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1. Introduction. For paracomparactness and g-paracompactness (¢—an infinite
cardinal), many characterizations have been obtained until now. In particular, for
countable paracompactness the following simple characterization is known:

A normal space (a topological space) X is countably paracompact if and only if,
for each countable increasing open cover {U,}, there exists a countable closed (open)
cover {Vy} such that V,c U, (V.CU,) for each n (Dowker [4], Ishikawa [5].

In this paper we shall give new characterizations of paracompactness and p-
paracompactness in terms of “well-ordered increasing cover”, and using these charac-
terizations we shall obtain some results with respect to normality of product spaces.

Here a space X is paracompact (p-paracompact), if each open cover (with car-
dinality <p) of X has a locally finite open refinement.

Let 2 be an ordinal. We say that a space X has the property P(4), if for each
open cover {U.|Ja< 2} of X with length 2 satisfying

(1) U.c U,

(2) Uz= U U, for each limit ordinal g<2,
there exists aanpen cover {Vanla<i,n=0,1,2,---} of X such that

( 3 ) Va,nC Va+1.nv

(4) Van= LiﬁV,,,n for each limit ordinal 5<4,

(5) VanC f/a,nru,

(6) VanCU.

Our characterizations for paracompactness and g-paracompactness are as follows:

THEOREM 1.1. Consider the following statements about a space X:
(a) X has the property P(X) for each regular ordinal A.
(b) Each well-ordered increasing open cover U of X has an open refinement

Y= U CUn such that <V, is cushioned in CVn.y (in the semse of Michael [8]) for

n=0
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each n.

(c) X is paracompact.
Then (a) implies (b) and (b) implies (c). If X is a normal (regular or Hausdorfy)
space, then (a), (b) and () are equivalent.

THEOREM 1.2. Consider the following statements about a space X and an in-
Jinite cardinal (=an initial ordinal) p:

(@) X has the property P(R) for each regular ovdinal 2 such that i< 73

(b) Each well-ordered increasing open cover J of X with length <p has an
open refinement C|) = G CUn Such that <, is cushioned in CVn., for each n.

() X is p-pamcg;:pacz‘.
Then (a) implies (b) and (b) implies (c). If X is a normal space, then (a), (b) and
(c) are equivalent.

follows immediately from [Theorem 1.2]; [Theorem 1.2 will be proved

in section 2.

In sections 3 and 4, we shall have some applications of Theorems L1 and ;
each of them is related to the normality of the product space of a normal space
with a compact Hausdorff space. Specifically, in section 4, the following is proved:

If the product XXY of a space X with a compact Hausdorff space Y is normal,
then X is p-paracompact for each infinite cardinal p such that p<t(Y). If, fur-
theremore, HY') is not weakly inaccessible, then X is 1Y )-paracompact.

Here #(Y) denotes the tightness of Y [1].

Theorems [L.1], and the contents of section 3 were announced at the Fourth
Prague Topological Symposium in 1976.

2. Proof of Throughout this paper, the Greek letters a, 8, -,
A, u, -+~ denote ordinal numbers, and each ordinal is the set of its predecessors. Thus,
a€ii—a<A The cofinality of 2,¢f(2), is defined by c¢f(1)=min {#|2 has a cofinal
subset of order type p}. As is well-known, for each ordinal 2, ¢f(2) is a cardinal
(=an initial ordinal). An ordinal A is regular if cf(A)=21 Hence each regular or-
dinal is a cardinal, and ¢f(1) is regular for each ordinal i The successor of 1 is
denoted by A+1; namely, 2+1=2U{4} = {ala<a}. As usual, w denotes the first in-
finite ordinal. An element of @ (=a natural number) is denoted by # or .

First, for convenience, we introduce the following terminology. An indexed
cover {U.|a€2} of a space X is a A-increasing cover, if it satisfies the following con-
ditions

(1) U.,cU,.,,

(2) Us= Uﬁ U, for each limit Bea.
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Of course, a A-increasing cover is a monotone increasing cover of length 2, and a
(A+1)-increasing cover of X contains X as the last member.

A double indexed cover {V..la€2, new} of X is a (1, ®)-increasing cover (resp.
a (1, w)-increasing cover), if it satisfies the following conditions

( 3 ) Va,nC VaH»l,’n!

(4) Ven=U Van for each limit Be3,

(5) VancC f/::n+1 (resp. VanC Vans)-
A double indexed cover {V..la€l, new} is called an indexed refinement of an indexed
cover {U,lae}, if for each a€l and each new

(6) VanCU..
Thus, a space X has the property P(2) if and only if each A-increasing open cover
of X has a (2, @)-increasing open indexed refinement. An arbitrary space X has the
property P(2+2) for each ordinal i; indeed, the cover {V.n.|a€i+2, new}, given by
Van=¢ for a<i,new and Viin.=X for neo, is a (1+2, @)-increasing open indexed
refinement of any (1+2)-increasing open cover of X.

