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ON CONJUGATE LOCI AND CUT LOCI OF COMPACT
SYMMETRIC SPACES II

By
Masaru TAKEUCHI

Introduction. This is a continuation of Part I, appeared in this journal, 2 (1977),
35-68.

In the present paper, we shall first study the topological structures of the cut
locus and the conjugate locus of a compact symmetric space. We shall show that
the cut locus C is the disjoint union of finite cell bundles E* over compact manifolds
B*. Here each E* is the interior of a disk bundle E* over B?, and C is obtained
by the successive attachments of E* at boundaries 0E* of E* The conjugate locus
can be also stratified in a similar way.

We shall next give another stratification of the cut locus of an irreducible
symmetric R-space M=G/U by means of orbits of a certain subgroup U of G. We
shall prove the following facts: M has finite U -orbits, say Vo, V3, --+, V»; There exists
a unique open U-orbit, say V,, among them; Then the cut locus is the union of
Vi, -, V»; Each V, is described by means of generalized Schubert cells of M, and
it has the structure of a vector bundle over a symmetric R-space B;. These re-
sults include those on cut loci of Grassmann manifolds, U(n)/O(n), U(n), SO(n) and
U2n)/Sp(n) by Wong [13] Sakai [5] [6]

We retain the definitions and notations in Part I.

§4. Topological structures

In this section, we shall study the topology of conjugate loci and cut loci of
compact symmetric spaces. Compare §1 in Part I for the notation.

Let 4 be an admissible subset of /7*. The boundary S¢—S? of $ will be de-
noted by 9S4. By Lemma 1.4, 3), we have decompositions :

S4= y S4', 8S4= U S*.

47C4 ya=v,

Each element teN“ leaves S¢ and 45 invariant, and each element reZ4 fixes any
point of S4. Therefore W"zN"'/Z_" acts on S4 and 9S4 continuously. Thus W4
acts on K/Z4x 54 and K/Z4xdS* continuously in the same way as for K|Z4x S,

Received April 7, 1978



2 Masaru TAKEUCHI

The quotient spaces relative to these actions are denoted by
E‘=K|Z*x #4514,
oE4 =K/Z" X w4054,

respectively. We identify in the natural manner E“ and 9E* with an open subset

and a closed subset of E4 respectively.
Let
M():lero .

It is a torus of dimension 7,. Let mo: ¢cn—>M, denote the natural projection. We
define a C* action of W4 on M,xS'¢ as follows. Regarding I’y as a subgroup of
W4 by ¢4, we may identify M,xS’4 with the quotient manifold I',\S?, since S‘=
cm XS4 and since I', acts trivially on the second factor S’4. Now W4 acts on I',\S?
in the natural way, since I, is a normal subgroup of W4. But I', acts trivially on
I'\S4, and hence the quotient group WAa=W4I'y acts on I',\S%. Explicitly, the
action of [k]e W4 is given as follows. Choose an element re N4 such that =4[z]=[k].

Decompose = as
(4.1) r=tA")! A’eZ, 'eW*s with /S/4=S4.
Then

(R)(mo(H), H )= (mo(H"" +A""), ' H") for H'"ec,, H'eS4.

Let
B{=K|N*.

It is a compact connected C* manifold. Then K/Z“ is a C* principal bundle over
B? with the group W4. Let

EA=K|Z* X wa(MyxS'?)

be the C= fibre bundle over B“ associated to K/Z? with the fibre M, xS’4, by means
of the above defined action of W4 on M,xS’4. ie. &4 is the quotient manifold of
K|Z4x (MyxS'%) relative to the action:

(R'Z3, h) —> (B’ZY) k), (k]*h)  for k' eK, he MyxS'*
of W4. In the same way we define topological fibre bundles
E1=K|Z*X woMyx §'%),
084=K|Z* X wa(Myx3S"*)

over B! with fibres M,x 5’4 and M,x3S'* respectively. Note that both £4 and &4
are compact since their fibres are compact. The equivalence class of (kZ4, &) will
be denoted by [kZ4, #]. The following lemma is an easy consequence of definitions.



On Conjugate Loci and Cut Loci of Compact Symmetric Spaces 11 3

LEMMA 4.1. We define maps of E4, E* and 0E* into &4, E4and 9E 4 vespectively
by
(kZ4, H'+H' 1 —— [RZ4, (ro(H""), H")] for ke K, H ecy,
H’eS",g"' or 05’4

Then they are all homemorphisms.

LEMMA 4.2. Let 4 be an admissible subset of II'. Then E* is a compact
Hausdoff space and 3E* is a closed subspace of E4. There exist a closed subset J
and an open subset U of E4 such that:

1) Int. 4DU and U DoE4, where Int 41 and U mean the interior of A and
the closure of U respectively ;

ii) 0FE“ is a strong deformation retract of A.

Proor. The first assertion follows from [LCemma 4.1. For the proof of the
existence of .4 and 9J, we prove first: There exist an N4-invariant closed subset
B of §4 and an N4-invariant open subset €/ of S“ such that:

i) Int®>CY and CUDaS!;

ii) 8S4 is an N<4-equivariant deformation retract of 4.

Case 1: g is semi-simple and (8,1) is irreducible. Under the notation in the
proof of Lemma 14, 54 is given by

Si={H= ¥, hPu; 0<h <1, T hy=1.

r€d

Take a small ¢>0 and put

B={HeS*; Min h,<¢),
V={HeS*; Min h,<s/2} .

Then @ is closed, €/ is open in S4, and they satisfy Int®@>CU>CyY>aS. By
Lemma 2.3, the action of te N4 on S4 is given by

Z/ZP'_)Z/ZPO,)K

r€d

This shows the N4-invariance of @ and ¢’. For an element H=J] h,PueP, we
put

dup={yed; h,=Min h,.}.
r’'€ed
For each tel =[0,1] we define f,(H)e B by

J(H)= 2" th,Pp + (1=t X' b)) 5" h) T 7Py,
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where Y’ and Y/ mean the summations over 4u and 4— 4y respectively. We
choose ¢>0 so small that 4—4y is not empty for each He®. Then f; define a
continuous map: BXI[—->3B. We have

FolHY=(1/5" h,) 5 h,PueS* cas?,
where 4’ is an admissible subset of //* with 4’4 defined by 4’=4—4u, and
H(H)=X"hPun+ X" h,Pu=H.

