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SPACELIKE CONSTANT MEAN CURVATURE AND

MAXIMAL SURFACES IN 3-DIMENSIONAL DE SITTER

SPACE VIA IWASAWA SPLITTING

By

Yuta Ogata

Abstract. We study the construction of spacelike constant mean

curvature (CMC) surfaces with mean curvature 0aH < 1 in

3-dimensional de Sitter space S2;1, by using Iwasawa splitting. We

also study their singularities and create some criteria for them.

1. Introduction

We can construct CMC H ¼ 0 (minimal) surfaces in the 3-dimensional

Euclidean space R3 by using a famous integral formula involving a pair of

holomorphic functions satisfying certain conditions, called the Weierstrass rep-

resentation, and many examples of minimal surfaces have been constructed with

it. Dorfmeister, Pedit and Wu provided a generalization of the Weierstrass

representation formula ([5]), called the DPW method, for constructing CMC

H0 0 surfaces in R3, using holomorphic data satisfying certain conditions and a

matrix loop splitting called the Iwasawa splitting. In other works ([4], [14], etc),

Dorfmeister, Inoguchi, Kobayashi, Kilian, Rossman and Schmitt also constructed

new examples of CMC surfaces in the 3-dimensional sphere S3 and hyperbolic

space H3 (non-Euclidean positive definite spaceforms) via the DPW method. In

[3], Brander, Rossman and Schmitt constructed spacelike CMC surfaces in the

3-dimensional Minkowski space R2;1. In [6] and [7], Fujioka and Inoguchi studied

spacelike and timelike harmonic inverse mean curvature surfaces in R2;1, de Sitter

3-space S2;1 and anti-de Sitter 3-space H2;1, including spacelike CMC surfaces,

by using Lax systems. In our previous work [12], we studied spacelike CMC

surfaces in R2;1, S2;1 and H2;1, and created criteria for singularities on these
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surfaces, by using the frame-change method, called the s-spectral deformation.

However, in [12] we omitted the case of spacelike CMC H surfaces with

0aH < 1 in S2;1 because the Lax pair and Iwasawa splitting are quite di¤erent

from the case of H > 1. On the other hand, in the appendix of [4] (arXiv

version), spacelike CMC H surfaces with 0aH < 1 in the de Sitter space S2;1

with no umbilics are considered by using the normal vector of the parallel sur-

faces of CMC H surfaces with 0aH < 1 in H3. See Proposition 2.2 in the

present paper.

In the present paper, rather, to allow for umbilics as one of the reasons,

we give a DPW method for spacelike CMC H surfaces with 0aH < 1 in

S2;1 by using Iwasawa splitting. (See Theorems 3.1, 4.1 and 4.2.) We also

study the singularities of these surfaces, and specify types of singularities,

focusing on the asymptotic behavior of Iwasawa splitting and using the

s-spectral deformation. (See Theorems 5.1, 6.3.) In particular we look at

singularities of Smyth-type surfaces with 0aH < 1 in S2;1. The data for

Smyth-type surfaces with 0aH < 1 in H3 was given by Dorfmeister,

Inoguchi and Kobayashi in [4]—however, in that H3 case the Iwasawa splitting

is more easily extendable beyond the Iwasawa core, and so singularities do

not appear on these surfaces. Here instead we go to the S2;1 case to examine

singularities.

This paper has seven sections. Section 2 explains Lax pairs and the immer-

sion formula as in [6]. In Section 3, we prove the existence and uniqueness

of LSL2ðCÞt-Iwasawa splitting. In Section 4, we apply the DPW method for

spacelike CMC H surfaces with 0aH < 1 in S2;1, and in Section 5 we consider

the behavior of the frames and surfaces when approaching the LSL2ðCÞt-
Iwasawa small cell P. In Section 6, we introduce criteria of singularities on these

surfaces, including cuspidal edges, swallowtails and cuspidal cross caps, and in

the last Section 7 we introduced Smyth-type surfaces with umbilics and singu-

larities. Here, we show this Smyth-type surfaces have three types of singularities,

i.e. cuspidal edges, swallowtails and cuspidal cross caps (See Theorem 7.2 and

Figure 1 below).

