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\S 1. Introduction and notations

In this paper we extend the result of Malyshev [2] and show the existence of
the phase transitions in Heisenberg model which has more than three phases by

using the method of Peierls. Also we discuss the phase transitions in finite spin

systems.
In the corollary of therem 1 in \S 2 we also show that phase transitions occur

in classical Heisenberg antiferromagnet under sufficiently low temperature.

As to the finite spin systems the existence of phase transition can be proved

in a similar way to the previous one.
Now we give the definition of Gibbsian random field of the system and introduce

some notations used below. We take a compact seperable metric space $S$ as a
spin space and denote by $\mu$ a non negative finite measure on the topological Borel
field in $S$.

We consider a spin system on a 2-dimensional lattice $T$ with a nearest neigh $\cdot$

bour potential $U(s_{1}, s_{2})$ , where $U(s_{1}, s_{2})$ is a real function on $S\times S$ which is measurable
and bounded from below.

For a finite subset $V=\{t_{1}, \cdots, t_{v}\}\subset T$, we associate a a-field $\mathscr{B}_{V}$ generated by
$\{\omega(t);t\in V\}(\omega\in\Omega=S^{T})$ and let $\mathscr{B}=\mathscr{B}\tau$ . A probability measure $P$ on $(\Omega, \mathscr{B})$

is called a Gibbsian random field if for each finite set $V$ and for each atom

$A=\{\omega\in\Omega:\omega(t_{i})=s_{i}(i=1, \cdots, v)\}$ of $\mathscr{B}v$

(1. 1) $P(A|\mathscr{B}_{V^{C}})=q_{V,\omega}(A)$ $a.e$ . $P$

where

$q_{V,\omega}(A)=\Xi(V, \omega)^{-1}\exp\{-\beta U_{V}(s_{1},\cdots s_{v}|\omega(t))\}$

$U_{V}(s_{1}, \cdots, s_{v}|\omega(t))=\frac{1}{2}\sum_{|t_{i}-l_{f}|=1}U(Si, Si)+\sum_{i=1}^{V}|t-t|=1\sum_{l\in V_{i}^{c}}U(Si, \omega(t))$

and
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$\Xi(V, \omega)=\int e^{-\beta U_{V}(s_{1,}\cdots,s_{v}|\omega(t))}d\mu(s_{1})\cdots d\mu(s_{v})$

A $one\cdot to\cdot one$ transformation $h$ from the measure space $(\Omega_{1}, \mathscr{S}_{1}^{-}, \mu_{1})$ onto the

measure space $(\Omega_{2}, \mathscr{S}_{2}^{-}, \mu_{2})$ is called ”admissible” if $\mu_{1}h^{-1}$ is absolutely continuous
with respect to $\mu_{2}$ and satisfies

$ 0<c_{1}\leq\frac{d(\mu_{1}\cdot h^{-1})}{d\mu_{2}}\leq c_{2}<\infty$ or $\frac{d(\mu_{1}\cdot h^{-1})}{d\mu_{2}}=0$

$a.e$ . $\mu_{2}$ for some $c_{1},$ $c_{2}>0$ .

\S 2. Classical Heisenberg model

In this section, we prove the existence of phase transition in the case of the
following classical Heisenberg model on square lattice.

We assume that potential function $U(s_{1}, s_{2})$ satisfies the following conditions
1\sim 5;

1) $U(s_{1}, s_{2})$ is a symmetric continuous function on $S\times S$

2) There exist a one-to-one transformation $g:S\rightarrow S$ and $n$ points $s^{[0]},$ $ s^{[1]},\cdots$ ,
$s^{[n-1]}$ of $S$ such that the following conditions $i$ ) $\sim v$) are satisfied,

i) $U(s_{1}, s_{2})$ takes its minimum at exactly following $n$ points $(s^{[0]}, s^{[0]})$ ,
$(s^{[1]}, s^{[1]}),$ $\cdots,$ $(s^{[n-1]}, s^{[n-I]})$

ii) $g^{n}=identity$

iii) $gs^{[i]}=s^{[i+1]}(i=0,1, \cdots, n-1)$ $gs^{[n-1]}=s^{[0]}$

iv) $U(gs_{1}, gs_{2})=U(s_{1}, s_{2})$

v) $\mu\cdot g=g$

3) There exist two neighbourhoods $O_{1}$ and $O_{2}$ of the point $s^{[0]}$ such that $fo1$.
lowing three conditions are satisfied,

i) $O_{1}\subset O_{2},$ $\mu(O_{1})>0$

ii) The $n$ sets $O_{2},$ $gO_{2},$ $\cdots,$ $g^{n-1}O_{2}$ are mutually disjoint.

