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1. Introduction

The wave front sets of solutions of hyperbolic Cauchy problems have been
studied by many authors. For hyperbolic operators with constant coefficients Atiyah,
Bott and Garding studied the singular supports (wave front sets) and the
lacunas of fundamental solutions. In variable coefficient cases the wave front sets
of solutions are studied by using Fourier integral operators (see [2]). In this paper
we shall investigate the wave front sets of solutions for hyperbolic operators with
constant coefficient principal part by the same arguments as in [1].

Let P(z, D) be a partial differential operator of order m in » independent
variables where z=(x;, -+, ») and D=1:"1(0/0z;, -+, 8/0xy).

We assume that

P(z, D)= Pn(D)+ Q(z, D),
Q(xr D) =Z la l<maw<x) Dw’ aaeecoo(R n)!

where a is a multi-index (ay, ‘-, an). Furthermore we assume that
(A) for each fixed # in R P(z,&) is a hyperbolic polynominal with respect
to 9=(1,0,--,0), where §=(&, :--, &x) (see [1D].

From Svensson [6] it follows that this condition (A) is equivalent to the
condition

(A)' Pn(é) is a hyperbolic polynomial with respect to 9 and Q(z, &) <Pn(§)
for every fixed # in R", where q(§)<p(€) means that there is a positive number
C such that

GE = elg®(©)|D12< CH(E) for every & in R,
Here we have used the notation ¢‘® (&)= (9%/06%)q(£).

Well-posedness of Cauchy problems for operators P(z, D) of this type was proved
by Dunn [3], obtaining energy inequalities. We note that P(z, D) satisfying the
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condition (A) has constant strength in R" (see [4]). So one can construct locally
a fundamental solution for P(z, D) in the same way as in [4].

The remainder of this paper is organized as follows. In §2 we shall construct
solutions of the Cauchy problems for P(z, D) by successive iteration. Dunn
proved the convergence of the iteration by means of energy inequalities. However,
we shall prove the same result by obtaining the uniform convergence of the Fourier-
Laplace transforms in the iteration. Moreover we shall obtain energy inequalities
for P(z, D) if its coefficients are in % (R"). In §3 the wave front sets of solutions
will be considered, using the same arguments as in [1]. Localization theorem will
be give in §3.1 and outer estimates for wave front sets of solutions will be given
in §3.2. When the coefficients of P(z, D) are in CE(R™)t we can study the wave
front sets of solutions with respect to C This will be done in § 4.

The author would like to thank Professor K. Kajitani for his valuable advices.

2. Construction of solution

First we shall state some lemmas.

LeMMA 2.1. Let a(€§) and b(§) be measurable functions of & in R™ which
satisfy the inequalities

|a(O)| <Au<ES>M, |b(E)|<BvE>TN,

where <§>=QQ+|§DV2. If M+ N—n>0, s<M+N—n and s<min (M, N), then
there is a positive number C=C(M, N, s, n) such that

laxb(&)| < CAuBN<E>S,

We omit the proof of Lemma 2.1. We remark that a less precise result is
sufficient for our discussion below.

LEMMA 2.2 (Svensson [6]). Let Pn(§) be a hyberbolic polynomial with respect
to 9 and homogeneous of degree m and p(&) a polynomial of degree less than m.
Then the following three conditions are equivalent:
(1) Pu(&)+p(&) is a hyberbolic polynomial with respect to 9.
(ii) p<Pn.
(ii1) There is a positive number C=C(Pn, p) such that

P (E+59)/Pn(€+59)|<C|Im s|™! when ¢ in R* and |Im s|>1.

+ The definition of CL(R») is given in [5].
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Set V={p(&eC[£]t; degp<<m and p<Pn} and let {p;} be a basis of the finite
dimensional vector space V.

The following lemma is obvious.

LeMMA 2.3. Under the condition (A) we can write
Qz, §) =31iqi(@)p; (&), qieC7(R™).

Moreover the q; are in Co”(R™) (resp. CL(R™)) if the coefficients of P(z, &) are
in Co(R™) (resp. CE(R™)).