2. The Lax Pair in S2;1

2.1. The 3-Dimensional De Sitter Space. Let R3;1 be the Cartesian 4-space

with metric hðx1; x2; x3; x4Þ; ðy1; y2; y3; y4Þi :¼ x1 y1 þ x2 y2 þ x3 y3 � x4 y4. We de-

fine the 3-dimensional de Sitter space as the hyperquadric S2;1 :¼ fx j hx; xi ¼ 1g
HR3;1.
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Let S be a simply-connected domain in C with the usual complex coordinate

w ¼ xþ iy. Let f : S ! S2;1 be a conformally immersed spacelike surface. Since

f is conformal,

h fw; fwi ¼ h fw; fwi ¼ 0; h fw; fwi ¼ 2e2u

for some function u : S ! R. For the unit normal vector field N of f satisfying

hN;Ni ¼ �1, h fw;Ni ¼ h fw;Ni ¼ 0, we define the mean curvature H and Hopf

di¤erential A dw2 as follows:

H :¼ 1

2e2u
h fww;Ni; A :¼ h fww;Ni:

The Gauss-Codazzi equations are of the following form in the CMC cases:

2uww � 2e2uðH 2 � 1Þ þ 1

2
AAe�2u ¼ 0; Aw ¼ 0:ð2:1Þ

The Codazzi equation in (2.1) is equivalent to the Hopf di¤erential A being

holomorphic, and (2.1) is invariant under the deformation A 7! m�2A for m A S1.

When f ðx; yÞ is a spacelike CMC in S2;1, the spectral parameter m A S1 allows

us to create a 1-parameter family of CMC surfaces f m ¼ f ðx; y; mÞ associated to

f ðx; yÞ.

2.2. The 2� 2 Matrix Model of S2;1. We identify R3;1 with the space

fX A M2�2 jX ¼ X tg of all 2 by 2 Hermitian matrices as follows:

R3;1 C x ¼ ðx1; x2; x3; x4Þ 7!
x4 þ x3 x1 � ix2

x1 þ ix2 x4 � x3

� �
:ð2:2Þ

The metric becomes, under this identification, hX ;Yi ¼ � 1
2 traceðXs2Y

ts2Þ. In
particular, hX ;Xi ¼ �detðX Þ, and we can identify S2;1 with

fX A M2�2 jX ¼ X t; detðX Þ ¼ �1g ¼ fFs3F t jF A SL2ðCÞg:

Figure 1: Maximal 2-legged, 3-legged and 6-legged Smyth-type surfaces (left to right).
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Let f be a conformal spacelike CMC surface in S2;1 with associated family

f m, and let the identity matrix and Pauli matrices be as follows:

I :¼ 1 0

0 1

� �
; s1 :¼

0 1

1 0

� �
; s2 :¼

0 �i

i 0

� �
; s3 :¼

1 0

0 �1

� �
:

Then fI ; s1; s2; s3g is an orthogonal basis for R3;1: We can define

f m :¼ F̂Fs3F̂F
t; e1 :¼

f m
x

j f m
x j

¼ f m
x

2eu
¼ F̂Fs1F̂F

t; e2 :¼
f m
y

j f m
y j

¼
f m
y

2eu
¼ F̂Fs2F̂F

t; N :¼ F̂F F̂F t

for F̂F ¼ F̂F ðw; w; mÞ A SL2ðCÞ. For this F̂F , we get the untwisted 2� 2 Lax pair in

S2;1 as follows:

F̂Fw ¼ F̂F ŜS; F̂Fw ¼ F̂F T̂T ; where ŜS ¼ 1

2

�uw �m�2Ae�u

2ð1�HÞeu uw

� �
;ð2:3Þ

T̂T ¼ 1

2

uw �2ð1þHÞeu
�m2Ae�u �uw

� �
:

