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ON THE NON-ZERO POINTS OF SECTIONS OF
A LINE BUNDLE ON AN ABELIAN VARIETY

By
Tsutomu SEKIGUCHI

In the present paper, we generalize a main theorem given by Koizumi for
positive characteristic. The result is given in the following style:

Let (X, L) be a principally polarized abelian variety over an algebraically closed
field of characteristic p=0; a, b be two positive integers with b>a. Assnme that
K(L®) has a reduced maxiaml isotropic direct summand H(b), where K(L®) is the
scheme-theoretic kernel of the homomorphism ¢rv of X to the dual abelian variety
X defined by Gro(x)=T*LQRL. Then, for a non-trivial section f in I'(L*) and a
point x in X, there exists a point y in H(b) such that f(x+vy)+0.

This fact was first discovered by Koizumi [1] for characteristic zero provided
(@, b)=1, and immediately thereafter he removed the condition (a, b)=1 in [2].
Later, the author ([6], [7]) generalized it for every characteristic under the condi-
tion (@, b)=1. Here, we shall remove the condition (az, b)=1 in the case of positive
characteristic, following Koizumi’s idea in [2] and using the methods developed in
7]

Moreover, as an application of our result, we shall show the fact:

Let (X, L) be a polarized abelian variety over an algebraically closed field k,
and assume that K(L®) has a reduced maximal isotrvopic direct summand. Then the
cannonical map

2 I(LRPIRI(L:QP-.) — I'(L)

A

a€X3(k)

is surjective, where P is the Poincaré invertible sheaf on XxX and Ps=P|xy4, for
a point zeX.

According to the arguments in [8], this fact implies that ¢(X) is ideal-theore-
tically an intersection of cubics when X is ordinary, even if the characteristic is
three. Here ¢ : X—P(I'(L®%)) is the canonical embedding of X into the projective
space P(I'(L?)).

The latter result was obtained by Mr. R. Sasaki independently with his techni-
cal but skillful method. During the preparation of this paper the author obtained
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some useful suggestions from conversations with Mr. R. Sasaki, to whom he would
like to express his hearty thanks.

We follow the previous papers [6], for notation in this paper.

Throughout the paper, we denote by k2 an algebraically closed field of chara-
cteristic =0, and by X an abelian variety over %k of dimension ¢g. Let @, b be
two positive integers; and &: XX X——> XXX be the homomorphism defined by (z,
y)—(x—by, x+ay). Then for a symmetric invertible sheaf L on X and closed
points @, B in X, we have an isomorphism

(1) EX (DML QP.) Qb (L' QPp)) = pr*(L* " Qpas ) Qp2*(L** P Q) Perp-ba)

(cf. [6], Prop. 1. 2). Hereafter, we fix a principal symmetric invertible sheaf L
(i.e., an ample symmetric invertible sheaf with Euler-Poincaré characeristic 1).
Moreover, we assume the condition

(C) K(L**% has a Gopel decomposition K(L*+®)=H,(a+b)®H:(a+b) with H,(a
+b)=H(@+b);eq.
Obviously this condition is satisfied for any X and @, b with p+a+b and for an
ordinary abelian variety X and any «, b. Under the condition (C), we can easily
take a maximal isotropic subgroup H(b(a+b)) of K(L**'?») satisfying the condition

(C" bH(b(a+b)=H,(a+b), Hbla+b))NHya+b)={0} and (a+b)H(b(a+D)) is a
maximal isotropic subgroup H(b) of K(L?).

Let K=Ker £¢={(by, v)|lyeXa.s}; let K* be the level subgroup in & (p*(L*"*Q
Po o) @paX (L@ DR P,y ) of K corresponding to the isomorphism (1); and let &*
be the centralizer of K*. Then we have a canonical exact sequence

G (é)
1— K* — G* — G0 XL *QPXL*Q®F;) —> 1.
Obviously,
(2) K(pHL* °Q P p) QX (L DR Py ) DK D{(by, MIyve€Xocarnr} -