Let us consider the equation

{P(x, Dyu(z) = f(2),
supp #(x) C{zeR"; z-9>0),

2.1)

where f is in @'(R") and supp fC {zeR"; z-9>0). First we construct a solution
of (2.1) by successive iteration when the gj(x) are in Co”(R™). Assume that f

is in &’ and that the g; are in C,®. Then there are a positive number C(f) and
a real number s such that

FEIM<CH<ESs.
Define w1, [=0,1,2,---, by

Pn(D)uo(x) = f(@),

Pn(Dth11(x) = — Q(z, D)ur(2),

supp #1Csupp f+ I'(Pn, 9)%,
Where I'(Pn, 9)* is the dual cone of I'(Pn, 9) which is the component of the set
{¢eR"; Pn(£)+0} containing 9.

LeMMA 2.4. Assume that the condition (A) is satisfied, the coefficients of
P(z, D) are in Co”(R") and that fis in &' and has its support in {zeR"; 2+9>0}.
Then

@2 =iy | <C'(f)CPETI(C(Pr, Q IHIE>S,

1=0,1,2,,7>1.
Thus we can define u(z) in &' (R") by

(2.3) 8(E—ir9) =372 ME—ir9), 1>C(Pum Q ).

Then u(x) is a solution of (2.1), supp u(z) Csupp f(&) +I'(Pm, 9)* and

1 C[£] denotes the space of polynomials of & with complex coefficients.
+ f(&) denotes the Fourier-Laplace transform of f,
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|2(E—irD| LS C'(F)C P A= C(Pm, @ ) IE>S, y>C(Pmy @ 5).

ReEMARK. We can also show that the right-hand side on (2.3) is convergent
for y>>C, where C is independent of s. This can be proved by the same methods
as in the proof of Lemma 2. 8.

Proor. We have

U (E—ir9)=—Pu(6—ir9) 15 [Q, Du](E—1ir9),

F [Q@, DuiJE—1ir9)

=—(2m)7%,3i®) * PiE—irDPu(E—ir9) 17 [Q®, DwlE—ird},
l=-1,0,1,--,
where —Q(z, D)u_,(z) = f(z). So the estimates (2.2) follow from Lemmas 2.1
and Q.E.D.

THEOREM 2.5 (finite propagation property). Assume that the condition (A)
is satisfied. If a distribution w with support in {(xeR"™; z-9>0} satisfies the
equation P(x, Du(x)=0 in a neighborhood of 2°—I'(Pn, 9)* then u=0 in a
neighborhood of z°.

ProoF. Let U be a neighborhood of 2% such that P(x, D)u(z) =0 in a neighbor-
hood of U—I'(Pum, 9)*. We note that the tranposed operator tP(z, D) of P(x, D)
satisfies the condition (A). Choose ¢ in Cy,™ such that ¢(z)=1 in a neighborhood
of {U—=TI"(Pn, *}N{x-3>0}. Then we have

(Pn(D) +¢(2)Q(z, D))u(x)=0 in a neighborhood of 2°—1I"(Pn, 9)*.

Since is applicable to the operator *(Pn(D)+¢(z)Q(z, D)), to every ¢
in C,°(U) there is a smooth function v such that

t(Pn(D) + ¢ (@) Q(x, D))v(x) =¢(2),
supp vCsupp ¢— I (P, D*CU—1T" (P, 9)*.
Since t{(Pn+ Q)v=¢ in a neighborhood of {z-9>0}, we have
<u, $>=<u, '(Pn+ Qv>=<(Pn+ Qu, v>=0.
This implies that #=0 in U. Q.E.D.

From and Theorem 2.5 we have the following

THEOREM 2.6. Under the condition (A) the equation (2.1) has a unique solu-
tion u in @'(R").
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ReMARK. (i) This theorem was proved in [3]. (ii) The Cauchy problem

o0 {P(x, Du(x)=0, z,>0,
2.4
le—lu[xl=0=9j(x’)€_@l(R”~l): x,:(xE’ Ty x’n)eRn_l’ lgj_éﬂ’l,

also has a unique solution in C*([0, 00]; <'(R"»1))t. This easily follows from

and the following lemma.
LEMMA 2.7. Assume that the hyperplane z-9=0 is non-characteristic with
respect to P(z, D). Let ve'(R™) be a solution of the equation
(2- 5) P(Z, D)”(‘”)"—“ﬁ(gl, R gm),
suppvC{z+-9>0},

where the g; arve in &' (R") and

P (1, ) ) = Dy Shey 167971060 (2)Rb; (0, 2', D) gr(z"),

P(z, D)=371,bi(2,D) D}, D'=i7(3[0xs, -+, 8/oxn).