We change the ‘‘untwisted’’ setting to the ‘‘twisted’’ setting by the following

transformation (2.4). Let ~FF be defined by

F̂F ¼ �s3ð ~FF �1Þ t
ffiffiffi
m

p
0

0 1ffiffi
m

p

 !
s3;ð2:4Þ

producing the twisted 2� 2 Lax pair of f m in S2;1,

~FFw ¼ ~FF ~SS; ~FFw ¼ ~FF ~TT ; where ~SS ¼ 1

2

uw 2m�1ð1�HÞeu
�m�1Ae�u �uw

� �
;ð2:5Þ

~TT ¼ 1

2

�uw �mAe�u

�2mð1þHÞeu uw

� �
:

Now we consider 0aH < 1 case, and we set H :¼ tanhð�qÞ for qa 0. We

change ~FF to a new frame F , as follows:

F ¼ ~FF
eq=4 0

0 e�q=4

� �
:

We call this F the extended frame of spacelike CMC H surfaces with 0aH < 1.

Moreover we set

H :¼ �ie�qð1�HÞ ¼ �ieqð1þHÞ A iR; Q :¼ �iA; n :¼ e�q=2m;ð2:6Þ

and we have the following:
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Fw ¼ FU ; Fw ¼ FV ; where U ¼ 1

2

uw 2in�1Heu

�in�1Qe�u �uw

� �
;ð2:7Þ

V ¼ 1

2

�uw inQe�u

�2inHeu uw

� �
:

We call (2.7) the extended Lax pair, and F ¼ Fðw; w; nÞ is in the following loop

group

LSL2ðCÞt ¼ fF ðlÞ A M2�2 jF : S1 �!Cy

SL2ðCÞ;Fð�lÞ ¼ s3FðlÞs3;ð2:8Þ

tðF ðlÞÞ ¼ FðlÞg;

where tðF ðlÞÞ :¼ Ad
eðp=4Þi 0

0 e�ðp=4Þi

� �� �
� ðF ðil�1Þ tÞ�1. For simplicity, we set

R ¼ e�ðp=4Þi 0

0 eðp=4Þi

� �
as in [4] and the symbol * is defined by F �ðlÞ :¼

ðFðil�1Þ tÞ�1, and we can rewrite tðF ðlÞÞ ¼ AdðR�1ÞF �ðlÞ.
The following Proposition 2.1 gives us a method for determining spacelike

CMC H surfaces with 0aH < 1 in S2;1, from given data u and A.

Proposition 2.1 (The immersion formula for spacelike CMC H surfaces with

0aH < 1 in S2;1). Let S be a simply-connected domain in C. Let u and A solve

(2.1). Set Q ¼ �iA and H :¼ �ie�qð1� tanhð�qÞÞ for qa 0. Let F ¼ F ðw; w; nÞ
A LSL2ðCÞt be a solution of the system (2.7). Set F0 ¼ F jn¼e�q=2 . We define the

following immersion formulas

f ¼ F0
e�ð1=2Þq 0

0 �eð1=2Þq

� �
F0

t; N ¼ F0
�e�ð1=2Þq 0

0 �eð1=2Þq

� �
F0

t:ð2:9Þ

Then, f is a spacelike CMC H ¼ tanhð�qÞ surface in S2;1 with unit

normal N.

Proof. Applying a frame change in Theorem 8.5 in [6], we can prove this

proposition. We can also prove it by the same argument as in the proof of

Proposition 4.1 in [4]. So we omit the proof. r

By the above Proposition 2.1, we can construct all simply-connected spacelike

CMC H surfaces with 0aH < 1. However, here we also have the following

proposition in Appendix E of [4], and it says that spacelike CMC H surfaces with

0aH < 1 with no umbilics can be constructed as the normal vector of parallel
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transformation of CMC H surfaces with 0aH < 1 in the 3-dimensional hyper-

bolic space H3. In this proposition, we need the following extended Lax pair for

CMC H surfaces with 0aH < 1 in H3:

ðFH3Þw ¼ FH3UH3 ; ðFH3Þw ¼ FH3VH3 ; where

UH3 ¼ 1

2

ðuH3Þw �2n�1HH3euH3

n�1QH3e�u
H3 �ðuH3Þw

� �
;

VH3 ¼ 1

2

�ðuH3Þw �nQH3e�u
H3

2nHH3euH3 ðuH3Þw

� �
;

where uH3 is the metric function for ds2 ¼ 4e2uH3 dwdw, and HH3 ¼
ie�qð1�HH3Þ for mean curvature HH3 ¼ tanhð�qÞ, and QH3 ¼ iAH3 for Hopf

di¤erential AH3 .