So we put Hi(a+b)={(by, v)lyeH(a+b)} (i=1, 2) and H(b(a+b))*={(by, v)|lye H(b(a
+b))}. Then we have the inclusions H(a+b)X H(b(a+b))DH\(a+b)*, Hxa+b)XH;
(@a+b)DHy(a+b)4, and an equality K=H(a+b)*®Hx(a+b)!. Since K is lifted up
to the level subgroup K*, Hia-+b)* (i=1, 2) are also automatically lifted up to
level subgroups Hi(a+b)** (i=1, 2) and we have a decomposition K*=H,(a+b)**
@H(a+b)**. Moreover, by the above inclusions, H,(a+b)X H(b(a+b)) (resp. Hy(a
+b)X Hy(a+b)) can be lifted up to a level subgroup (Hi(a+b)X H(b(a+Db)))* (resp.
(Hy(a+b) X Hy(a+b))*) which contains H(a+b)* (resp. Hx(a+b)*). So, the group
H(b(a+b)) is also automatically lifted up to a level subgroup H(b(a+b))*. The
relation (2) implies that ¢* contains H(b(a+0b))"*, and G (EXH(b(a+b))™*) is a level
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subgroup of {0}x H(b), which we denote by H(b)*. Let
r: GULAPYRPars) X QLR Pog po)—> G(Pr¥(L* PR Pos ) Q2™ (L Q) Papba))

be the canonical homomorphism. Then, for suitable level subgroups H(b(a+b))*,
H(a+b)**, Hya+b)** and Hy(a+b)*, we have the isomorphisms

rest. of 7 Hi(a+by**x H(b(a+b))* = (Hi(a+b)x H(ba+b)))*
and
rest. of r: Hya+b)** X Hya+b)=(Hy(a+b)X Hya+Db))*.

Note that H(b) is automatically lifted up to a level subgroup H(b)* in H(b(a+b))*.
By these isomorphisms, the level subgroup H(b(a+b))'* (resp. Hx(a+b)"*) defines a
homomorphism ¢,: H(b(a+b))*—>Hy(a+b)** (resp. ¢z: Hy(a+b)y*—> Hy(a+b)**)
with (¢:(2), 2)eH(b(a+Db))** (resp. (¢a(p), p)eHx(a+b)**). Here we take the sections
t and v such that (¢>=I(L3*°Q@P,.,)H:@ 0" and w)=I(L*QP;)H®". Under this
notation we have

LemMA 1. For a non-zero section u of I'(L*QP,),
(3) X (u@v)= > U, QU0
A€Rep(H(b(a+b))*/H(b)*)

with some non-zevo section 0 of I'(LW@DIRPyg_p, )" +H2 40" [Heye, for a group
G and its subgroup H, Rep(G/H) denotes a complete set of representatives of the
quotient G/H.

Proor. By our assumption, {{Uithicr,ca+vy+y =1(L*""°Q@Parp) .

Therefore, £%(u®v) can be written in the form

(4) Eu@v)y= Y UztQ0, with  0,e'(L*?@* DR Pos_pa) -

A€ Hi(a+b)**

For a point g in H(b(a+D))*,

E*(%®U)= Z U2+¢1pt®Uy01 .

A€ Hi(a-+b)**
Hence we have U,0,=0;.,,, for 2e Hi(a+b)* and peH(b(a+b))*. In particular, U.0,
=0,,, for peH(B(a+b))* and U,0,=86, for 2eH\(a+b)* and peH(b)*; ie., 0;€'(L*+»
RPapra)T®*. Therefore the equality (4) can be replaced by
X uQv)= 2 U, tQU0 ,

2€Rep(H(b(a+b))*/H(b3*)

where §=60,. Moreover, for a point peH (a+Db)*,
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5*(u®v) = Z U¢2/1 U¢12t®Ug Ujo

A€Rep(H(b(a+Db))*/H(b)*)

= ; eLa+b(¢2,u, ¢12) U¢11t®U‘"U}0 .

Hence we have
U, U.0=e""**(¢12, ¢pop)U.0 .
In particular, U,0=0 for any peHx(a+b)*; ie.,
0€ (LR Pyp_py ) H O+ H2 @10 Q.E.D.

Under these preliminaries, we shall show the following theorem which is a
generalization of Theorem 1.1 in including the case of positive characteristic.
Moreover, it is also a partial generalization of Theorem 1.4 in [7].