If HedS4, then there exists an admissible subset 4’ of II* with 4’&4 such that
HeS%, and hence it has an expression :

H= % hPn 0<h,<l, 3 h=1.
r€4d’

€4’
Thus dgy=4—4", d—4g=4' and hence
FAH)=5" hPa= %, hPa=H.
7
These show that f; is a strong deformation retraction of # into 9S4 Since we

have t-dy=4.y for each re N4, we get fi(cH)=1f(H) for each He . This means
the N4-equivariance of fi.

Case 2: g is semi-simple. Take the direct product of subsets B, €k and that
of deformation retractions f,**> for irreducible factors (g, fx) (1<E<s).

Case 3: General case. Let @’,C1’ and f./ be the required ones for S74. We
define subsets @ and ¢V of S4=¢, xS’4 by

c@:cmx.@,, CV:CmX('V,,
and then define a continuous map f:: B—B for tel by
f(H, HY=(H", f/(H)) for H'’ecn, He B’ .

It follows from the decomposition for re N4 that ® and ) are N4-invariant
and that f; is N4-equivariant. Thus ,CV and f, are the required ones for S4.

Now we shall prove the existence of subsets .4 and U of E4 with i) and ii).
We define Wi-invariant subsets 4 and U of K/Z!xS4 by

A=K|Z'x B, U=K|Z!x,
and then define a continuous map £: A— A for tel by
Fukze, Hy=(kZ4, f(H))  for keK,He B .

Let [z]eW4 with e N4 and =4[<]=[/] with /e N‘. Then
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Fykzt, H)x))=F(kiZ, - H)=(kIZ*, f(<7*H))
—=(RIZ*, - (H))=(kZ*, f{ H )]
=F(kZ4, H)c]

for each keK, HeS4. Thus F, is a W4-equivariant strong deformation retraction of
 into K|Z*x3S*. Now put

A= AW*=K|Z!X 5B,

q]::qj/vVA::Eﬂ2V><meV.

Then F. induces a continuous map F;: A— A giving a strong deformation retrac-
tion of . into 0E4. These 4 and qJ are the required ones. ged.
For an integer k2 with 0<k<r=rank M, we define subsets (O« and Q% of Q%

(cf. Theorem 2.2 in Part I) by
Qr={de O*; ks=Fk},

Qk: U Ql ’
0Lk
and then define subsets Q* of M by
QF= U M.
4eQk

Then we have inclusions:
R CR'c--cQ'=QcQ =M
and decompositions :

QF—Q* = U M* (0<k<7),

4€Qp

where @ '=¢. With these definitions we have

TueoreM 4.1. 1) FEach QF is a closed subset of M.

2) For each Ade Qy, there exists a continuous map ¢* . (B4, 0E)—(QF, Q¥1Y), which
extends the previously defined diffeomorphism . E*—M* and satisfies (/JA(E_A):
M- |

3) Theve exists an exact sequence .

o HP@ T, A) — 3 QHNE, 0B A) —> HY@*, A)
— H2(Q*1, A) —> ---

for any coefficient group A.
4) The pair (E4,0E4) is homemorphic with the pair (é”,aé’ 4 of the compact
fibre bundle &4 over the compact connected C* manifold B* with the fibre M,x 8’4,
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and its boundary dE4. The group H*(E4,0E?; A) can be obtained from H*(B?, A)
in the following cases.

Let A be a principal ideal ring.

(i) If m(M) is finite and W4 acts trivially on H*4(S54]6S4, A), then

HP(E4,0E*; A)=H" ™ (B4, A).
(i) If We={1}, then
HP(E4,0F*; A)=HP-*1(B'X M,, A),

where k' ;,=dim S’4.

Proor. 1) Note that the cellular decomposition :
S=y s
4
is closed under the closure operation in the sense that for each S the closure S
is the union of S’ and some lowetr dimensional cells S#’. This implies the closedness
of Q*.

2) For an admissible subset 4 of /I*, we define a continuous map ¢“: E‘ M
by

Q4(kZ*, Hls)=kExpH  for keK, HeS",

where [kZ4, H], denotes the class in E4 containing (kZ4, H)eK/Z4xS4. On E? it
coincides with the previously defined diffeomorphism ¢4: E4—M?. For an admissible
subset 4'c 4, HeS* and keK, we have

QU(kZ4, H' )=k Exp H =¢*'([(kZ%, H"]s) .
Thus, for each 4e O«
¢4(E4)= U M =M!cQ*
4'c4a

and
4 4 — 4’ k-1
P4 (oE?) ,,Lé,M cQ
This proves the assertion 2).

3) Under the existence of subsets .4 and U in the ordinary argu-
ment shows that

(p4)* : HX(Q*, Q*1; A) —> H*(E4,E*; A)
is surjective for each 4e Q: and that

AZQ @®(P?)*: H¥QF, Q1 A) — T DHX(E,0E4; A)
€Qx

4€Qy
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is an isomorphism. Together with the cohomology exact sequence:
a*
s HP(QE, A) — HYQA, Q4 A) — HYQY A)
— HP(QF 1, A) —> -

for the pair (Q%, Q*-!), we get the required exact sequence.

4) The first assertion follows from Lemma 4.1l

(i) Theorem 2.1 and (2.7) imply that z,(M) is finite if and only if cx={0}.
Thus &4 and 8&4 are fibre bundles over B4 with the fibre the closed k,-disk S4
and the (k,—1)-sphere 3S? respectively. Moreover, the local system of the k,-th
cohomologies of fibres of the pair (8_ 4. 9&4) is trivial, since W4 acts trivially on
H*4(54/3S4, A). Thus Thom isomorphism provides the required isomorphism.