Proposition 2.2 ([4]). Let S be a simply-connected domain in C. Let FH3 be

the extended frame of some CMC 0aHH3 ¼ tanhð�qÞ < 1 surface fH3ðw; wÞ in

H3 with unit normal NH3 . Set ðFH3Þ0 ¼ ðFH3Þjn¼e�q=2 for q < 0. Then, by changing

parameter such that z ¼ iw,

f ðz; zÞ ¼ sinhð�qÞ fH3 þ coshð�qÞNH3ð2:10Þ

¼ ðFH3Þ0
�eð1=2Þq 0

0 e�ð1=2Þq

� �
ðFH3Þ0 t

is a spacelike CMC H ¼ tanhð�qÞ surface in S2;1, and ds2 ¼
e�2u

H3 cosh2ð�qÞjAH3 j2 dzdz, A ¼ AH3 .

3. Iwasawa Splitting for LSL2ðCÞt

In this section, we introduce the Birkho¤ splitting and prove the existence

and uniqueness of the (twisted ) LSL2ðCÞt-Iwasawa splitting, by using the Birkho¤

splitting. First we define the notations for loop groups and algebras.

Definition 3.1.

LSL2ðCÞ ¼ ff : S1 �!C
y

SL2ðCÞ j fð�lÞ ¼ s3fðlÞs3g;

Lsl2ðCÞ ¼ fA : S1 �!C
y

sl2ðCÞ jAð�lÞ ¼ s3AðlÞs3g;

Lþ
4SL2ðCÞ ¼ fBþðlÞ A LSL2ðCÞ jBþ extends holomorphically to D:g;
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L�
4SL2ðCÞ ¼ fB�ðlÞ A LSL2ðCÞ jB� extends holomorphically to CU fygnD:g;

Lþ
RSL2ðCÞ ¼ BþðlÞ A Lþ

4SL2ðCÞ jBþð0Þ ¼
r 0

0 r�1

� �
for r A R; r > 0:

� �
;

where S1 ¼ fl A CU fyg j ll ¼ 1g, D ¼ fl A CU fyg j ll < 1g. We can also

define LGL2ðCÞ, etc., in a similar way.

Here we introduce the twisted version of the Birkho¤ splitting as follows:

Proposition 3.1 ([13]). For all f A LGL2ðCÞ, there exist fþ A LþGL2ðCÞ,
f� A L�GL2ðCÞ and a1; a2 A Z such that

f ¼ f�
l2a1 0

0 l2a2

� �
fþ:ð3:1Þ

The middle term is uniquely determined by f, and the big cell B, where a1 ¼
a2 ¼ 0, is an open dense subset in LGL2ðCÞ. When f A B, we have a unique

splitting such that fþ A Lþ
I GL2ðCÞ, f� A L�GL2ðCÞ.

We also introduce the specialized version of the Birkho¤ splitting for

LSL2ðCÞ, as in [3].

Proposition 3.2 (the specialized version of the Birkho¤ splitting [3]). For all

f A LSL2ðCÞ, there exist Bþ A Lþ
4SL2ðCÞ, B� A L�

4SL2ðCÞ and k A Z such that

f ¼ B�MBþ;ð3:2Þ

where either

M ¼ l2k 0

0 l�2k

� �
; or M ¼ 0 l2kþ1

�l�2k�1 0

� �
:ð3:3Þ

Remark 3.1 ([3]).

(1) The factor M is uniquely determined by f. For f A B, where k ¼ 0, there

is a unique splitting f ¼ B�Bþ with B� A L�
4SL2ðCÞ, Bþ A Lþ

I SL2ðCÞ, with

M ¼ I .