Then u(x) =v(2)|x,>0eC([0, 0); D'(R"Y)) is a solution af (2.4). Conversely
#(x) is a solution of (2.5) if u(x) in C*([0, 00); @'(R*1)) is a solution of
(2.4). Here @(x) is the distribution defined by

2.6) i, p>= S:o<u(x1, z"), p(xy, 2') > dr, for every ¢ in Cy(R™.

REMARK. Since the hyperplane z-9=0 is non-characteristic with respect to
P(z, D), it follows from partial hypoellipticity that a solution # in &/(R.™) belongs
to C*([0, 00); Z'(R*))Htt.

Next let us prove the energy inequalities. We assume that the coefficients of
P(z, D) are in Cy”(R™). Let E(z, y) be a fundamental solution for P(z, D) with
support in {(z, y)eR?"; x— yel'(Pn, 9)*} and set

F(z, y; =expl—7(z1—yD]E®, y).
Define Fi(z, y; 1), 1=0,1,2,--, by
Q.7 Prn(De—ir9) Fo(z, y; 7)=0(x—1),
Pu(De—irD Friu(z, y5 N=—Q, Di—irN Fi(z, y; 1),

t feC=([0,00); '(Rn)) implies that <f(zy, a'), $(a')> is in C=([0,c0)) for each ¢
in G*(R*™).

tt fe/(R.™) implies that there exists a ditribution F in g/(R») such that Fi;,>o=f .
Moreover one can regard C*([0,); </(Rr-1)) as a subspace of /(R»).
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supp Fi(z, y; ) C{(, y)eR™; x—yel (Pn, 9)*}.

Then by the same method as in we have F(z, y; =3, ,Fu= y; 1)
in &#/(R*) for sufficiently large 7. Denote by F(&, 7; 7) the Fourier transform
of F(z, y,; v) with respect to (z, y).

LEMMA 2.8. Assume that the condition (A) is satisfied and that the q; are
in Co°(R™). Then we have
Fot s D=@m"PuG—ir® 13+,
\Fi&, 73 D1 CQ, NY(C(Prmy @IVI—1)¥|Pru(§— iy 9)| 1 <E+7>7N,
N=0,1,2,---, [=1,2,--, 7=>1.

Here C(Q, N) depends on supp q; and the supremum norms of the derivatives of
qi of order<N+n+1. Furthermore we have

152 Fig, 75 DISC Py Q 70 N Pn(E—ir®) |1 <6+ 0>7,
N=0,1,2,---, if r>C(Pnm, Q.

Proor. For [=1,2,--- we have
@8  RE D=5 (DD O E—ir9) T
x \dC1 4, (C5 [+ 71p), €= C1 = ir9) P(6—C = ir )™
% {Sdcz...
x (01450 0@ [+ 9DDju E—Clm e — 1= i 9)
X Pp(§—Ct—-os =L 1= i79) 7145, (E+p—Cl— - =T 1)
X Bjo (== ir9) Pa(—1—ir9) ™)},

where
3+, (& ) =18 ¢,
G 1€ H=UT—ul )4,
1, Cl<s/2dd—-D,
wu@ )=
0! 1C|>5/2(l—1>—1;
Set

I"=3;, .. j., +(each term on the right-hand side of (2.8)),
I-=Fi& pn-r.

Then it follows from that
|| < C(Q, NY(C(Pmy, QI)HPm(§—ird|1E+ 9>,
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(7] < CCQ, N)(C(Prmy @ U=V Pn(—iy9) [ 1E+ >N,
In fact, the §;(§) are rapidly decreasing and
|§+9—Cl = =L 21/2184 9] if §75u(Ck; |E+9D#0, 1<k<I-1.
Q.E.D.

LeMMA 2.9. Let P(x, D) be as described in Lemma 2.8 and R(&) a polynomial
such that R<Pn and deg R<m. Then to every real s theve are Dositive numbers
C=C(Pm, Q R, s) and C'(Pn, Q) such that for every f in C,”(R™)

llexpl —72 IR B, v fwddyls

<C(Pm, @ R, 77 lexp[—rzJf@||s if v™>C' (P, Q),
where

1£11s= (<& [2apyve,

Here C(Pm, Q R, s) depends on Pm, R, s, suppq; and the supremum norms of the
derivatives of q;.