THEOREM 2. Let (Y, M) be a principally polarized abelian variety of dimension
g. Let ¢, d be two positive integers with c>d. Assume that K(M°) has a Gopel

decomposition
K(M)=H(M" Y®H(M") with H\(M°)=H,(M°) eq. -

Let H;(M*)* be a level subgroup in G(M®) of Hy(M°) for each i=1,2; and {0, -, 0}
be a basis of I'(MeH)H2ME* where n=d’. Then, for any closed point yeY, we have

rank [(U.0:)¥))civen, cersxir,om =a° .

Proor. Obviously, we have only to show our theorem for a suitable lifting
of Hx(M°) and for a suitable basis {0;} of I'(M¢3)H2M9* We put d=a and c—d=>.
In the same way as in the proof of Lemma 1.1 in [6], there exist an abelian variety
X, an isogeny r: X——Y and a principal symmetric invertible sheaf L on X
satisfying the following conditions:

(@) n*(Me2)=L*¢RP, for some reX,

(b) Ker r is a maximal isotropic subgroup H(b) of K(L?),

(c) there exist a GOpel decomposition K(L**®)=H,(a+b)DHy(a+b)
with Hy(a+b)=H,(a+b),.. and a maximal isotropic subgroup H(b(a +b)) of K(L>@+®)
satisfying the condition (C’),

(d) =(Hb(a+b))=H\,(M°) and n(Hxa+b))=H(M°®).

Therefore, if we choose two closed points @, 8 in X such that ¢f—ba=cdy, Lemma
1 is applicable for (X, L) and the isotropic subgroups given in (c) and (d). More-

over, suitably choosing the two points a, 8, we may assume that the level subgroup
Tk

H(b)* given in is defined by the isomorphism in (a). Hence I'(M¢4)——
(L@@ DR Py pa)E®°,  Let {#:}i-1,..n be a basis of I'(L*®P.). Then, by Lemma
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1, we have

EX(14; Q) :leRep(}I(b(aZ+:b))*/H(b)*)Umlt@ U0, (G=1,--,n),
ie.,
(5) (us{x—by)o(x +ay))icu,m

:[(U¢llt)(x)]deRep(H(b(awLb))“‘/H(b)*) : [(Uxoz')(’!/)]u,i) ’

with 0, (L@ P, o 4, )H® " +H2@+0*  Since the components of the row vector in

the left side are linearly independent for any fixed v,
(6) rank [(U:0:)(¥)]a.=%n  for any yeX.

Therefore {f:i-1.... forms a basis of I'(L®“ Q) Pyg_p,)H @ +H2@+0*  On the other
hand, by virtue of (d), @@ Hb(a+b)*) and G (x)(Hy(a-+b)*) are level subgroups of
Hy(M°®) and H,(M°), which we denote by Hy(M°* (i=1,2), respectively. Hence,
identifying I'(M¢%) and (L@ DR Pus sy 2P by 7*, {6i}iz1,..» forms a basis of
I(Mea)H2M9* gnd (6) implies our assertion. Q.E.D.

In the same way as in the proofs of corollary 2.5.1 in [1] and of Corollary 1.3
in [2], we can deduce the following theorem from the above theorem.

TueOREM 3. Let (X, L) be a principally polarized abelian vaviety; and a, b be
two positive integers. Assume that K(L*) has a Gapel decomposition K(L®)=H,(b)D
Hy(b) with Hy(b)=Hy(b)ea.. Let z be any fixed point in X.

(i) If b>a, for a non-zero section f in I'(L%), there exists a k-valued point y
of Hy(b) such that f(x+vy)+0.

(ii) If b+a, and f is an eigenvector in I'(L*) for a level subgroup H(a)* of a
maximal isotropic subgroup H(a) in K(L®), there exists a k-valued point y in H\(b)
such that f(x+vy)+0.

In view of this theorem, we can show the following proposition, which in the
case of p=3 asserts, as mentioned in the beginning, that if (X, L) is a polarized
ordinary abelian variety over %k of characteristic 3, ¢(X) is ideal-theoretically an
intersection of cubics, where ¢: X——>P(I'(L%)) is the canonical embedding of X

(cf. [8]-

PROPOSITION 4. Let k be an algebraically closed field of characteristic p>0;
X be an ordinary abelian variety over k of dimension g; and L be an ample invertible
sheaf on X. Let a, B be two closed points in X. Then the canonical map

2 [(LP'@P.e)QT(LRPs-;) —> [(LPQPusy)

A
reXp(



56 Tsutomu SEKIGUCHI
is surjective.

Proor. As in the proof of Theorem 2.2 in [6], we can easily reduce our
theorem to the case where L is principal. Moreover, without loss of generality
we assume L is symmetric.