(ii) In this case, both €4 and 9&4 are trivial:

&4=BIX Myx 5’4,
0L 4=B*X M,%x03S"*.
Thus the same argument as in (i) shows the assertion (ii). q.e.d.
ReEMARK. In the case (i), the triviality of the action of W4 holds always for

A=2Z, and it holds for A=Z if and only if the cell bundle &7 is orientable.
For an integer k£ with 0<k<r—1, we define (cf. Theorem 2.2 in Part I)

Fr=F Nk,

FrE=gF Nk,

Fr= y M*
degk

to get inclusions:
F°cFic...cF=F
and decompositions :

Fr—F*1= y M (0<k<r—1),

deF g

where F~'=¢. Note that the cellular decomposition :

is also closed under the closure operation. Thus we get also the following

THEOREM 4.2. 1) Each F* is a closed subset of M.
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2) For each de Fy, there exists a continuous map ¢*: (K, 9E)—(F*, Fe=3 which
extends the diffeomorphism ¢*: E'—~M' and satisfies ¢‘(E‘)=1\7[".
3) There exists an exact sequence:

s> HP (P, A) — 57 QHP(EY, 9B A) —> HY(F*, A)

4€F
—— HP(F*1, 4) —> ...
Jfor any coefficient group A.
For an integer k£ with 0<k<r—1, we define subsets C; and C* of C (cf. §3
in Part I) by
Cx={(4,0)e C; ks, o=k},

C*¥*= U C(C.,

o<i<k

and then define subsets C* of M by
Ck_

o (4, ®)eck

M2,
to get inclusions:

C'cCic--cCr1=C,
and decompositions :

CE—Ck'= U M 0<k<r-1),

4, 9)eCy,

where C-'=¢.
Let (4,®) be a c-pair (cf. §3 in Part I). Recall that K/Z*? is a C* principal
bundle over a compact connected C* manifold B’ ?=K/N‘® with the group W+,

In the same way as for an admissible subset 4 of IT%, we define compact topological
fibre bundles £*° and 9F*° over B*® by

E{0=K|Z*®X 54,0549,
OE"*=K|Z*® X 31,0352,

where 952=549—-5%2  We can also prove for our pair (E*°,9E"?)
making use of end points of the convex polyhedron S%? instead of vertices of the
simplex S“. Moreover, the cellular decomposition :

CnS=u’she

(4,0)

is also closed under the closure operation. Thus we can prove the following theorem
in the same way as for [Theorem 4.1l

THEOREM 4.3. 1) FEach C* is a closed subset of M.
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2) For each (4,D)e Cy, there exists a continuous map ¢*°: (E42,3E?)—>
(C*, C*=Y), which extends the previously defined diffeomorphism ¢*®: E*? — M*® and
satisfies ¢ O(E40)= M40,

3) There exists an exact sequence :

o= HP(C, A) — 5 @HP(E"®,9E*"?; A)— HP(C*, A)

(4,9ecy,
—— HP(CF1, A) —> ...
for any coefficient group A.
4) E° is a compact fibre bundle over a compact connected C* manifold B*?
with the fibve S*°, and dE*°® is the boundary of E'.
5) If A is a principal ideal ring and W*° acts trivially on H**2(549/55%2, A),
then

HP(E 2 9E"?; A)y=H? *4.0(B10o A),

ReEMARK 1. The triviality of the action of W%?® on H®*9(5%?/3S*? A) holds
always for A=Z, and it holds for A=Z if and only if the cell bundle E“? over
B%? is orientable.

REMARK 2. (cf. Warner Let dim M=#n. Considering the cohomology exact
sequence for the pair (M, C), we get isomorphisms :

H>(M, A)=HP?(C, A) O<p<n—2)
and an exact sequence:

0 — H"'(M, A) — H"'(C,A) —> H"(M,C; A)=A
—> HYM, A) —> 0.

Thus, if A=Z, or if A=Z and M is orientable, then
H (M, A)=H"YC, A).

§5. Cut loci of symmetric R-spaces

In this section, we shall study cut loci of symmetric R-spaces, applying the
results in the previous sections. Let us recall the notion of symmetric R-spaces.
(cf. Takeuchi [7]) Let GCGL(V) be a Zariski-connected reductive real algebraic
group without compact simple factors, where V is a finite dimensional real vector
space. Let GCcCGL(VC) denote the complexification of G, where V€ is the com-
plexification of V. Take a maximal compact subgroup K of G and choose an
automorphism ¢’ of GL(V) with ¢’(G)=G such that

K={xeG; 0/(x)=x}.
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Denote the extention of ¢’ to GL(VC) by the same ¢’. Then ¢’ leaves G€ invariant.
Let ¢’ : GL(VC)—»GL(VC) be the complex conjugation, i.e.,

o'(x)=% where Z)=xz({) for veVc.
Then ¢’ leaves G€ invariant and we have
G={reGC; ¢'(x)=2x}.
Put '=0’¢’=0¢’0’. Then 7’ leaves GC¢ and G invariant. Put
Gu={xeGC; '(x)=ux}.

It is a maximal compact subgroup of G¢, which is invariant by ¢’ and ¢’. K is
also given by

K={zxeGy; 0 (x)=x}.

Thus (G4, K) is a compact symmetric pair.

In what follows, for automorphisms of Lie groups, their differentials will be
denoted by the same letters.

Let g,aC, t and g. be Lie algebras of G,GC, K and G. respectively. Then the
complexifications of g and ¢, are the same and equal to g¢. Take a G-invariant
symmetric bilinear form B on g€ such that it coincides on [g€, ¢€] with the Killing
form of [g€, g€] and that it is negative definite on g.. Such a B is always #’-invariant.
We define

(X, Y)=—B(X,Y) for X, Yeg..

It is an inner product on @, which is invariant under ¢’ and the adjoint action of
Gu.

Take a Cartan subalgebra U’ for (g, ) and a maximal abelian subalgebra T’
of g. containing W/. The various objects for (g, f) relative to A’ and T’ will be
denoted by the same symbols as in §1 of Part I but with primes.