(2) For the LSL2ðCÞt-Iwasawa splitting, we define

P ¼ f A LSL2ðCÞ jM of the Birkho¤ splitting of f is
0 l

�l�1 0

� �� �
;

and we call this P the Birkho¤ first small cell.
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In order to prove the LSL2ðCÞt-Iwasawa splitting, we need some definitions

and lemmas.

Definition 3.2 (operator t). For fðlÞ A LSL2ðCÞ, we define an operator

t by

tðfðlÞÞ :¼ R�1ðfðil�1Þ tÞ�1
R for R ¼ e�ðp=4Þi 0

0 eðp=4Þi

� �
:

Remark 3.2. For f A LSL2ðCÞ, the following two statements hold:
� tðtðfðlÞÞÞ ¼ s3fð�lÞs3 ¼ fðlÞ.
� tðfðlÞÞ ¼ fðlÞ for all l A S1 , fðlÞ A LSL2ðCÞt.
Thus, t is an automorphism on LSL2ðCÞt.

Lemma 3.1. Let c A LSL2ðCÞ such that ðtðcÞÞ�1 ¼ c. If c A BUP, then we

have

c ¼ tðBþÞ�1 � ðGIÞ � Bþ or c ¼ tðBþÞ�1 � 0 l

�l�1 0

� �
� Bþ for Bþ ALþ

4SL2ðCÞ:

However, if c B BUP, then we do not have

c ¼ tðBþÞ�1 � l2k 0

0 l�2k

� �
� Bþ or c ¼ tðBþÞ�1 � 0 l2kþ1

�l�2k�1 0

� �
� Bþ

for Bþ A Lþ
4SL2ðCÞ.

Proof. (i) Noting the result in Proposition 3.2, suppose

c ¼ B�
l2k 0

0 l�2k

� �
Bþ

for some Bþ A Lþ
4SL2ðCÞ and B� A L�

4SL2ðCÞ and some k A Z. By tðcÞ�1 ¼ c,

we have

d � tðBþ � tðB�ÞÞ�1 � �l�2k 0

0 �l2k

� �
¼ l2k 0

0 l�2k

� �
� Bþ � tðB�Þ

for d ¼ 1 (resp. �1) if k A 2Zþ 1 (resp. k A 2Z). Setting BðlÞ ¼ Bþ � tðB�Þ, this
equals

d � tðBðlÞÞ�1 � �l�2k 0

0 �l2k

� �
¼ l2k 0

0 l�2k

� �
� BðlÞ;ð3:4Þ
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Now we note that BðlÞ A Lþ
4SL2ðCÞ, and we let BðlÞ ¼ aðlÞ bðlÞ

cðlÞ dðlÞ

� �
. Then,

(3.4) equals

d � �l�2ka�ðlÞ �il2kc�ðlÞ
il�2kb�ðlÞ �l2kd �ðlÞ

 !
¼ l2kaðlÞ l2kbðlÞ

l�2kcðlÞ l�2kdðlÞ

� �
;ð3:5Þ

where a�ðlÞ ¼ aðil�1Þ.
If k > 0, then the upper-left component of (3.5) implies �da�ðlÞ ¼ l4kaðlÞ,

and this a has the power series expansion
Py

j¼0 ajl
j, where the aj do not depend

on l since BðlÞ A Lþ
4SL2ðCÞ. By these conditons, we know a1 0. Similarly, the

upper-right and lower-left component of (3.5) imply that

b; c : complex constants and dib ¼ c:

However, by the twisted property, we have b1 c1 0, and this contradicts

detðBðlÞÞ ¼ 1. Similarly, if k < 0, then we get the contradiction. Thus, we

conclude k ¼ 0.

By k ¼ 0, we have d ¼ �1, b1 c1 0, a A Rnf0g: constant, d ¼ a�1. Here we

notice that
ffiffiffi
a

p
is well-defined, and we get the following:

t

ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 ! !�1

¼
ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 !
if a > 0ð3:6Þ

t

ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 ! !�1

¼
�

ffiffiffi
a

p
0

0 �
ffiffiffi
a

p �1

 !
if a < 0:ð3:7Þ

Thus, we separately consider these cases to finish the case (i).