LemMmA 2.1. For a limit ordinal 2,
P(+1) > PQ).

Proor. Let X be a space with the property P(A1+1), and let U ={U.|a€} be
a J-increasing open cover of X. We put U;= U U.(=X) and let U *={U.|ae2+1}.
Then U+ is a (A+1)-increasing open cover (;feiX, and hence 9J* has a (A+1, @)-
increasing open indexed refinement CV*={V.ala€2+1, new}. Since 1 is a limit,
V"":ng"’n for new. Hence the subcollection €1V ={V, »|la€l, new} of CV* is a cover
of X, and so €U is a (1, @)-increasing open indexed refinement of ¢J. Thus X has
the property P(2).

Lemma 2.2. PQA)+P(w) > PA+1).

Proor. Since any space has the property P(1+1) for a non-limit ordinal 2, we
may assume that 2 is a limit ordinal. Let X be a space with the properties £(4)
and P(w), and let ¢J ={U,Jaei+1} be a (A+1)-increasing open cover of X. Since 2
is a limit ordinal, the subcollection ¢/’ ={U,la€2} is a i-increasing open cover of X.
Hence ¢’ has a (1, @)-increasing open indexed refinement U'={V;.|lael, new).
If we put V,/’= LeJxV",’" for each new, then {V,/|new} is an w-increasing open cover
of X. Since X tfas the property P(w), there exists an open cover {Wp |7, new} of
X such that

Win.nC W tiny Wanon© Winner and - Wy oG Vi .
Let us define



30 Yakiti Katuta

V,,',nﬂ Wnn 1f a<2)

Va.n: Wn,n lf Ct':Z-

It is easily seen that the collection { V. nl@€i+1,n€w} is a (1+1, @)-increasing open
indexed refinement of the given (1-+1)-increasing open cover qJ. Therefore X has
the property P(1+1).

LeMMA 23. Let 2 and p be two limit ordinals with the same cofinality. Then

we have the following equivalences:

PO P(p) and PQA+1)<P(p+1).

Proor. Let c¢f())=cf(p#)=v. (Since 2 is a limit, the ordinal v is also a limit).
Then the set 2={a|a<a} has a cofinal subset A={a:¢|é€yv} such that a:<a¢ provided
§<{<v. Without loss of generality, we may assume

CYOZO,
«a: 1S a non-limit ordinal, if £ is a non-limit ordinal,
as=sup {ac|{ <€}, if £ is a limit ordinal.

Similarly, there exists a cofinal subset B={g¢/é€v} in p with the same property.

We prove first the implication P()=>P(p). Let X be a P(A)-space. (Hereafter,
a space with the property P(2) is also called a P(2)-space.) Let U ={U;|Bep} be a
p-increasing open cover of X. For each aei, let us put U,/ = % Where ¢ is the
unique element of v such that a:<a<a:,,. Then U’={U.,|a€i} is a A-increasing
open cover of X. Consequently, ¢J’ has a (1, @)-increasing open indexed refinement
{Vinlacd, new}. If we define Vsn=V/. nfor Bep, where { is the unique element of
v such that 3%<j3<:.;, then we can show without difficulty that the collection
{Vs.nlBep, new} is a (u, @)-increasing open indexed refinement of the given cover
U. Hence X is a P(p)-space, and so the implication P(2) = P(p) is proved. The
proof of P(u)=>P(A) is the same to that of P(A)=>P(y¢). Thus we have the equiva-
lence P(2)<&= P(p).

The proof of the equivalence P(A+1)&=P(u+1) is omitted; it is a slight mo-
dification of the proof of P(1)<= P(y). Consequently the proof of the lemma is
concluded.

Here, furthermore, we introduce the following two terms. We say that a space
X has the property Q(2) or X is a Q(A)-space, if each 2A-increasing open cover U of
X has an open refinement <= UC{/, such that ¢{, is cushioned in <{/,,; for each
new; and we say that X has 7‘Ice}iue property R(2) or X is an R(A)-space, if for each
A-increasing open cover J of X there exists a ¢-locally finite open cover <{V of X
such that C={V|VeCy} refines ¢J. If i is a non-limit ordinal, then it is obvious
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that any space has the properties Q(1) and R(A).
.LEMMA 24. PQ+1) = Q).