Now assume that there exists {eW’ such that

(5.1) (a, 0)=0,1 or —1 for ael’ .
Put
S/ ={ael’; (a,0)=0},
2/ ={re’; (r,£)=0}.
Choose a compatible order > on ¥’ such that (a,£)>0 for each positive a€3”, and
fix it once for all. Let /I’ and II’ denote the fundamental root systems for 3’ and

2’ respectively with respect to this order >. Let Y.’ and Y./ denote the set of
positive roots and that of negative roots in 3’ respectively. Put
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ny=mnsy,
Iny=1mnnzy,
(E)=2/Nn2..
For yel’ we define a subspace g, of g by
a,={Xe8; [H, X]=2x~ —1(y, H)X for each HeW'}.
We define some subalgebras of g as follows.
go={Xeg; [X, AW]={0}},
6 ={Xeg; [{, X]=0},
nt={Xeg; [, X]=2a+/—1X},
u=qg,+nt*.
Then we have
g=go+7§, 8r

gl=g0+ Z gr ’
r€21’

+
n'= Z gr ’
7€3 4+ =21/

u=go+

r@?uzﬂgr

Now we define closed subgroups G;, N* and U of G by
G,={xeG; Adx (=},
Nt=expnut,
U={zxeG; Adxn*=n*}.

Then n* is abelian and exp: n*—N* is an isomorphism. G, is also a Zariski-con-
nected reductive real algebraic group. U has a semi-direct decomposition :

U=G,-N*.
The Lie algebras of G;, N* and U are g;,n* and u respectively. The subgroup U
is a so-called parabolic subgroup of G. The homogeneous space:

M=G|U

is called a symmetric R-space. It is known to be compact and connected. The
origin U of M will be denoted by o. Put K;=KNG;. Then the inclusion KcG
induces an identification: K/K,=G/U. We define an involutive automorphism 6 of



12 Masaru TAKEUCHI

G¢ by
O(x)=exp ((1/2)¢)x exp ((1/2))* for zeGC.

Then 0 leaves G, and the identity component K° of K invariant. Put K*=K°NK;
and denote the Lie algebra of K* by f*. Then the pair (K% K*) is a compact
symmetric pair with respect to ¢, and the inclusion K°CG induces an identification:

M=K K*.

The inner product ( , ) on t is invariant under 6 and the adjoint action of K°.
Thus it defines a K°-invariant Riemannian metric g on M. We shall study the
cut locus of this symmetric space (M, g). The tangent space of M at o will be
identified with

m={Xef; 6 X=—X}.

We shall use the same notation for the pair (K° K*) as in the previous sections.
Here we recall the notion of a symmetric pair of Dynkin diagrams. In general,
a pair (IT’,Il1\’) of an irreducible Dynkin diagram /I’ and a subdiagram [I7,’, is said
to be irreducible symmetric if I1’—1II,’ consists of one element, say «a;, and if the
highest root ¢’ of the reduced root system 3’ with the fundamental system /I’ has

an expression :

=+ 2, mua; mieZ.
azelly’

For a general pair (II,1I,’) of Dynkin diagrams, decompose I’ into the sum of
irreducible components: /I’=11""U---UIl’® and put [I/®=1/NII"'* 1<Ek<s).
If each pair (JI’®, IT,’®) is irreducible symmetric, the pair (/1’, Il,’) is said to be
symmetric. For each symmetric pair (/1’, II,’), we can associate in a canonical way
a hermitian symmetric space of compact type (cf. Takeuchi [10]). Then rank (/7/, I1,’)
is defined to be the rank of this symmetric space.

Now we come back to our symmetric R-space.

In what follows, we assume that the fundamental root system I’ for the pair
(g, ©) is irreducible. In this case, (M, g) is called an irreducible symmetric R-space.

LemMmA 5.1. For an irreducible symmetric R-space (M, q), we have:
1) I, 11)) is an irreducible symmelric pair;

2) X' is a reduced root system;

3) r=rank M is equal to rank ({I’, I1\’).

Proor. 1) It follows from that (J7’,11) is a symmetric pair, which
implies the assertion 1).
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2) and 3) are checked by seeing the table of irreducible symmetric R-spaces
(Takeuchi [7]). g.e.d.

Let {8, -, B}/ =23 be the maximal system of strongly orthogonal roots of
the same length with p,=¢', in the sense of Takeuchi [9]. For each i with 1<i<
7, choose X;€8;, in such a way that

— B(Xs, 7' Xo)=1/27%(Bs, B2) »
and put
X =t Xi€qp;
U;i=—n(X;+X_s)emct.
We define a subspace a of m by
a={Uy, -, Urlr -

It follows from Lemma 5.1, 3) that a is a Cartan subalgebra for the symmetric pair
(¥, ).

Lemma 5.2. Let P be a closed subgroup of SL(2, R) defined bv

a b
P-—{(O 1/a>’ a,beR,aqu} ,

and identify the 1-dimensional real projective space P.(R) with the quotient manifold
SL(2, R)|P. Then there exists an SL(2, R) -equivariant imbedding ¢: P(R)Y—M with
the image A=(exp a)o. Here " means the v-fold direct product of *.

Proor. Note first that the inclusion SO(2)cSL(2, R) induces an identification :

SO(2)/{+1}=SL(2, R)/P.
We have [X;, X_sJe v/ —1% and

B(H, [X:, X_iJ)=B(H, XJ, X_)=2x~—1(p;, H)B(Xi, 7' Xy)
= — 20/ = X(Bs, H)[2%( s, B)=BUH, (v = T/a(Bs, Bi))e)

for each He’' . Thus

(5.2) (X, Xoid=(V =1/mAs (1<i<r).

We define a basis {X,, X_i, H,} for 8l(2,C) by

0 1 00 1 0
X+‘<0 o>’ X’—(—l o)’ H“‘(o —1>'

It is also a basis for 8((2, R). They have the bracket relations:
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(5.3) (X, X ]=—H,, [H, X.]=x2X,.
Put

0

U= — (X +X.)= (ﬂ _g)eo(Z) .