Let §: XXX—> XXX be the homomorphism defined by (z, y)—> (x—y, z+
(p—1)y). Then

EX (DML' QP)RD:H LOP:) = py*(LPQ P 1 5) Qb2 (L P OPR Py 155-0)
and

*

I(LP7'QP)RI(LRPs) —> I'LPQPui ) QI (LPPPRP p13p-a) -
Here we take a Gopel decomposition of K(LP-PPRP, 155-a):

K(LPPPQP p-13p-a)=Hi((6—1)p)DH(p—1)p)

with Hi((p—1)p)=H\(p—1)h):ea., and we put pH(p—1)p)=Hi(p—1) and (p—1)H((p
—Dp)=Hy(p) for i=1,2. Let Hi(p)*C G(LPPPRP p-1y5-o) and Hy(p)**C G(LPQRP, 5)
are level subgroups given in for i=1,2. Moreover, let Hy(p—1)* be a
level subgroup in G(LPPPQP,-1y5-a) of H(p—1) for each i=1,2. Then, obviously
{0} X Xp_.cKer(&)* and @ (&)({0} X Hi(p—1)*) is a level subgroup of Hy(p—1)x{0} for
each i=1,2. We put Q&){0}x H{(p—1)*)=H,(p—1)*. Let u, v and ¢ be the sections
such that <u)=I(LP\QP,)HP-1", )=I'(LQP;) and ¢)=I"(LPQP,.p)" ™", Then,
by [Lemma 1,

(7) EX(u@v)= Z U¢111®U10

e (p)*

with 0e'(LP~DPPRQP 1y o) 2P+ H2P-D* Moreover, for any ve Hy(p—1)*,

(8) E¥(Uzereonu®@v)= 3, Uy itQU,i 00 .

A€H1(p)*

On the other hand, for xeX,, the diagram :

3
XxX — Xx X
T(O,l‘) l l T(—x,(p—l)x)
3
XXX - XxX

commutes. Hence we have an isomorphism

TE 50X LP QPR LOP) =X TE 2, 0-1 (DM L QP )Rp2* (LR Py))
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=E (DML QP -1 0 )QPH LR Pps cp-134 , ) -
Therefore, for peH\(p)*, we obtain a commutative diagram :

*

(L QPRI (LR Ps) — I(Lp@Poarp) QI (LPPPRPp-134-a)

(9) U/ 1QU.
*

DL ®Pu- )QI(LQPs:;) ——> ILP@Pas )OI (LP P @Pey135-0)

where U,’ is a suitable isomorphism and 7 is a suitable point in X, Applying
this commutative diagram to the equality (8), we obtain

(10) . [E*(U (Uacereco,yu@))]

nEH1(P)*

=(Uit)ierr,py[ Uss p 0]

4, EHI(P)* X H1(p)* |

By easy calculation, we have

det [Ul+p+06] == i [Uu( Z Upa)]pq .

Q, p)EH1(pY* X H1(p)* i€H1(p)*

Here we notice that this equality was first pointed out by R. Sasaki. Obviously
we have

Y U0el(LP-DPRPp_1y5o)He P D HID®

2€H1 (p)*
Let Y=X/Hy(p—1); and z: X—>Y be the canonical map. Then there exists a
principal invertible sheaf M on Y such that
E*MY):L(Z)—I)Z’®P(”_D/Q_"
and

TE*
]"(MP) _"f’_> F(L(p—l)p®P(p~1)ﬁ_a)llz(pAl)* .
Hence 3, U.f can be considered as an element of I'(MPE®EH®",  On the other

2€H1(p)*

hand, & (x)(Hy(p)*) is a level subgroup of K(M?)..., and =(H(p—1)) is an isotropic
direct summand of K(M?-'). Therefore, by [Theorem 3, (ii), there exists an element
z of Hy(p—1) such that

2. (U0)x)+0.

AEH1(p)*

Therefore, for the point veH,(p—1)* corresponding to this =z,
(UL 2 Un0)+0.
2 H1(p)*

This inequality and imply the surjectivity of our map. Q.E.D.
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