iii) For some $\epsilon>0$

$ U(s_{1}, s_{2})<U(s_{1}^{\prime}, s_{2^{\prime}})-\epsilon$

for any $(s_{1}, s_{2})\in(O_{1}\times O_{1})\cup(gO_{1}\times gO_{1})\cup\cdots\cup(g^{n-1}O_{1}\times g^{n-1}O_{1})$

and for any $(s_{1^{\prime}}, s_{2^{\prime}})\not\in(O_{2}\times O_{2})\cup\cdots\cup(g^{n-1}O_{2}\times g^{n-1}O_{2})$

4) If $\mu(O_{2}-O_{1})>0$ , then there exists an admissible transformation $\chi:O_{2}-O_{1}$

$-A_{1}\subset O_{1}$ such that the following two conditions i) and ii) are satisfied, where
$A_{1}$ is a open subset of $O_{1}$

i) $ U(s_{1}, \chi s_{2})<U(s_{1}, s_{2})-\epsilon$

for all $s_{1}\in O_{1}$ , and for all $s_{2}\in O_{2}-O_{1}$
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ii) $ U(\chi s_{1}, \chi s_{2})<U(s_{1}, s_{2})-\epsilon$

for all $s_{1},$ $s_{2}\in O_{2}-O_{1}$

5) There exists a finite system of mutually disioint subsets $\{F_{i}\}_{i=1}^{k}$ of $S$ such
that

$\sum_{i}F_{i}+\sum_{i}gF_{i}+\cdots+\sum_{i}g^{n-1}F_{1}=S-(O_{2}\cup\cdots ug^{n-1}O_{2})$

and $(\sum_{i}F_{i}),$ $(\sum_{i}gF_{i}),$ $\cdots,$ $(\sum_{i}g^{n-1}F_{i})$ are mutally disjoint. Also there exist admissible

transformations $f_{i}$ : $F_{l}-B_{i}$ (open subset of $O_{1}$ )

THEOREM 1
If $U(s_{1}, s_{2})$ satisfies above five conditions 1\sim 5, then there exist at least $n$

distinct limiting Gibbs distributions for sufficiently large $\beta$ .

(PROOF)

We take a square $V$ centered at origin and take a following boundary condition
$\omega_{0}$ such that

$\omega_{0}(t)\in O_{1}$ $t\in V^{C}$

For a given configulation $\omega$, we call a site $t$ regular with respect to $\omega$ if $\omega(t)\in O_{1}$ .
We also call a site A-site if it is not a regular site.

If we can prove

(2-1) $q\gamma,$ $\omega_{0}$ (origin $O\in O_{1}$ ) $>\frac{1}{2}$ (independently of $V$)

then from the symmetry of $g$ we get

(2-2) $q_{V},$ $g^{k}\omega_{0}$ (origin $O\in g^{k}O_{1}$ ) $>\frac{1}{2}$ $(k=1, \cdots, n-1)$ ,

and so we get the distinct $n$ limiting Gibbs distributions, where $g^{k}\omega_{0}$ is a following
boundary condition

$g^{k}\omega_{0}(t)\in g^{k}O_{1}$ $t\in V^{C}$

Consequently we have only to show (2-1) for proving Th 1. We take a
confiquration $\omega$ such that origin $0$ is $A\cdot site$ , and let $R$ be a one-connected compo-
nent of $A\cdot sites$ which cotains $0$. We also let $\overline{R}=the$ region enclosed by the outer
boundary of $R$, and $R_{0}=T-\overline{R}$.

Next we define a subset $R(B)$ of $\overline{R}$ inductively as follows. Namely a subset
$R(B)$ consist of following sites of $\overline{R}$ ;

I) the sites which interact with $R_{0}$

II) the sites which interact with at least one element of the above set and
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which has at least active bond, where $O_{1}-O_{1}$ bonds, $gO_{1}-gO_{1}$ bonds, $\cdot$ . , and
$g^{n-1}O_{1}-g^{n-1}O_{1}$ bonds are called static bonds and other bonds are called active bonds.

III) repeat the step II), and so on.