Let ¢;: 8((2, C)—>gC be an injective linear map defined by
G Xo)=Xoi, i(Ho)=—(v'=1/m)As,,
so that
(5.4) oi(Uo)=U; (1<i<7r).
It follows from [5.2) and [5.3) that ¢; is a homomorphism. Since ¢:(X)=0"¢«(X),

$(—tX)=1"¢y(X) for each Xesl(2, C), ¢; sends 8(2, R), 3u(2) and 0(2) into g, g. and ¥
respectively. Moreover, ¢; sends the Lie algebra p of P into u. Next we define

an injective homomorphism ¢: 81(2, C)"—gC by
Y, Vi)=Y g(Ys)  for Yiesl(2, C).
i=1

In virtue of we have ¢(0(2)")=a. We extend ¢ to SL(2, C)" and denote it by
the same ¢: SL(2, C)’—>GC. The above argument shows that ¢ sends SL(2, R),
SO(2)" and P” into G,K° and U respectively. Thus ¢ induces an immersion ¢:
P(R)Y=SL(2, R)Y|P"—>G|/U=M. 1t is SL(2, R) -equivariant, i.e.,

o(xp)=(x)p( D) for each xeSL(2, R)", pe P\(R)" .

It is verified that ¢ is an imbedding. The homomorphism ¢ induces also an SO(2)'-
equivariant immersion ¢’ : SO(2)"/{£1}"—-K°/K* which is compatible with ¢ relative
to the identifications, in the sense that the diagram:

¢
SLZ, R)|P" — G|U

= [ =
SO@y {1y — K°|K*
¢

is commutative. Now ¢(0(2)")=a implies (P, (R)")=A. q.e.d.
The relations imply the following

CorROLLARY. The lattice I'={Hea; exp HeK*} is given by

=3 ZU;.
i=1
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Let 7/ =rank (/I’, [1’). We define /ea (1<i<r) by
2hi, Up=08i; (1<4,j<r).

Now irreducible symmetric R-spaces are divided into the following five classes (cf.
Takeuchi [7]).

(i) 2r=r', cu={0}, m(M)={0}, [T’ is reducible.

Y={x(uxh)) 1<i<j<r), £h, +2h 1<i<r)} or
{£(hxhy) 1<i<j<r), =2k 1<i<r)}.

(i) r=7, tw=#{0}, m(M)=2Z, II" is irreducible.
S={x(h:i—h;) A<i<j<n)}.
(iii) 2r=r', cw={0}, m(M)=(0}, II’ is irreducible.
Y is the same as in (i).
(iv) r=7, ta={0}, m(M)=2Z,, II’ is irreducible.
S={x(hith;) 1<i<j<r), £h (1<i<n)},
(V) r=r'>2, t={0}, m(M)=2Z,, I’ is irreducible.
Y={*+(hixh;) A<i<j<r)}.
The spaces in the class (i) are nothing but irreducible hermitian symmetric spaces
of compact type. The classes (ii), (iii), (iv) and (v) include U(r), Sp(7), SO(2r+1) and
SO(2r) respectively.
ExamMpPLE. We shall determine the stratification:

C= U M*®
(4,9)€C

of the cut locus C of an irreducible symmetric R-space (}/, ¢g) in the class (ii) with
r>2. Compare also §2 in Part I for the notation.

Put
ri=hi—hi (I<i<r-1).

Choose an order > such that I/ is given by
II={y1, -, rr-a} s
Then the highest root § and /7% are given by
o=hi—h, =yt +rr1=—70,
I ={yo, 71 s 7r-ab -

The diagram for /% is given by
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75
T Trs

T2

Any element se W is of the form :
shi=h,q, (<i<r) for some €&, ,

where ©, denotes the symmetric group acting on r letters {1, ---,7}. We identify
W with &, by the correspondence s—>o. a will be identified with the space of
r-row vectors by the correspondence H=73; x;U; — (x, ---, ). Then

ao={H;z,>2x:2> 22},
S={H; x,>2> >z, 21— 2,<1},
o' ={H; 2 =0},
S'={H; z,.>2,> >z, 21— 2, <1, 3] 2:=0},
w={H;, 1=+ =2}
Put
Uo=(/r, -+, 1r).
It is a basis for c.. Projections p.. and p. are given by
Dot (1, 20, &p) > (31— (2 @)1, -+, 2~ (20 0)[7),
bei (T oy @) —> (Z @a)lr, -, (2 20)/r)=(Z %) U, .
', I"™ and I’y are given by
I'={H; x;eZ for each i (1<i<r)},
I'*={H; x;—x;€eZ for each i,j (1<i,j<r)},
o={n,--,n),neZ}t={nrlU,; necZ)}.

For an integer p with 0< p<r—1, we define

Sp::( 1 r._p r—zj.'-]_...r)eW,

p+1 e 7 1 p
Ap':(l/r)(r—P, Tty T—p; _p7 ) —p)eg’ﬂf'* ’
b r—p

T])’ :t(A]),)Spe W?l .
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Then
arx(ty’)=Ap", aw(ty')=sp,
(5.5) Spri=ri+p for i€Z,.
For an integer » with
n=mr-+p meZ,peZ with 0<p<gr—1,
we define
An=m+1, -, m+1,m, -, m)=mrU,+(1, ---,1,0, ---00eSN T,
N AL A
b r—p y2 r—p
tn=0A,)speWs.
Note that the sum of components of A, is equal to n. We have
Pa(An)=Ay", p(An)=nlh,
r(tn)=nU,, ='(ta)=1p,
mw(ta)=Sp, wr¥(ta)=An.
Easy computations show
SNI'={Aq; neZ},
S'nr*={A4,; 0<p<r-1},
S'nIr=10}.

Thus, by Lemma 2.4 we have
Ws={rn; neZl=2,

W§'={Tp, ; nggr—l}gzr ’

(WS)*={1} .
From p(SNI")=8'NI* and Lemma 24 it follows
F*={1}’

F=F*={s,; 0<p<sr—-1}=Z,.

17

As a subgroup of Aut(/l*), F is nothing but the group of rotations of the “ring”

I1%. More precisely, by (5.5), the action of s,eF on II* is the p/r-times rotation of

I1". Z=p(SNT) is given by
Z=nU,; neZ}=7.