Proor. We may assume that 1 is a limit ordinal. Let X be a P(A-+1)-space,
and let U ={U.|ae} be a 2-increasing open cover of X. As has been mentioned
in the proof of Lemma 2.1l there exists a (1+1,®)-increasing open cover CV*=
{Vanla€l+1,new} of X such that the subcollection CV)={V, »|a€l, ne€w} is an index-
ed refinement of ¢J. Let CU,,={V..»laci} for new, then CY= U /.. To prove that
</, is cushioned in C{/,,,, it is sufficient to prove that e

U Va,’nc U ch.?’H—l
a€Ad

a€A

for each subset A of 2. Let us put g=sup A, then <2 (ie., Bei+1). In case BeA,
8 is the largest element of A, and hence U V. m=Vsm In case p¢A4, g is a limit,

a€A

and hence U Viom= U Vam=Vsm In either case, U Vom="Vsm for each mew.
a€Ad a8 a€4

Therefore, we have

U Va.n:Vp.nC Venii= U Vani1
a€A

a€Ad

Thus X is a Q(2)-space.
LemMma 25. P(+1) = R(Q).

Proor. We may assume that 1 is a limit ordinal. Let X be a P(i+1)-space,
and let U ={U,|ae} be a 2-increasing open cover of X. After the proof of
24, we have a (1+1, @)-increasing open cover CV*={V, .|la€i+1,ncw} whose sub-
collection CV={V, »|a€l, new} is an indexed refinement of ¢J. We need a o-locally
finite open cover ¢ such that & refines ¢J. The collection ¢ is constructed as
follows: g:nLer Gy Gn={Ga,nlaea} for new, and

Vo‘n lf a=0 N
Gan=1¢ if «a is a limit,
Van—Veaci.ns1 otherwise.

Here a—1 denotes the predecessor of «, in case that « is a non-limit, non-zero or-

dinal. Obviously, each member G.., of G is open in X. Since G..nCVanC Vanit

c U, for aei and new, G ={G. nla€d, new) refines ¢J. Hence, to complete the proof

of the lemma, it is sufficient to prove the following two assertions (i) and (ii).
(i) @ is a cover of X: Let xeX, and let

a(z)=min {aei|xe V, , for some mncw}.
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Since (V7 is a cover of X, a(x) is well-defined. Then there exists an element n(z)ew
such that x€ V. (s, ns». From the condition (4) in the definition of a (4, @)-increasing
cover, it is seen that a(x) is a non-limit ordinal. In case a{x)=0, from the defini-
tion of a(x), we have 24 Vaz 1.0z 2 and S0 24V .z -1.ncz 1. Hence, in this case,
2€Gaczy,nemy- In case al(x)=0,x€ Vi nzy =Go,nzy» Thus & is a cover of X.

(ii) &, is locally finite (more precisely, discrete) for each new: For each
new and for each reX, let us construct an open neighborhood N(x) of x which in-
tersects at most only one member of &, The neighborhood N(«) is defined by

X_Vl.n if x¢ Vi.n-< 1y
N(z)=13 Vo nu1 if xzeVion.,
Vﬂ-,,,(a:).nﬂ—vﬁn(w)—l,n otherwise ’

where S.(x)=min {a€A+1|ze V. n:}. In case xeV; i1, Ba(x) is well-defined, and fa(x)
is a non-limit ordinal by the condition (4). Moreover, if x4V, .+1, then we have the
predecessor Bn(x)—1 of Bu(x) and x¢ Vs, oy-1.n 1. Since V. nC Vi, ».1 for each aei+1,
N(x) is surely an open neighborhood of x in any case. From the definition of G..x,
we have G.nN Vjni=¢ for 0<f<a<i, and G, .CV,;, for 0<a<pf<i Hence it
follows that N(z) intersects at most one member of &,; indeed, G...,NN(x)=¢ for
all aea provided x4V, .1, and G..,NN(z)=¢ for all axp,(x) provided zx€ Vi, n.i.
Therefore &, is discrete and so locally finite for each new.
Thus the proof of the lemma is completed.

LEMMA 2.6. If cf(A)>w, then
Q) = P(a+1).

Proor. Let X be a Q(2)-space, and let U ={U,|laei+1} be a (A+1)-increasing
open cover of X. Since 2 is a limit ordinal, the subcollection ¢J’'={U.|a€4} is a
cover of X and so it is a A-increasing open cover of X. Hence 9/’ has an open
refinement G/ = LGJCWn such that 94, is cushioned in 9/,., for each new. Let us

fn: Wa—>FWn:1 be the cushioned function for new. For each mew and for each
Wegy,, we define ordinals a,(W) and B.(W) as follows:

a (W)=min {a€A| WC U}, Ba(W)=sup {anm(fn.u(W))|mew},
where fo.m: W nim, B, M€w, is the function given by
Sorm—10°0ofy if m >0,
f”'mz{the identity if m=0.