ReEMARK. With a simple madification of we have

llexpl—72:0 B, 9 fw)dyllp 7 < CO|lexpl—rz1f@ |
where k€ % and 1<p<oo (see §2.2 in [4]t.

Proor. It is obvious that
(2.9) expl —72,1R(D) | Ez, ) f(y)dy
=L@ "RE—irD<EE =05 P, h@s D>,
where A(y; 7)=F ylexp[—ry ] f(y¥D)](p). From Lemma 2.8 it follows that
12 D" RE—irNFE —n5 1), h(ps Pl|Ld
<C'(Pm, @ R 7 (|IKOhE M ze
+ [ [KKSE =118 s, Cpdsh(ns Dl D)
<C(Prm, @ R, )77 |expl—yx,]f(@)]]s.

Here we have used Hausdorff-Young’s inequality and the inequlity

+ k€_%  means that k is a positive function defined in R=» and that there exist positive numbers
C and N such that k(§+9)<(1+C|&|)Nk()) for &, 7 in Rn. Moreover we denote for ke_%~
and 1<p<lco

LA pe= 112 7))~ 2k(EIFE) ] | L7, fe '
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IS L2 E—p)lst, QE.D.

THEOREM 2.10. Assume that the condition (A) is satisfied and that the coef-
ficients of P(z, D) are in % (R™). Let R be a polynomial such that R<Pn. Then
for any positive T and any non-negative integer s there is a positive number C=
C(R, T, s) such that for every ucCy”(R™ with support in {z,>0)}

[|R(D)ulls, r<C(R, T, ||P(z, Dulls, r,
where

1] 20 7= 3% 15 7| D) .

Proor. Using partition of unity it follows from Theorem 2.5 and Lemma 2.9
that

|IR(D)ul|s,r < C(R, T, s)||P(x, D)ulls.

Let f be a function such that P(z, D)u(z) = f(2) when z;<T and EF (O eL2(R™).
Then u(2) =w(x) when z,<T if w(z) is a solution of P(x, D)w=f and suppwC
{z;>0}. Thus

[IR(D)#||s, < C(R, T, 8)inf{||f||s; P(x, D)u(x)=f(x) when 2, <T}.
This completes the proof. Q.E.D.

THEOREM 2.11. Let P(x, D) be as described in and let u(x) be
a solution of (2.4). Then for any bpositive number T and any non-negative integer
S there is a positive number C=C(T, s) such that for every Fr(x')eCy”(R™1),
1<k<m, we have
HuH(O)S)’TSC(Tr S)E‘l'cn=lllgkns+m—k,

where
[l 25, =, dy (/62| 5 LuCan, 2T

REMARK. From partial hypoellipticity we have some results on the regularity
of solutions (see Theorem 4.3.1 in [4]).

Proor. Assume that the coefficients of P(z, D) are in Cy*(R"). #(z) defined
by (2.6) satisfies the equation
P(z, D)@(z) = f(x), supp #C {z; >0},

where
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(@) =37, 5]y 517186 (2D (0, &', D) gr(a").
Since
& Lexpl—r2,1f(@)1=F(&
=S S i [5i(0, &' D) Gr(a’)](E),
it follows from (2.9) with R(§)=1 and Lemma 2.8 that
llexplL—r2,J<E@, ¥, f(¥)>yllco,
< C'(Pry Q ) STy Shea (|7 14975 (61— iy — A (€1))7IKE S
x T+ |2,/ [5;(0, ', DDgr(a')1(E) |1k
+ ||y mr k(8 =y — Am(8))TIKED I TRCE S TIZE(L+ [2,(8D1/1)
X (g —ypy~2ivelmn=2-lsl {pSivk G [5;(0, ', D)Gr(a' )19l |28}
if 1>C'(Pr, Q),

where
11£ 170,00 = {21 Feo) 2ae.