The injective homomorphism z.Xzw: Z=Ws—ZXF=ZXZ, is given by
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(e X 7w )(n)=(n, n mod 7) for neZ.
The action of Wg on SNI is given by
(5.6) tnAn=Anin for m,n'eZ.
The subsets X and L of S are given by
K=H;12>x:2Z2x,>—1/2},
L= 1250 >0.>—1/2, 21=1/2 or z,=—1/2}.
It follows
A={A_, Arir, -, Ay, Ay, -0, Al
6=g.

Thus, (4, ®) is a c-pair if and only if (i) (4, @) is admissible; (ii) 0€®°; (iii) @°—{0}C
{A_,, -+, A_1, Ay, -+, A} (iv) ©°+{0}. A subset OES NI satisfies (ii), (iii), (iv) and
T°+¢ if and only if @ is of the form:

O0=SNI'—{A_p, A1, 0,A;, -, A},  with 0L, m<r, 1<i+m<r.
In virtue of we may assume that @ is of the form:
o,=SnIr—{0, A, -, A}  with 1<I<r.
In this case, T is given by
Th={H;12=z,=--=z;> %11 =22 >—1/2}.
An admissible subset 4 of II* such that S4%:=¢ is of the form:

Ad={rs;, -, 1ig, 0y With =1, <6< - <ta<7r—1,a221, if 1I<ig<r—-1,
or 4d={o}, if I=r.

These c-pairs (4, ®,) are mutually inequivalent in virtue of [5.6). Thus the set C
of all such pairs gives a set of complete representatives of equivalence classes of

c-pairs. For such a pair (4, @,), the cell S4? is given by
S¢0={H;12=z,==2,> L1s1=""
=L, D Bip1 = T Xy > Big = =2, > —1/2} if 1<I<r—1,
dim S4- % =q,
or S4¢%n={H;x,=--=x,=1/2} if I=r,
dim S4-%t=0.

By Lemma 3.7, we have N42:={1}, and hence W#? ={1}. Therefore
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M40 = K*|Z4:91 x S4.91
The all cells S*? with (4, ®)e ¢ may be described in a unified manner as follows:
S@riad ={H; 12=g1= =%, > Tjjs1 =1+ =Ty >Tig1==&>—1/2},
where
1<ii < <ig<r—1, 0<a<r—1,

dim St i) =4,

The subset S° of § defined in Remark following Theorem 3.3 is given by
S'={H; 12> 2> >x,>—1/2} .

These results also hold for the case r=1, as is easily verified.

The cells 5*:° with (4, ®)e C and the subset S° of S for the spaces in the other
classes are given as follows.
Classes (i), (iii) and (iv).

S(il,--._ia):{H; 1/2=x1=.'.:xil>xil-‘-l=”. ".=xia>xia+l= -..=xr=0} ,
where
1< <ia<r, l<a<r.
dim S i =g—1 .,

S ={H;1)2>z:> >z,20}.

Class (v).
1< < <<y, 1<axr,

H12=z1= =2;,>x501=" =21, > Tigr1=+=a,=0},

if 1<ie<r—-2,
SGia) = ¢ {H; 1/2=$1="’=-7’i1>-7”i;+1="‘=$ia—1>xia-1+1="'=x7>0} )

if ia,=r"“1,

{H; 1/2=.Z‘1="';$i1>xi1+1=“'=xia_l>$ia_1+l='"=$r-—l> |z},
if ip=r.

dlm S(il-“'.ia) =a—1.

SO={H; 12> 3> > 2,13 |3} .

Seeing these tables, we have the other decomposition of the cut locus as follows.

LEmMA 5.3. For an integer | with 0<I<r, we define subsets St of S as follows.
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Classes (i), (iii) and (iv).

Si={H;12=x,="=x> 311> =2, 20} .
Class (ii).
St={H; 12=z1==m>m111> - > 2,> —1/2} .
Class (v).
Si={H;12=m==2>2113> >2r13> |2} .
Then

C=U K*Exp S! (disjoint union).
l=1

The interior M° is given by
M°=K*ExpS°.
REMARK. implies the results of Naitoh [4] on the structure of Cna

for an irreducible symmetric R-space.
We define a closed subgroup U of G by

U=7U.

We shall investigate the structures of U-orbits in M.

LEmMMA 54. Let W be the subgroup of W’ generated by symmetries s, with
reX). Let (B, -, pCE,/—2 be the maximal system of strongly orthogonal roots.
Put

W-={B, -+, Brir

and denote by & . W >N~ the orthogonal projection. Then:
1) We have |W/\W'|W\|=r+1. More precisely, if we define

si=sp,-8p, (0<I<7),

then {so, S1, -, Sr} is @ set of complete representatives of W/\W'|W,;
2) For each | with 0<I<r, we have

SLC:C_Q ’

where

= z (2180 B0V =2 2 Auii
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3) &(Z./—3) and =((2)).)—{0} are given by
&(Z. =2 )={1/2)(B:+ ) AKI<G<n},
{5’((21')0—{O}i{(l/zxﬂi—ﬁj) (1<i<j<)}
or
(S — 3y )= (12 Be+By) (L<i<i<r), (12)8: A<i<A)},
{m((Zl’).;_)——{O}={(1/2)(ﬁ¢—,9j) (A<i<j<n), (1[2)f: (A<i<n)}

Proor. 1) and 2). See Takeuchi [8]
3) See Takeuchi [9] q.ed.

CorOLLARY. We have
Oor1l if T€(21/)+ ’

(T: Cl)z .
0,1 or 2 if red,/-2/.

LemMA 5.5. 1) For each se W', there exist uniquely s’e W, and s"’e W’ with
sy Xy, Xy, such that s=s's".

2) For each se W, there exist uniquely s'e W, and s’ e W with s”'(2\/).c3/,
such that s=s"'s’.

Proor. 1) Put
W={se w; 8_1(21')+C2+'} .

