,(2)(k)}. Let x,eX(k). Then
we get the following commutative diagram :
[4

X:’{.’L’o} XX—\——--’ XXX

i . G

XxX
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where 6(x)=(zo—=z, xo+x) and ¢ is the inclusion. Hence we have

FEX(0,[b]R0:[2a+b))= T Oda+ql(xo) - Osla+b+q].

qEH1(2)(k)
Since 0=((—15)X1z)o(T-2,X Tz,)°4, We get
5*(02[b]R0[2a + b)) =4*[(T2 20" [b)R(T 3 ,02[2a +b])]

where “7” is the image of the automorphism e of I'(L?) induced by —1x. If we
put a=¢(x,), then we have the following commutative diagram:

INL*QP_)QI'(L*QP,) ———— I'(L*)
) !
rIHQILY |
exid|| |
rIH@I(LY L TORr

For each aeH,(4)(k), we have

z*s*([ozméoz[zwm} )
: beH (2> (k)

= {(]4[(1 +b+ q](xo)} X [04[a:'+ q]}

b, @yelH 1 (2) x H{(2)1(k) qeH,(2) (k)

By Lemma 1.6, we get

det([m[a +b +q](xo)] ) =[ % Oda+ql=) .
.0

g€ H1(2)(k)

Since Y fi{a+q] is a non-zero section for all aeH;(4)(k), there exists a non-empty
subset V of X such that for all eeH,(4)(k) and all xe V(k),

Y OJa+q)(x)#0.

qEH1(2)(k)
Then we see that ¢.(V) is a required open subset of X. Q.E.D.
REMARK 4.2. It is easily seen that holds without the assumption

“ordinary ” in the case of elliptic curves.
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