Here we have used the fact that

16:C&1— iy — (&)L +2ED s

where
Pu(§—iy9) =i (& —ir—2;(§")).
Since
1+ 12EDIr < CA+LE S,
EDTIHRE LG — )y~ i kIS IRy 579 < C
and
(. la—ir—am(@| 2 <Chr,
we have
(2.10) Hexpl—r2z:1KEC, ¥), f(¥)>ullc,s
<C'(Pry Q DXy Sher Sl m 1575712 | g |1y amoi
<C(Pm, Q HZFear* || gkllsem—rc if 7>C'(Prmy Q).
In fact,

116;€0, 2/, D) gr(z")||s < C(bj, $)||Fk||s4m—i,
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l[<§’>_"§<5’>”+87—x’[bi(0, x', D) gr(x'YIED||LE < C'(bj, |1 Zk||ssvim—i.

Note that C(Pm, @, s) has the same properties as one in [Lemma 2.9 Therefore
(2.10) proves Theorem 2.11, using Theorem 2.5 and partition of unity.
Q.E.D.

3. Wawe front sets of solutions

3.1. Localization theorem. An inner estimate of the wave front set of the
fundamental solution E(z, y) for P(z, D) can be given by Localization theorem.
For each & in R* we can write P(z, t&+¢&) in the from

Pz, 2+ =t"¢Peo(x, O+ 7. 1 R (2, &),

Ri(z, ©)=0 if >y,
where 70 is a non-negative integer, P:o(z, &) is the localization of P(z, &) at & and
the Réo (z, &) are polynomials of £&. Then Pq(z, &) also satisfies the condition (A)
if P(z, &) satisfies the condition (A) (see [1]). Assume without loss of generality

that the coefficients of P(x, D) are in Co”(R"). Define E;(z, y; &), j=0,1,2, -,
by the equations

Py(2, D)Ey(2, y; &) =0(z—y),
Poo(z, D)Ej(x, y; £)=—3,_ R&k(2, D)Ej_1(2, y; £,
supp E;jC{(x, y)eR™; x—yel'(Puo, 9)*},
where Ej(z, y; £)=0 if j<0. Then it follows that
P(z, D +tE)Gn(z, y; t, &) =t"2"V"1FN(z, y; ¢, &),
where
GN(z, y; t, ) =t"¢ expl —it(x—y) &) E(z,y) — St 7 Ej(w, y5 £,
Fuz, y5 t, )= =30 S 1R (@, D) Evarriok(Z, y5 &)

and E(z, y) is the fundamental solution for P(z, D). By the same method as in
the proof of (or Lemma 2.8) we have

| 7 zlexpl—r(z, YIIEi(x, y; )L C(r, j, )EDImTprD,
7=0,1,2, - y>C(Ps).
In fact, deg Rf.(z,&)=m—r:+k. Thus we have
| # z[exp[—r(z—y)]Fn(z, y; ¢, ]IS C(, N, )N m=rpa+D,
N=0,1,2,,1>C(Ps), t>1.
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This implies that
| F zlexp[ —1(x—y)IGn(z, y; £ )] K C(, N, £t~
X <E>(N+TEo)(‘m—'7‘Eo+1)’ N=O, 1’ 2’ e T>C(P), t>1.

In fact, this follows from the proof of [Lemma 2.4 (or Lemma 2.8) and the fact
that

1Di(E+ 18— i19) [ Pu(€+ 10— ir9)| K C(Pm, Py if 121.
Therefore we have the following
THEOREM 3.1. Assume that the condition (A) is satisfied and {°€R™. Then
we have
N e Gr(z, ¥ b, £9)—0, as t—oo, in ' (R?), N=0,1,2, .
Movreover we have
Ui o{((, 9, (&, —8))eT*R*™0; (2, y)€supp E;(+, +5 &)
CWF(E(z, ¥)) for &£+0
and

ch[supp E;(-, «; €It {(z, y)eR?; x—yel' (Pm, 9)*}.

REMARK. We can prove by using Seidenberg’s lemma that there is a real
number ¢ such that
| Pn(€+ 80 —iy )| 1< C(Pm)t 76— iy 9% if t=>1, r=>1.

Therefore we can obtain a more precise result
NGn(z, y; t, £9)—0, as t—oo, in &’'(R?*"), N=0,1,2, .
3.2. Outer estimate. We shall prove the following theorem in this section.
THEOREM 3.2. Under the condition (A) we have
WF(E(z, y))C{((z, ¥, (§ DIET*R*™\0; ((z, £), (¥, —MIEC},

where E(z, y) is the fundamental solution for P(z, D) and
C={((z, &, (y, PD)ET*Rx T*R™\0; é=7 and z— yel'(Pn, 9)*}.