Then the map Wi/ X W' — W’ defined by (s/,s”’) — s’s’’ is a bijection (Kostant
[3]). This implies the assertion 1).
2) We have

(W) t={se W’; s(2\/). €3/} .

On the other hand, W/=(W’)-'W, by 1). These imply the assertion 2). q.e.d.

Let seW’ and let A and B be subgroups of G, one of which contains the
centralizer Zxg(’) of A’ in K. If we take an element %2 in the normalizer Nxg(%’)
of W in K such that Adk|W =s, then the double coset AkB is determined by s and
independent of the choice of 2. So this double coset will be denoted by AsB. Note
that both U and U contain Zg(').

LEMMA 5.6. We have

G=L3 Us,U (disjoint union).
=0
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Proor. Put

n= 2, 8,, N=expn,

€5y
B={xeG; Adzn=n}.
Then we have the Bruhat decomposition (Harish-Chandra 2):
G=U BsB=8€Ld”NsB (disjoint).

sew’

Take ko€ Nx(W’) such that Adk,|W =w, satisfies w,X,’=2_’. Putting

N=<N, B=7B,

we have
U kNsB= U Nw,ssB= U NsB,
sew?’ sSEW’ sew’
and hence
(5.7) G= U NsB= U BsB (disjoint).
SEW’ sEwW’
In the same way, put
m= Z gr, 1=expm,
T€(Z1) ¢

Bl={.’L’GG1; Ad$n1=n1} ’
N1=T,N1, Bl=T’Bl.

Then we have also decompositions :

G,= U NwB,= U BwhB, (diSjOint).

wEW,’ weEW,’
Thus
(5.8) U=G,N*= U NwB,N*= U NwB= U BwB,
wEW,’ weEW,’ wew,’
and hence
(5.9) U= U BwN, (disjoint).
weEW,'’

Now, for each se W’ we have

U BwBcUsU.

WEW,'sWy’
Thus it suffices to show

UsUc U BwB.

wEW,'sW,’

In fact, then, from (5.7) and 1) we get the required decomposition.
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Decompose s by [Lemma 5.5, 2) as
s=s'w, weW, s'&).c.
Then, by
UsU=Us'U= U Us’N.wB= U Us'wB.

weiw,’ we,’
Decompose s’w by [Lemma 5.5, 1) as
Sw=w,s’"’ w.e Wy, s/ Y2/),cX.
Then, by
UswB=Us""B= U Bw'Nis”’B= U Buw's'B,

wew,’ wewy’

where
w's'” =w'w,s'w=w'w,"'w, swe Wi's W, .

Thus we get the required inclusion.
For each / with 0</<7r, we define

IO ={red’; (r,L)=0},

Zi/(l)_—_zl(l) nzi/ ,

B/ ={reX/—3¢; (n L)<},

S/ w=3ren3/’,
Then we have

IS/=3/OYZ))— DY ((S) — 3 WD),

Note also that by [Corollary| of [Lemma 5.4/ we have
(5.10) /== W3/ DYUE.

We define subalgebras of § and closed subgroups of G by

it= X g, t=exp fi*,
r€X_ /=35,
i) = 2 8> N/ =expf/,
rEI_I(W—3,' W
ﬁtll__.__ Z grv Nz”=exp ﬁl’/’
r€8’

N’l‘”=ex fi,®
r€(Z1) -2’ O P ’

ﬁl(l):zg()_i_ Z gr ’

r€Z/WWU(Z) -

U,P={zeG,; Adxii,; ¥ =1,V}.

q.ed.

23
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These subgroups have Lie algebras denoted by corresponding German small letters.
It follows from that a*=n,/+1ii,’’, and hence

1\7+=1\71,'Nz” .

U,® leaves ii* and #i,’/ invariant under the adjoint action, and hence it acts linearly
on fi/=f*/fi/’ in the natural way. The action of »eU,® will be denoted by

X—u-X  for Xen,/.
Moreover, we put
GV ={reG,; Adz {i={)},
Kl(l):_KlnGl(l) .
Then we have a semi-direct decomposition :
l71‘”=G1‘“-1V1“’ .

From |Corollary| of [Lemma 5.4} Gl/lj' 1@ is also a symmetric R-space and identified
with K,/K,®®. Let G,Xgwi,’ denote the vector bundle over G,/U,® associated to
the principal bundle U,®—G,—»G,/U,® by the above action of U,% on #/. It is
also identified with K, X g @i/ in the natural way.

We put

L
a,=exp(1/2) 25 U; (0<I<7).
=1

Under the notation in the proof of we have Ad (exp (1/2)U,)H,= — H,.
Moreover, if we denote by U’* the orthogonal complement of A~ in WA, then [(U;, A’ *]
={0} for each i. It follows from these and that ;e Nx(W') and Ad ;| =s; for
each /. We define submanifolds B; and V; of M by

Bi=Giaw, Vi=Uao 0<I<r).
LeMMA 5.7. 1) B, is diffeomorphic with the symmetric R-space G.|U,®.
2) A C” map U': G, X1/—>M defined by
Uiz, X)=xexpXa:0 for xeG,, Xeit/
induces a diffeomorphism ¢'. G, Xg,wi/—>V,.
Thus, Vi is diffeomorphic with a C= vector bundle over B,.
Proor. Let
El={xe[7; zaw=a,0y=UNa,Ua;?

be the stabilizer in U at the point @w. Then the Lie algebra of E; is given by
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¢, =1l ﬂAddzu=Qo+Z s
T

where in the summation y ranges over all roots y€2’ such that
(5.11) 7, 0)<0 and (7,5£)=0.
If ye3/, ie., (7,8)=0, then by 2) the condition becomes
(1, s&)=(, =)=~ =0,
or equivalently, ye3,/®U(3)/)-. If ye¥_/-23/, ie, (7,{)=—1, then becomes
(7, 80)=(, E~L)=—1-(, L)=0,

or equivalently, yeZ,’. Thus we get
(5.12) e =1+,
where

L,P=e¢Ng, W/ =enNit.