Since 9¥ refines U’, an(W) is well-defined and a,(W)<i. By the assumption c¢f(2)
>w, we have 3, (W)<a for Weq/,. Now, we put
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Van=U{We W,|B(W)<a}

for aei+1 and new, and let CY={V, ,laci+1,ncw}. Let us show that CV is a
(4+1, w)-increasing open indexed refinement of 9J. It is obvious that C{” is an open
cover of X. Since an(W)<Bu(W) and Wc U,,w, for Weqy,, we have V,,cU,
for ae2 and new. As a matter of course, V; .U, (=X) for new. Hence ¢/ is an
indexed refinement of <¢J. It is obvious that C{/ satisfies the conditions (3) and (4).
So it is remained to examine V, ,C V. .. for aei+1 and new (the condition (5)).
Since f, is a cushioned function, we have

U{We Walgu(W)<a)C UL ful W) We Wy, B W)<a} .

And the inclusion
U{Sa W) We W, Bu( W)<a} S U{W’' € Waii|Bair( W)<a}

follows from the fact Bn.i(fu(W))<B(W) for Weqgy, which is directly proved
from the definition of B8.(W). Hence V, nC V. n.: for a€2+1 and new. Thus X is
a P(a+1)-space and the proof is completed.

LemMmA 2.7. Let 2 and p be two ordinals with the same cofinality, then we have
the following equivalences:

Q=) and R R(p) .
This lemma is more easily proved than Lemma 2.3

LemMma 2.8. Q1) = R(A).

Proor. If cf())<<w (ie., 4 is a non-limit ordinal), the lemma is obvious. The
implication Q(w)=>R(w) is easily proved. Hence, by the implication Q(2)
—>R(2) is true for any ordinal 2 with ¢f(Q)=w. If ¢f(2)>w, then, from Lemmas
and 2.5, we have the implications Q(A)=>P(1+1)=>R(1). Therefore the lemma holds
for all ordinals A

Lemma 2.9. In countably paracompact novmal spaces,

R(2) = PQ2+1).

Proor. We may assume that A is a limit ordinal. Let X be a countably para-
compact normal space with the property R(2). We shall show that X has the fol-
lowing property which is stronger than P(iA+1): Each i-increasing open cover
{U.la€a} of X has a (4, @)-increasing open indexed refinement {V, .|a€l, n€ew} such
that {V..»la€l} is a cover of X for each new. Let U ={U.|a€} be a i-increasing
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open cover of X. Since X is an R(A)-space, UJ has a ¢-locally finite open refinement.
Each ¢-locally finite open cover of a countably paracompact space has a locally finite
open refinement, and each locally finite open cover of a normal space is shirinkable.
Therefore we have a locally finite open cover & ={G.|a€a} and a closed cover & =
{F.la€} of X such that F,cG.c U, for each aei. Furthermore, by the normality
of X, there exists a sequence {W,..|ncw} of open sets of X for each a€l such that

FoCWooCWeoo CWarC o CWanCWeanC Wanii © - CGa.

We put Vi n= U W;,, for a€i, new, and let CU={V, |a€l, new}. It is easily proved
pla

that C/ is a (1, @)-increasing open cover of X; in particular, from the local finiteness
of g, we have

Vern= U Wen= ,eL/J Wﬁ_nCﬂU We.ac1=Vani1-

p<la
Since

Van= U W,s.'n,C U GﬁC U Upc U.,
8<a B<a fla

CY is an indexed refinement of ¢J. Finally, since & is a cover of X, {V, .|laca}
is a cover of X for each new. This completes the proof.
The following lemma is essentially due to Mack [7].

LemmA 2.10. Let p be an infinite cardinal. Then the following are equivalent
for a space X:

(1) X is p-paracompact.

(ii) For each well-ovdered increasing open cover U of X with length <p, there
exists a o-locally finite open cover CV of X such that C={V|VeC} refines U.

(iii) X has the property R(R) for each ordinal 1< p.

(iv) X has the property R(R) for each regular ordinal 1< p.