Put $R_{int}=\overline{R}-R(B)$ . From the definition of $R(B)$ , the components of $R_{int}$ can
be classified into following $n$ classes.

class 1 $C(g^{0})$ ; The component whose boundary sites are reqular.

class $k$ $C(g^{k-1});(k=2, \cdots, n)$

The component whose boundary sites are transformed into regular sites by the

transformation $g^{k-1}$ .
Let $W$ be the $\sqrt{2}$ -connected subset of $T$, and

$B=\{\omega;R(B)(\omega)=W\}$

where we say that the set $W$ is $\sqrt{2}$ -connected if for arbitrary two sites $x,$ $y_{A}^{7}of$

$W$ there exists a chain $\{x_{0}, x_{1}, \cdots, x_{n-1}, x_{n}\}$ such that $x_{0}=x,$ $x_{1},$ $\cdots,$ $x_{n-1},$ $\in W,$ $x_{n}=y$

and $|x_{i}-x_{i+1}|\leq\sqrt{2}(i=0,1, \cdots, n-1)$ .
We now define the transformation $ G:B-\Omega$ which erase the set $R(B)$ as

follows.

$Gs(t)=\left\{\begin{array}{l}s(t) t\in R_{0}\\hs(t) t\in R(B)\\s(t) t\in C(g^{0})\\gs(t) t\in C(g)\\g^{2}s(t) t\in C(g^{2})\\\ldots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\ g^{n-1}s(t) t\in C(g^{n-1})\end{array}\right.$

$hs=\left\{\begin{array}{l}\chi s s\in O_{2}-O_{1}\\f_{i}s s\in F_{i}(i=1,2,\cdots,k)\\\mathscr{S}^{n-1_{S}} s\in \mathscr{S}0_{1}\\\chi g^{n-1}s S\in g(O_{2}-O_{1})\\f_{i}g^{n-1}s s\in \mathscr{S}^{p_{i}}(i=1,2,\cdots,k)\\\ldots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\ gs s\in g^{n-1}O_{1}\\\chi gs s\in g^{n-1}(O_{2}-O_{1})\\f_{i}gs s\in g^{n-1}F_{i}(i=1,2,\cdots,k)\end{array}\right.$

Next we consider the energy variation of the system by the transformation $G$ .
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From the property $2-iv$) of $g$ the energy in $R_{ini}$ and the mutual energy between
$R_{ini}$ and $R(B)$ are conserved. So, we have only to consider the energy variation in
$R(B)$ and the mutual energy variation between $R(B)$ and $R_{0}$ .

When two spins $s_{1}$ and $s_{2}$ are connected through a active bond, this bond is

transformed into static bond by the transformation $G$ .
By the property 3-iii) of potential function the next inequality is satisfied,

(2-2) $ U(Gs_{1}, Gs_{2})<U(s_{1}, s_{2})-\epsilon$

From the definition of $R(B)$ , the number of active bonds must be greater than

the half of the number of sites in $R(B)$ .
Consequently setting the number of elements of $R(B)$ to be $m$ , the following

relation is satisfied

(2-4) $U_{V}(Gs|\omega_{0})<U_{V}(s|\omega_{0})-\frac{1}{2}\epsilon m$

Next we decmpose $B$ into several subsets such that the restriction of $G$ on each
subset becomes $one- to\cdot one$ .
We consider a partition of $S$

$P=\{O_{1}, O_{2}-O_{1}, F_{1}, F_{2}, \cdots, F_{k}, gO_{1}, \cdots, g(O_{2}-O_{1}), \cdots, g^{n-1}O_{1}, \cdots, g^{n-1}F_{k}\}$

and we say $\omega_{1}$ and $\omega_{2}\in B$ belong to the subset $L$ if and only if the following condi $\cdot$

tion is satisfied,

$(*)$ both $\omega_{1}(t)$ and $\omega_{2}(t)$ belong to a common element of $P$ for all $t\in R(B)$ .
By this definition, the restriction of the transformation $G$ to each $L_{i}$ becomes

one-to-one. When the number of elements of $W$ is $m$ , the number of subsets of
this decomposition is at most $(n(k+2))^{m}$ .