Now we proceed to the proof of the lemma.
1) It suffices to show E;NG,=U,®. For each zeG,*¥’, we have

=C—Ad$CL=C'—Cz=AdmC ’

and hence zea,Ua,~'. Thus GiPCENG, It is clear that N,cENG,. Hence
U,P=G,YN,®cE,NG, Since a parabolic subgroup of a Zariski-connected real
reductive algebraic group coincides with the normalizer of its identity component,
we get U,P=FENG;.

2) Note that E,cU=G,-N*. Let n,: U—G, denote the projection to the first
factor. It induces a homomorphism =: E;—G,;. The image =z(£;) contains U,»=
E:NG; and has the Lie algebra i,> by [6.12) By the same argument as above,
we get z(E;)=[7 1@, Therefore we have

E=U,2ENN").
This and the decomposition : N+=N/-N/’, where N/ N «,;Ua,'={1} and N/'CE,
imply
(5.13) E=U,%.Ny" (semi-direct product).
Now it is easily seen that the C* map ¥* induces a C* map ¢' in virtue of
N/’ CE;. The decomposition: U=G;-N,/- N/’ implies that ¢* is surjective. We shall

show that ¢' is injective. Assume that zexpXaio=x'expX'aw for z,z'€G: and
X; X’Gﬁz'. Put
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y=(exp X') 2’ 'z expXeckE,,
u=x'"'zeG,.
Then
y=uexp(—Adu'X")exp X=wuexp(X—Adu'X").

Hence, by (5.13) we have #el,® and X—Ad#-'X’eii,/’. Thus we get 2/ =zu~" and
X'=u-X. This means that the class of (r, X) and («/, X’) in G,Xg,wi,/ are the
same. This shows the injectivity of ¢'. q.ed.

RemMARk. The following facts are known (Takeuchi [7]).

1) Connected components of the set of fixed points of the symmetry of (}, g)
at o are By, By, ---, B,. Hence each B, is a totally geodesic submanifold of (M, g).

2) We can define a C* function f on M by

flxo)=(Adz{,{) for xeK.

Then B,, B, ---, B, coincide with the totality of non-degenerate critical submanifolds
of f in the sense of Bott[1] The dimension of fi; is the same as the rank of the
negative normal bundle for B,.

We recall now cellular decompositions of symmetric R-space by generalized
Schubert cells. For se W’, the coset sW, in W’/W,’ will be denoted by [s]. For
an element [sJe W’/W,’, choosing ae Nxk(W’') such that Ada|W =s, we define a gener-
alized Schubert cell Vi, of M by

V[3]=Nao.
It is determined by [s] and does not depend on the choice of aeNg(W). With

these definitions, we have the following

Lemma 5.8. (Takeuchi [7])
1) M= U Vi (disjoint union).

[slew’/wy’

2) Let Il'={ay, -+, a,}. Then, Vis2 Vi if and only if

s{—s'l= ) mia; with some m;>0.
i=1

LemMma 59. 1) For each | with 0<I<r, we have a decomposition :

(5.14) Vi= U Vi (disjoint union).

[s1€W,’[s(]
2) The closure relations are given by

(5.15) VioVia (0<i<r—1).
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Proor. 1) In the proof of we have shown
ﬁSle U BwB .

wWEW /s Wy’

Thus by we get
UssU= U NwU.

’wer'St
This implies (5.14).
2) Let 0<I<VU/<r. By 2) we have

g

siE—sul=C—Ci= D, (2/(Bs, Bi))B:

i=l+1

and hence V;;D Vi1 by 2). Since both V; and Vi are U-orbits and
since VD Vi and VD Vi, we get Vi Vi q.ed.

THEOREM 5.1. Let (M, g) be an irreducible symmetric R-space of rank r. Then
the number of U-orbits in M is r+1. Let Vo, Vi, -, Vi be the totality of U-orbits
with dimV,;>dim V., 0<I<r—1). Then:

1) FEach V, is described by (5.14) in terms of generalized Schubert cells. V,is
the unique open U-orbit.

2) The closure relations between the U-orbits V, are given by (5.15).

3) Each Vi is diffeomorphic with a C> vector bundle over a symmetric R-space
Bl-

4) The cut locus C of (M, qg) with respect to the origin o is given by

C=

L

Vi.

1

HC =

5) The interior M° of (M, q) with respect to o is given by

M=V,.

Proor. By our Vi=Uawo (0<I<r) are the totality of U-orbits in
M. The numbering of the V,is also the same as that in the theorem, in virtue of
(615). Thus the assertions 1), 2) and 3) are the consequences of the previous
lemmas. It remains to show 4) and 5).

We define a closed subgroup P of SL(2, R) by

F:{(a 0 );a,ceR,a#O}.
c lla

Then, under the notation in the proof of the Lie algebra of P is
spanned by H, and X_, and hence ¢(P")cU. If we denote a point of P(R)=
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SL(2, R)/P with homogeneous coordinate (&;:§&,) by [?], then
2

1

(exp 2Uy)P= [tan T

] for each zeR with |z|<1/2.
Thus we have
{(exp zUs)P; |x|<1/2}={[ﬂ; teR} .

On the other hand, the subgroup P acts transitively on the set of right hand side.
Thus, for each zeR with |z|<1/2, there exists geP such that g(exp zU,)P=P.
Recalling the map ¢ in is SL(2, R)"-equivariant, we know that for each
Tisy, 0, Lr€R With |z, -+, |2, <1/2, there exists ueg(P") such that

u Exp (1/2, ---,1/2, z141, -+, z,)=Exp (1/2, ---, 1/2,0---0)=ay0 .

Seeing the definitions of S* (0</<7) in Lemma 5.3, we know that for each peExp (S?)
there exists #eU such that p=wuaw0 (0<I/<7). Considering the inclusions K*c K,C
G.c U, we get

K*Exp SicUaw=V, for each .
It follows from that
K*ExpSt=V, for each [,

and

r

C=UV, M=V,. q.ed.

(=1

REMARK. includes the results on cut loci of Grassmann manifolds
by Wong [12] and those on cut loci of U(r)/O(r), U(r), SO(n) and U(2r)/Sp(r)
by Sakai [5], [6].
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