COROLLARY. Assume that the condition (A) is satisfied and let u(x) be a
solution of (2.1). Then we have

t ch[M] denotes the convex hull of M.



102 Seiichiro WAKABAYASHI
WF(u) CcC-WF(f)={(z, HeT*R"\0; ((=, &), (y, n))eC
for some (y, N)eWF(f)}

Let 29 y%R™ and e R™\{0}. First we shall prove that ((z°, y°), (&, —&)¢WF
(E(z, y)) when 20— y%I'(Pp, 9)*. Therefore we assume that 20— y°¢I'( Pz, 9)*.
Then there exist a neighborhood U; of 2° a neighborhood U, of %° and 7° in I”
(P, 9) such that

G.D (x—y)+7°<0 for every zeU; and yeU,.

LeMMA 3.3. There are an open convex conic neighborhood I' of & and positive
numbers 0 and t, such that

Prn(E—i(t|E|IC+9)) #0 when 0<t<t, &eI', (eR™ and |{—7°| <.

Proor. M=ch[{I9}U {{eR"; |{—7°|<d}] is contained in I'(Pu, 9) if J is
sufficiently small. Since M is compact, it follows from Lemma 5.1 in that
there exist a neighborhood V of £° and a positive number #; such that

3.2) Pr(§—itl)+0 when SV, {eM and 0<t<t,.

We can assume without loss of generality that |[£|=1. Set I'={1¢; |¢|=1, eV and
2>0}. Then we may assume that I" is an open convex cone. (3.2) implies that
for every positive number ?,<#;

Pn(6—i(tE|IE+9))#0 when eI, LeR™, 6] >1/(t;—1y), |E—71°| <0 and 0<t<t,.

In fact, we have 0<t+ [§|71< ¢y, t/(#+|&|7DC+ |67/ +|€|"1)9eM and |&|-26eV. Choose
ty so small that (¢;—¢t)9 + ¢ &€l (Pm, 3) when {eR™ and [{—7°|<d. Then it follows
from hyperbolicity of Pm(§) that Pm(§—i(#|§|C+9))#0 when &el', {eR™, |&|<<1/
(ti—to), [C—7°| <5 and 0<t<t,. Q.E.D.

LEMMA 3.4. Let &€I' and 0<t<t,. Then we have

3.3) Prn(§—i(t|§ln°+9)) < ClPm(§—i(t|]°+ 9D,
B.49 Prn(718|7%6— (P + £711€19))
S C|Pn(E[T 6 —i(+ 27247190 if 4[>0

PrROOF. Let p be a positive number such that p7°+9€I'(Pm, 9). Since ¢|&[y°+9
is contained in some compact subset of I'(Pm, 9) if t|¢|<p, there is a positive
number ¢ such that d(§) =distance(0, {zeC"; Pn(z+56—i(t|&[7°+9))=0})>c when
tlé|<p. So (3.3) follows from Lemma 4.1.1 in if ¢|¢|<p. Modifying I' and
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ty if necessary, it follows from that
Prn(6+t|¢|Re C— (6| (°—Im ) +9))#0
when &I, LeC™, |L|<0 and 0Lty

Thus we have d(§)>¢|£|0 if &eI" and 0<t<#, From Lemma 4.1.1 in it follows
that

(3.5) | Prm@ (§—(E|€|7° 4+ 90D | < (Cm[ (2]€]8))1® | P (E—(£[E170+9))|
if £eT, t|&]>0 and 0<t<t,.

This proves (3.3) with ¢[&>p. Multiplying (3.5) by (#|&))!%'-™ we have (3.4).
Q.E.D.

LEMMA 3.5. Let p be a polynomial such that p<Pm and degp<m. Then we
have

|DCE— it ||+ 19)) Pn(E—i(E|€|7° 4+ 19)) 7Y < C(Prm, D)7
when &eI', 0<t<t, and y>1.