Proor. The equivalence (i)¢&=>(ii) was proved by Mack [7]. Since each 2-increas-
ing open cover is a well-ordered increasing open cover with length A, the implica-
tion (ii)=»(iii) is obvious. The implication (iii)=>(ii) is also obvious, since each well-
ordered increasing open cover with length 1 has a 2i-increasing open refinement.
Finally the equivalence (iii)¢<=>(iv) follows from

ProoF oF THEOREM 1.2. The statement (b) in is equivalent to
that X has the property Q(1) for each (regular) ordinal A<y (cf. (ii)&= (i) & (iv)
in Cemma 2.10). Therefore the implications (a)=>(b) and (b)=>(c) follow from Lem-
mas 2.2, 24 and Lemmas 2.8, 2.10, respectively. It remains only to show the im-
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plication (c)=>(a) under the normality of X. Assume that X is g-paracompact and
normal. Of course, X is countably paracompact, since p is an infinite cardinal. By
Lemma 2.10, X has the property R(1) for each (regular) ordinal 2<p. Hence, by
Lemmas and 2.1, X has the property P(2) for each (regular) ordinal 2<g. This
completes the proof of

3. Application (I). First we prove a lemma used not only in this section but
also in the next section.

LemMmA 3.1. Let X be a space and Y be a compact space. Let {C.laci+1} and
(Gr|new} be respectively a decreasing sequence of length A+1 by closed sets of 'Y
and an increasing sequence of length o by open sets of the product X XY such that

Cs= N C, for each limit ordinal pei+1,
ach
Gnc G, for each new, and

XXC,c UG,.

new

Then the collection {V, n|la€d+1,new}, defined by
Van={xeX|{x} xC,cGn} for aci+l,neow,

is a (A+1, @)-increasing open cover of X.

Proor. The lemma follows directly from the following five assertions.

(i) Van is open in X: This assertion is obvious, because C, is compact in
Y and G, is open in XX Y.

(i) VanCS Vaa provided a<8: This follows from the fact C,DC; provided
a<B.

(iii) Vi, = ﬂ Ve.n for each limit ordinal gei+1: Let xe V4, then {x} XCoCGa.
By assumption, Cp- n C., and so n ({x}XC Y Gn. Since {{x} X C,la<g} is a decreas-
ing sequence of compact closed sets and G, is open in XX Y, as is easily shown,
there exists an element a,<f such that {z}XC,,CGs Hence xe Ve nC U Ve ne
Thus the assertion is verified.

(iv) VenC Vana: From the definition of V. ., we have V. .XC.CG,. Hence

Vg_nxcac Va_nXCaCG_nCGﬂ+1 ’

and hence V. nC Vanii.
(v) {Vialnew}is a cover of X: Let zeX. Then {z} XC,c XxC;c U G.. Hence

new

{x} X C;C G, for some no€w, because {Ga|n€w} is an increasing sequence of open sets



36 Yikiti Katuta

which covers the compact set {z} xC,. Hence ze¢ Vi nge

Thus the lemma is completed.

A subset G of a space X is said to be perfectly open, if there exists a sequence
{Gr|new} of open sets of X such that G= U G, and G,.cG,., for each new. Ob-
viously, e

cozero - perfectly open = open F,,

and the converses are true in normal spaces.
Let X be a subspace of a compact Hausdorff space Y. For each open cover U
of X, we define a subset C(7J) of Y (more precisely, Cy(U)) by

AU)= 0 Cl(X—0).

(For a subset A of X, ClyA denotes the closure of 4 in ¥V ; on the other hand, the
closure of A in X is denoted by A as usual.) Obviously, C(U ) is a closed set of
Y such that C(UU)N X=¢. Hence, in the product Xx Y, XxC(J) and the diagonal
4 (={(x, x)|re X}) are disjoint closed sets. (Since Y is a Hausdorff space, 4 is closed
in XxY.)

THOREM 3.2. Let X be a subspace of a compact Hausdorff space Y. If, for
each infinite regular cardinal A and for each i-increasing open cover U of X, there
exists a perfectly open set G of the product XX Y such that

XXCU)SG, Gnd=g¢,

then X is paracompact.

PrROOF. By (together with Lemma 2.1)), it is sufficient to show
that X has the property P(1+1) for each infinite regular cardinal 1. Let @/ =
{Usl@€a+1} be a (2+1)-increasing open cover of X, and let us construct a (1+1, @)-
increasing open indexed refinement C{V of ¢J. Since 2 is a limit ordinal, the sub-
collection U’={U,|la€a} of U is a i-increasing open cover of X. By assumption,
there exists a perfectly open set G of XX Y such that XX C(¢J’)cG and GNnd=¢.
Put

Cﬂzﬁo Cly(X—U;) for aea+l,

then {C.lae2+1} is a decreasing sequence of closed sets of Y. Moreover, C;= nﬂC
for each limit ordinal 8ei+1. By definition, we have a sequence {G.|#e€w} of open
sets of XX Y such that G= U G, and G, Gnp., for each new. In particular, XxC,

n€w

=XXUU’)C U Gn. Therefore, by Lemma 31, the collection CV={V, n|aei+1,

ne€w

new}, defined by
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Vin={zeX|{x}xC.,CGy} for aei+l,nco,

is a (141, @)-increasing open cover of X. It remains only to see that {7 is an

indexed refinement of ¢J. To do this, assume that there is a point z in X such

that x€ Vay.n, and 2¢U,, for some a,€i+1 and some #n,€w. Then x¢U; for each

p<ao, and so xeﬁg Cly(X— Us)=C.,. Since x€ V., n, We have {} X Coyc G G. Hence
ag

(z,z)eG. This is contradictory to GN4=¢. Therefore V. .CU. for each aei+1
and new; that is, €17 is an indexed refinement of ¢J. Thus the proof is completed.