Then we get

$\int_{B}e^{-\beta U_{V}(\omega)}d\mu(\omega)=\sum_{i}\int_{Li}e^{-\beta U_{V}(\omega)}d\mu(\omega)<e^{-\tau^{\beta\epsilon_{m}}}\sum_{i}1\int_{Li}e^{-\beta U_{V}(G\omega)}d\mu(\omega)$

$<e^{-\tau^{\beta\epsilon_{m}}}1(n(k+2)h)^{m}\int_{q}e^{-\beta U_{V}(\omega)}d\mu(\omega)$

where

$h=\max\{\frac{d\mu\cdot\chi^{-1}}{d\mu}\frac{d\mu\cdot f_{i^{-1}}}{d\mu}(i=1, \cdots, k)\}$

Hence,

(2-5) $P[B]=\frac{\int_{B}e^{-\beta U_{V}(\omega)}d\mu(\omega)}{1_{\rho}e^{-\beta U_{V}(\omega)}d\mu(\omega)}<(n(k+2)^{-\tau^{\epsilon\beta}})^{m}1$
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From the definition of $R(B)$ , it follows $R(B)$ is $\sqrt{2}$ -connected. As the number
of $\sqrt{2}$ -connected set which contains the origin is at most $m^{2}8^{m}$ , we get the
following result.

$q_{V},\omega_{0}( O\in S-O_{1})=\sum_{m\geq 1}q_{\gamma,\omega_{f}}(O\in S-O_{I}, \#(R(B))=m)$

$\leq\sum_{m\geq 1}m^{2}8^{m}(n(k+2)he^{-\beta\epsilon})^{m}$

$\ll\frac{1}{2}$ for sufficiently large $\beta$ .

COROLLARY
If we impose the following conditions 2 $)^{}$ , 3 $)^{}$ , 4 $)^{}$ on the potential function

$U(s_{1}, s_{2})$ instead of the above conditions 2), 3), 4), then we get the same result
as theorem 1.
$2\rightarrow 0)^{\prime}$ $n=2m$

$2-i)^{\prime}$ $U(s_{1}, s_{2})$ takes its minimum at exactly following $n$ points $(s^{[0]}, s^{[m]})$ ,
$(s^{[1]}, s^{[m+1]}),$ $\cdots,$ $(s^{[m-1]}, s^{[2m-1]})$ (antiferromagnet type)

3-iii)’ For some $\epsilon>0$

$ U(s_{1}, s_{2})<U(s_{1}^{\prime}, s_{2^{\prime}})-\epsilon$

for any $(s_{1}, s_{2})\in(O_{1}\times g^{m}O_{1})\cup(gO_{1}\times g^{m+1}O_{1})\cup\cdots\cup(g^{m-1}0_{1}\times g^{2m-1}O_{1})$ and any
$(s_{1^{\prime}}, s_{2^{\prime}})\not\in(O_{2}\times g^{m}O_{2})\cup\cdots\cup(\mathscr{S}^{m-1}O_{2}\times g^{2m-1}O_{2})$

$4-i)^{\prime}$ $ U(s_{1}, \chi s_{2})<U(s_{1}, s_{2})-\epsilon$

for any $s_{1}\in g^{m}O_{1}$ , and $Jor$ any $s_{2}\in O_{2}-0_{1}$

$4-ii)^{\prime}$ $ U(\chi s_{1}, g^{m}\chi g^{m}s_{2})<U(s_{1}, s_{2})-\epsilon$

(The remainder conditions of 2)’, 3)’, 4 $)^{}$ are the same as the above conditions
2), 3), 4).)

$(p_{ROOF})$

We introduce the following potential function $\tilde{U}(s_{1}, s_{2})$ given by

$\tilde{U}(s_{1}, s_{2})=U(s_{1}, g^{m}s_{2})$
$s_{1}$ : even site $s_{2}$ : odd site

where the site $(x, y)$ is called a even site if $x+y\equiv 0(mod 2)$ and other rsites are
called cdd sites.

Clearly $\tilde{U}(s_{1}, s_{2})$ satisfies the above conditions in theorem 1. For provingthe

corollary, we have only to remark the following relation

$q_{V,\omega}^{(U)}(A)=q_{V,\omega}^{(\tilde{U})}(A^{\prime})$

where
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$A=\{\omega;\omega(t_{i})=s_{i}(i=1,2, \cdots, v)\}$

$A^{\prime}=\{\omega;\omega(t_{i})=s_{i}$ if $t_{i}$ is even
$\omega(i_{i})=g^{m}s_{i}$ if $t_{i}$ is odd $(i=1,2, \cdots, v)$ }

and $\omega^{\prime}$ is the boundary conditon given by

$\omega^{\prime}(t)=\omega(t)$ if $t$ is even
$\omega^{\prime}(t)=g^{m}\omega(t)$ if $t$ is odd.