Proor. Let p be a fixed positive number. If #|¢|<p, we have
DE—1(E[§]n°+9)) S CA+ Clt|E|n° + D™+ Pm(§—i(H[E]7°+9))
< C'Pu(6—i(t|E[n°+9)),
where degp=j (see (2.1.10) in [4]). Thus (38.3) implies that
3.6) [P (E—i(|€]7° +I))| < C(Prm, P)|Pun(§—i(E]§]7°+9))]
if £eT, t|E|<p and 0<t<t,.
If t|é|>p, we have
PAET =i +14]19))
< CQA+ Clp* +71E| 19D IPm (81|61 — i(n0 + £71[€]19))
L C'Pu(t 18|78 —i(0 + £1|€]19)).
Thus (38.4) implies that
3.7 [T —i(n° + 2714 719)) |
< C'(Prm, P)|Pr(7YE|726— (0 +272(E]719))]
if eI, t|€|>p and 0<t<LL,.

Now we may assume without loss of generality that p is homogeneous (see Lemma
5.5.1 in [4]). Multiplying (3.7) by (¢|¢])™ we have
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(3.8) [p(E—i(t|E|7° + 9| < C(Prmy D) | Pm(E—1(E|E]7°+9))|
if eI, t|§|>p and 0<t<t,.
(3.6) and (3.8) imply that if éeI', 0<¢t<¢, and y>1,

[p(E—iCtE[°+ 19| < C(Pm, D)1i~™|Pn(§— it + 79|,
which proves Lemma 3. 5. Q.E.D.

Proof of the theorem. We can asume without loss of generality that the
coefficients of P(z, D) are in C,*. Let Fi(z, y; 1), {=0,1,2, -, be distributions
defined by (2.7) and ¢;€C,"(U), j=1,2. Set ¢(z, y)=¢,(2)¢,(y) and choose a
positive number ¢ and a conic neighborhoocd I'' of £° such that 1/2&+(el’ if el
and |{|<e|¢|. Then we have

(3.9 F @, w[$FIE 1) =Zj,, i1, £ (= 1DI(2 m)=A+Dn

x {d00g,(1/2 6= P (1/2 6+ 00— i)

x (a2 G5 (885 (60007, (1/2 6+ 00— Q1= ir9) Pr(1/2 €+ 0= L1—ir )

X o

x (\de g5 25 16DpR U2 8+ 0= 01— o = 01— 7 9)

X Pn(1/2 6+80=81— o =Ll — 47 9) 1o (1/2 £+ n+ L0 =Ll — - =L} -},
where G575 ) =x(859)4i(0), §57 (5 )= -2 )Gi(©) and 25(Lis)=1 if |C[<
es/l, =0 if |¢[>es/l. Set

I'=3,,...;.+ Ceach term on the right-hand side of (3.9)),
IF=5 @ p[$FIE D—I".

Then it follows from that

(3.10) [I7] < C(Q) C(Pm)r N (C(Pm, /1) |$1]n+1l62]0] @ N-4n41<E7Y,
N=0,1,2,:--, 721,

where |Q|r=sup;|qj|lx and |f|x=sup e <k rerr|D*f(xz)|. Here C(Q) depends on supp
qg;i and |Q|n+;. Next let us estimate I*. Let Vi 0<{<?, be the chain {{’¢C?;
00=L—1v:(0), LeR™), where v:(0)=t|{|@()7* and O(LeC>(R™) is positively homo-
geneous of degree 0 in |{|>1 and @({)=1 on a neighborhood of I''N{|{|>1}, supp
o crn{|¢>1/2}, 0<0(OL1. It follows from (3.1) that
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3.1 |61(1/2 =L Ga(1/2 §+9+ L0 =Tt =+ = LD | < Cly [ v|elo<1/2 §—L0)N,
N=0,1,2, -, if {eV;, 0<I<LE,.

It is obvious that there is a positive number ¢ such that
(3.12) [1/2§—=L02= (|42 + LD if éeI™ and L°=C—iv:, (D).
Moreover Lemmas and 3.5 show that
(3.13) 12;(1/2 6+ +2—ir9) Pm(1/2 £+ 00 +2—ir9) Y K C(Pmy PD[7
if §eI, zeR™, Q0eVy, |z|<lelé|, 0<t<t; and y>1. In fact we have 1/2&+{+zel
and [{|0(Q) <|1/28+ +2| if ¢el, Lel', zeR™ and [z|<¢|¢|, modifying I. From
(3.11), (8.13) and Stokes’ formula it follows that

Fr=S i (=D n)—(1+z>ng VtodCOSR"d Cl.. SR”dCl""
Therefore (3.11)—(8.13) give the estimates
(3.14) I+ < C(Q) C(Pm)r (C(Pmy @1} |f1]Nsnra|Palo<EdY,

N=0,1,2,---, if §eI'' and y>1.