CoROLLARY 3.3. Let X be a subspace of a compact Hausdorff space Y. If, for
each closed set C of Y with CNX=¢, there exists a perfectly open set G of the pro-
duct XXY such that

XxCcG, GNnd=¢,

then X is paracompact.

CoRroLLARY 3.4 (Morita [9]). Let X be a subspace of a compact Hausdorff space
Y. If the product XX Y is normal, then X is paracompact.

The converse of is true by Dieudonné [3]; consequently the con-
verses of [Theorem 3.2 and [Corollary 3.3 are also true.

Next we give a characterization for the property P(1+1). For an ordinal 4,
we denote by W (1) the set i={a|a< 2} topologized with the order topology. As is
well-known, W(1+1) is a compact Hausdorff space for each ordinal 2.

THEOREM 3.5. A space X has the property P(A+1) if and only if, for each open
set H of XX W(+1) containing X X {2}, there exists a perfectly open set G of XX
W(+1) such that

Xx{AlcGcH.
Proor. To apply to the proof of the theorem, first, we define sub-
sets C,,ael+1, of W(Q+1) by
C.={pla<p<i}.

Then the collection {C.|aei+1} is a decreasing sequence of closed sets of W(i+1)
such that C;= OﬁCa for each limit ordinal Bei+1. In particular, C;={a}.

Necessity: Assume that X is a P(1+1)-space, and let H be an open set of
XX W(2+1) such that Xx{a}jcH. If we put

U.={zeX|{z}xC,cH} for aei+l,

then the collection qJ ={U.,|aea+1} is a (1+1)-increasing open cover of X; this is
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more briefly proved than Lemma 3.1. By assumption, 9/ has a (1+1, @)-increasing
open indexed refinement {V,..laei+1,ncw). Let us put

Grn= U (VaaXC,) for new.

a€i+1
Since Upa= U V..n for each limit 8ei+1, we have
a<p

an U (Va.'nxca))

a€(A+1)*

where (1+1)*={a€i+1|a is a non-limit ordinal}. In case that « is a non-limit or-
dinal, C, is open in W(1+1). Hence G, is open in XX W(A+1) for each new. To
see that G,CGnyy for new, let (z,a)eGn. For the nonce, we shall prove zeV,. ,.
Since O(a)={8|g<a} is an open neighborhood of « in W(i+1), for an arbitrary
neighborhood N(z) of z, N(z)XO(a)NGa.x¢. Hence there exists an element pea+1
such that (N(z) XO(@)N (Vi nXCp)x ¢, e, N@)N Vi ¢ and O(a)NCs = ¢. From
the definitions of O(a) and Cs;, we have f<a. Consequently, N(z)N Vi.n = ¢, and
hence z€V.n Then (2,0)e€V. 2 XCoC Vans1 XCaCGnyr. This verifies GrnCGn.i.
Therefore, if we put G= U G,, then G is a perfectly open set of Xx W(Q+1). It
is easily seen that X><{Z}nc€chH.

Sufficiency: Let U ={U.|ae€2+1} be a (1+1)-increasing open cover of X. We
put

H= U (U.xC,).

a€i+1

Then, as well as G, above, H is open is XX W(1+1), since Uﬁ=n96 U, for each limit
Be2+1. Obviously, Xx{2}c H. Therefore, by assumption, we have a perfectly open
set G of XX W(a+1) satisfying XX {l}cGc H, and so we have a sequence {G,|new)
of open sets of XX W(a+1) such that XxX{i}c U G,CH and G,CGn,, for new. By

ne€w

emma 3.1, if we define V, ,={zxe X|{x} xC.,cG,} for aei+1 and #new, then the col-
lection CU={V, nla€i+1,new} is a (2+1, @)-increasing open cover of X. To see
that ¢/ is an indexed refinement of ¢J, let x€ V.., for aei+1,new. Then (z,a)e
{z} XC.cGnCH, and hence (x,a)e U;XC; for some Bei+1. By aeC; we have f<a,
and consequently xe Usc U,. This prove that V, ,c U, for aei+1 and zew, and
so €1 is an indexed refinement of ¢J. Therefore X is a P(1+1)-space.

The proof of is completed.