\S 3. Finite spin system

In this section we consider the finite systems on square lattice and triangular
lattice.

We let $S=\{1,2, \cdots, n\}(\mu(\{i\})=1(i=1,2, \cdots, n))$ and $\alpha;S-S$ be surjective,

and consider the system with the interaction potential $U$ defined as follows.

(3-1) $\left\{\begin{array}{l}U(1,\alpha(1))=U(2,\alpha(2))=\cdots=U(n,\alpha(n))=-\epsilon\\ U(i,j)=0 fora1lotherspins\end{array}\right.$

$\epsilon>0$

In the simillar way as in the previous section, we can show that this system
has at least $n$ distinct limiting Gibbs distributions for sufficiently large $\beta$ .

In the rest of this section we discuss a finite spin system on triangular lattice.
We let $S=\{1,2,3\}(\mu(\{i\})=1(i=1,2,3))$ and consider the following potential $U$.

(3-2) $\left\{\begin{array}{l}U(1,2)=U(2,3)=U(3,1)=-\epsilon\\ U(1,1)=U(2,2)=U(3,3)=0\end{array}\right.$

$\epsilon>0$

We shall show that this system hs at least six distinct limiting Gibbs distribu-
tions for sufficiently large $\beta$ . We give a coordinate for each site $t$ as Fig. 1, and
take the following boundary condition $\omega_{1}$

$\omega_{1}(x, y)=\left\{\begin{array}{l}1 if x+y\equiv 0\\2 if x+y\equiv 1\\3 if x+y\equiv 2\end{array}\right.$ $(mod(mcd(mod 3)3)3)$

For given configuration $\omega$, we call a site $(x, y)$

$A_{1}$-site if $x+y\equiv 0$ $(mod 3)$ and $\omega(x, y)\neq 1$

$A_{2}$-site if $x+y\equiv 1$ $(mod 3)$ and $\omega(x, y)\neq 2$

$A_{3}$-site if $x+y\equiv 2$ $(mod 3)$ and $\omega(x, y)\neq 3$ .
We also call a site $tA$-site if $t$ is $A_{1}$-site or $A_{2}$-site or $A_{2}$-site, and other sites
are called regular. In this model, 1-2, 2-3, and 3-1 bonds are c\"alled static bonds
and other bonds are called active one.
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Fig. 1

In the same way as in the previous model we define $R$, while the definition

of $R(B)$ is given by adding the following two steps to the condition I) and II) in

the definition of $R(B)$ in section 2.
step III) the sites which have at least one active opposite bond are connected

with at least one element of the set determined by step I) and step II), where

eaoh bond of 1\sim 5 and 6 is called opposite bond of the site A. (see FIg. 2)

step IV) repeat the step II) and step III), and so on.

Fig. 2

In this model we can classify the family of connected components of $R_{int}$ into
the following six classes.

$C^{i}$ ; class $i:(i=1, \cdots, 6)$

: The component whose boundary sites are transformed into regular sites by the

transformation $g_{i}$ , where transformation $g_{1},$ $g_{2},$ $\cdot,$
$\mathscr{S}_{6}$ are defined as follows,
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$g_{1}(s)=s$ for all $s$ $g_{2}(s)=\left\{\begin{array}{l}1\\2\\3\end{array}\right.$ $s=2s=3s=1$

$g_{3}(s)=\left\{\begin{array}{l}1\\2\\3\end{array}\right.$ $s_{=1}s^{=2}s=3$ $g_{4}(s)=\left\{\begin{array}{l}1 s=2\\2 s=1\\3 s=3\end{array}\right.$

$g_{5}(s)=\left\{\begin{array}{l}1 s=3\\2 s=1\\3 s=2\end{array}\right.$ $g_{6}(s)=\left\{\begin{array}{l}1 s=2\\2 s=3\\3 s=1\end{array}\right.$

In the triangular lattice, we cannot decompose $R_{int}$ in this way unless the new
two steps III) and IV) are added.

From this definition of $g_{i}$ , the energy variation inside $R_{int}$ by the transforma-
tion $G$ defined in the same way becomes zero. Furthermore we can make two
sites of $R(B)$ correspondence with one active bond, so the remainder part of the
proof is accomplished in the same way as in the previous section.
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