From (8.10) and (38.14) it follows that

(3.15) |F @, F1E DS C(Pry @, 1) (Blns1] QlNanss +[lNins )TV,
N=0, 1,2, Yy if Ee]"l and 7’>C(P'm.y Q)r

which implies that ((z9, ¥°), (&, )¢ WF(E(z, y)) when 20— y°¢I" (P, 9)*. Finally
let us prove that ((29 y°), (&, y))¢WF(E(z, y)) if &#—». Here we do not
suppose that 29— y%¢I" (P, 9)*. Let I' be a conic neighborhood of (€9, #1) in R2*\
{0}. Then there is a positive number ¢ such that |é+7|>2¢|(&, 7)| for (& p)el.
Since

(3.16) T nldFIE D=, o £ (~DHR R0
x {d00d, (6 +7— 1) Pt —9—iy9)-
x{ fde g8 s 166 MDLA @ =7~ L= ir9) Pa(@0—p— 07937
«{f- |
x{ fae g5 16 DBy @0 =n—1— - ~g1—ir9)

X P (0= p—=Ll— o os =Ll — 47 9) 18, (0= L1 — .- —C’)}"-},
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it follows from the application of the same arguments as in the proof of Lemma
2.8 that

(3. 17) lf(:c,y)[ﬂbF](éy 7])|SC(P’M, Q: T)(l¢]‘ﬂ+1|QlN+n+1+ l¢|N+'n+1)<(si 77)>_N’
N=0,1,2, -, if (& p)el’ and y>C(Pm, Q).

In fact we have
|$1(6+7— £ $2(80—2) | < ClP|N+niy <G+ 7D N,
N=0,1,2, -, if {%eR", zeR™ and |z|<<1/2|é+7).

(3.17) implies that ((2° y°), (&, »))¢ WF(E(z, y)) when & —5l. Therefore
has been proved.

4. Some remarks

First we shall consider the wave front sets of solutions with respect to C:(R™)
when the coefficients of P(z, D) are in C:(R"). We assume that there exists a
positive number C such that Ly <CkLn/Nand N>k>0 and that X}, 1/Lx<{oo. Let
$i€Co™(Up) N CL(R™), j=1,2, where U; (resp. U) is a neighborhood of 20 (resp. ¥°).
Assume that the coefficients of @(z, D) have compact supports. Then we have

4.1 | F @, [$1(2)g2(¥) F(=, y3 1)IE D
S C(CLNN(E >N, N=0,1,2, -,
if (& %) belongs to some conic neighborhood of (&, ), ((2°, &), (%% —»'))¢C and

7>C(Pm, @. In fact, we divide the integral on the right-hand side of (3.9) into
two parts:

-9’-<x,y)[¢1(5v)¢2(y)Fl(xv Y s T:l(&, 77)

=Syt (= D2 w0

[ 4+ 18 <ENE]

+Slc'1+---+1:t|zelzl}dcomdclzll+12'
We can estimate I; in the same way as for I*. Since |§;,({1)---§;, ()| CH(CLnV
7N Af QY +---+ |8 >¢|é] and N=0,1,2,:-, we can estimate I,. Applying the
same argument to (3.16) we have (4.1). Then by Theorem 2.5 and (4.1) we
have the following

THEOREM 4.1. Assume that the condition (A) is satisfied and the coefficients
of P(z, D) are in CL(R™). Then we have

WFL(E(z, y)) <{((=z, ¥, & DIET*R*\0; ((x, £, (y, —7)eC}t
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For hyperbolic systems we can apply the same arguments when every entries
of the operator icof Pn(D)-Q(z, D) are weaker than det P.(D) for every fixed
zeR*. In fact,

tcof Pn(D)+P(z, D)=det Pn(D)I,+ tcof Pn(D)-Q(z, D)

and tcof Pn(D) is a hyperbolic operator with constant coefficients and det(tcof Pn(£))
= (det Pn(£))7"1, where P(z, &) is an X r matrix (see [3]). However, this condi-
tion is not a necessary condition for hyperbolicity of P(z, D) when z is fixed (see

[6D.
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