Let ¢ be an infinite cardinal, and let 2 be an arbitrary ordinal with 2<g. Then
W(u+1) contains W(a+1) as a closed subspace. Consequently, if XX W(u+1) is
normal, then XX W(2+41) is normal. Therefore the following corollary is a direct
consequence of Theorems I.2 and (together with [Lemma 2.1)).

CoroLLARY 3.6 (K. Kunen). Let p be an infinite cardinal. If the product Xx
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W(n+1) of a space X with W (pn+1) is normal, then X is p-paracompact and normal.
The converse of [Corollary 3.6 is also true by Morita [9, Theorem 2.2].

4. Application (II). Let X be a normal space and Y be a compact Hausdorff
space. As for the normality of the product XX Y, the following result is well-known :

(A) If X is w(Y )-paracompact, then XX Y is normal (Morita [9]).

Here w(Y') is the weight of Y. Recently, in [6], the author introduced a car-
dinal function » such that »(Y)<w(Y), and he obtained a result which covers the
above result (A); namely,

(B) if X is o(Y )-paracompact and w(Y)-collectionwise normal, then XX Y is
normal.

While, as a necessary condition, there is the following remarkable result:

(C) If XXY is normal, then X is w(Y )-collectionwise normal (Rudin [12], or
Morita and Hoshina [10]).

In this section we shall give another necessary condition for the normality of
XxY.

Let 2 be an infinite cardinal. According to Arhangel’skii [T], a well-ordered set
{y.|a€i} consisting of points of a space Y is said to be a free sequence of length i
in Y, if {ys|p<a}nN{ysla<pl=¢ for each aei. Let 2 and x be two infinite cardinals
such that a<p. If Y contains a free sequence of length y, then Y contains that
of length 1; indeed, the subset {y.|a€d} of a free sequence {y.|aep} of length y in
Y is obviously a free sequence of length 2 in Y.

THEOREM 4.1. Let p be an infinite cardinal, and let Y be a compact Hausdorff
space in which theve exists a free sequence of length p. If the product XX Y of a
space X with Y is normal, then X is p-paracompact.

Proor. Let 2 be an arbitrarily fixed infinite cardinal with 1<yp. Let {y.lae}
be a free sequence of length 1 in Y; Y contains a free sequence of length 2, since
it contains a free sequence of length p. For each aei+1, we define

Ca:ﬂp {yrlﬂST} ’ D.= Y—{’yﬁlﬁ<a} .
Then thé€ collection {C,|a€i+1} (resp. {D.lae2+41}) is a decreasing sequence of closed
(resp. open) sets of Y. Moreover, C;= N C, for each limit ordinal gei+1.
a<p

Now, to prove that X has the property P(2), let J ={U.|la€2} be a 2-increasing
open cover of X. Put

H= U (U.XD.),

a€d

then H is an open set of XX Y. For each aci, we have
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C:cCo={ysla<pic Y—{ys|p<a}=D, .

Hence XxC,c H, because {U,laca} is a cover of X. From the assumption of the
normality of XX Y, we have a sequence {G,|new} of open sets of XX Y such that

XxC,cGocGoycGiC - CGreGrcGracCcH.
Define
Ven={ze X|{x}xC,CcGn} for aei+l,necw,

then, by Cemma 3.1, the collection €+ ={V, n|la€i+1,new} is a (1+1, @)-increasing
open cover of X. Since 2 is a limit ordinal, the subcollection CV={V,, »laci, necw}
of C1V+ is a cover of X, so that C{V is a (1, @)-increasing open cover of X. It re-
mains to prove that C{’ is an indexed refinement of ¢J. To do this, let xe V,,» for
aed and new. Then {x}xXC,cG,cH. From the definition of C,, we have y.,€C,,
and so (x,y.)eH. Hence (x,y.)e U; X D; for some fei. From the definition of D,
and the fact y,eD; we obtain f<a. Hence xe Usc U.. This prove that C{/ is an
indexed refinement of ¢J. Hence X is a P(A)-space.

Thus it is proved that X has the property P(A2) for each infinite (regular) car-
dinal A<, Therefore, by X is p-paracompact.

ReMARK. [Corollary 3.6 is also a corollary to [Theorem 4.1, since the space

W(p+1) contains a free sequence of length p.

Lemma 4.2 (Arhangel’skii [1]). For a non-discreate compact Hausdorff space Y,
HY )=sup {2|there is a free sequence of length A in Y} .

Let ¢ be an infinite cardinal. A space X is said to be p-paracompact, if each
open cover with cardinality <¢ has a locally finite open refinement. Obviously,
p-paracompactness (in the usual sence) is equivalent to (p'")~-paracompactness, where
¢+ denotes the cardinal successor of y; that is, 4+ is the smallest cadinal greater
than g It is also obvious that X is pg~-paracompact if and only if X is A-paracom-
pact for each infinite cardinal A<[y.

LEmMA 4.3. If an infinite cardinal p is singular (=non-regular), then
p-paracompact & p~-paracompact .

This follows from [Lemma 2.10.

Let Y be a non-discrete compact Hausdorff space. Temporarily, we say that
Y has the property (*), if it satisfies either one of the following two conditions:

(*); There exists max {i|there is a free sequence of length 2 in Y }.

(). #Y) is singular.
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LEmMA 4.4. Let Y be a non-discrete compact Hausdorff space. If HY) is not
weakly inaccessible, then Y has the property (*).

Proor. Each non-discrete compact Hausdorff space contains at least a free
sequence of length . Hence, in case #Y)=w, by Y satisfies the con-
dition (*); so that it has the property (*). If #Y) has the cardinal predecessor y,
ie., #(Y)=p", then it is obvious from that Y satisfies (*); and hence Y
has the property (*). Of course, in case that #Y) is singular, Y has the property
(*). Therefore, in case that #(Y) is not weakly inaccessible, Y has always the pro-
perty (*).

THEOREM 4.5. Let Y be a non-discrete compact Hausdovff space. If the product
XX Y of a space X with Y is normal, then X is t(Y )~-paracompact. If, furthermore,
Y has the property (*), then X is t(Y )-paracompact.

Proor. By for each infinite cardinal p<#(Y'), there exists a free
sequence of length g in Y. Therefore, by [Theorem 4., X is p-paracompact, and
hence X is #(Y ) -paracompact. Consequently, if #Y) is singular, X is #( Y )-para-
compact by On the other hand, in case that Y satisfies the condition
(*)1, #(Y)=max {2|there is a free sequence of length 1 in Y} by Hence
Y contains a free sequence of length #Y ), and so X is # Y )-paracompact by
4.1. In either case, X is #(Y )-paracompact when Y has the property (*).

CoROLLARY 4.6. Let Y be a non-discrete compact Hausdorff space such that
tY) is not weakly inaccessible. If XX Y is normal, then X is t(Y )-paracompact.

As is well-known, the space W (p*) is not p*-paracompact ; indeed, the open cover
{O(a)|aept}), where O(a)={p|f<a}, of W(u*) has no locally finite open refinements.
Therefore we have

CoroLLARY 4.7 (Nogura [11]). Let p be an infinite cardinal, and let Y be a
non-discrete compact Hausdorff space. If W(put)XY is normal, then (Y )<p.

The converse of holds ([11]).

THEOREM 4.8. Let X be a normal space and let Y be a mnon-discrete compact
Hausdorff space with the property (*).

(@) In case t(Y)=w(Y), the product XX Y is normal if and only if X is (Y )-
paracompact.

(b) In case HY )=v(Y), XX Y is normal if and only if X is {(Y )-paracompact
and w(Y )-collectionwise normal.
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Proor. (a) (resp. (b)) follows from [Theorem 4.5 together with (A) (resp. (B)
and (C)) above-mentioned.

COROLLARY 4.9. Let X be a normal space and let Y be a non-discrete dyadic
compact Hausdorff space with the property (*). Then the product XX Y is normal
if and only if X is Y )-paracompact.

Proor. By [2], #{Y)=w(Y) for each non-discrete dyadic compact Hausdorff
space Y. Therefore the corollary follows immediately from [Theorem 4.8

The following example shows that or the latter part of
4.5 is not necessarily true if we omit the property (*) from Y.

ExampLE 4.10. Assume that p be a weakly inaccessible cardinal. Let X be
the space W(u), and let Y be the one-point compactification of the topological sum
of disjoint spaces Y,’s where A runs over all infinite cardinals less than p and Y,
is the space (homeomorphic to) W(i+1) for each . Then we have the following
facts:

(a) X is a collectionwise normal space which is p~-paracompact (more strongly,
p~-compact) but not p-paracompact.

(b) Y is a compact Hausdorff space with #( Y )=w(Y)=p.

(¢) XXY is normal.

From the assumption that g is wekly inaccessible, we have

(i) ofw=r>o,

(ii) p=sup{4|2 is an infinite cardinal less than p}.

(i) and (ii) are respectively essential for (a) and (b); (c) is a special case of the fol-
lowing proposition :

ProPOSITION 4.11. Let v be an infinite cardinal. Let X be a countably para-
compact v-collectionwise normal space and Y be the one-point compactification of the
topological sum of disjoint compact Hausdorff spaces Y.,acv. If XXY, is normal
for each acy, then XX Y is normal.

The proof of [Proposition 4.11] is analogous to that of [6, Proposition 3.4].
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