(i)-(1) If a > 0, then

B ¼ Bþ � tðB�Þ ¼
a 0

0 a�1

� �
for BG A LG

4SL2ðCÞ:

This implies that

ffiffiffi
a

p �1
0

0
ffiffiffi
a

p

 !
Bþ ¼ t B�

ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 ! !�1

.

Now let bþ :¼
ffiffiffi
a

p �1
0

0
ffiffiffi
a

p

 !
Bþ A Lþ

4SL2ðCÞ and b� :¼ B�

ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 !
A

L�
4SL2ðCÞ, then

c ¼ B�Bþ ¼ b�bþ ¼ tðbþÞ
�1 � bþ:
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(i)-(2) If a < 0, similarly we have

B ¼ Bþ � tðB�Þ ¼
a 0

0 a�1

� �
for BG A LG

4SL2ðCÞ:

Thus this implies that

ffiffiffi
a

p �1
0

0
ffiffiffi
a

p

 !
Bþ ¼ t B�

�
ffiffiffi
a

p
0

0 �
ffiffiffi
a

p �1

 ! !�1

. Now

let bþ :¼
ffiffiffi
a

p �1
0

0
ffiffiffi
a

p

 !
Bþ A Lþ

4SL2ðCÞ and b� :¼ B�
�

ffiffiffi
a

p
0

0 �
ffiffiffi
a

p �1

 !
A

Lþ
4SL2ðCÞ, then

c ¼ B�Bþ ¼ b�ð�IÞbþ ¼ tðbþÞ
�1ð�IÞbþ:ð3:8Þ

This completes the proof of the case (i).

(ii) Again noting the result in Proposition 3.2, suppose

c ¼ B�
0 l2kþ1

�l�2k�1 0

� �
Bþ

for some Bþ A Lþ
4SL2ðCÞ and B� A L�

4SL2ðCÞ. By tðcÞ�1 ¼ c, we have

d � il�2k�1c�ðlÞ �l2kþ1a�ðlÞ
l�2k�1d �ðlÞ il2kþ1b�ðlÞ

 !
¼ l2kþ1cðlÞ l2kþ1dðlÞ

�l�2k�1aðlÞ �l�2k�1bðlÞ

� �
ð3:9Þ

for BðlÞ ¼ Bþ � tðB�Þ ¼
aðlÞ bðlÞ
cðlÞ dðlÞ

� �
. As in the case (i), by the form of the

power series expansion of bðlÞ and cðlÞ, we conclude

c1 0; bðlÞ ¼ b1l
1 þ b3l

3 þ � � � þ b4kþ1l
4kþ1;ð3:10Þ

�dil4kþ2b�ðlÞ ¼ bðlÞ if kb 0;

b1 0; cðlÞ ¼ c1l
1 þ c3l

3 þ � � � þ c�4k�3l
�4k�3;ð3:11Þ

dil�4k�2c�ðlÞ ¼ cðlÞ if k < 0:

Similarly, by the o¤-diagonal components of (3.9), we have

d ¼ �1ð, k A 2ZÞ; a A S1 : complex constant; d ¼ a�1:ð3:12Þ

Finally, we need to change Bþ and B� to bþ ¼ YBþ A Lþ
4SL2ðCÞ and b� ¼

B�X
�1 A L�

4SL2ðCÞ by using X A L�
4SL2ðCÞ and Y A Lþ

4SL2ðCÞ. To complete

the requirement, these matrices X and Y should satisfy the following condition:

B ¼ Y �1tðXÞð3:13Þ
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and

X �1 l2l 0

0 l�2l

� �
Y ¼ 0 l2kþ1

�l�2k�1 0

� �
orð3:14Þ

X �1 0 l2lþ1

�l�2l�1 0

� �
Y ¼ 0 l2kþ1

�l�2k�1 0

� �

for some l A Z. By direct computation with (3.10), (3.11), (3.12) and (3.13),

we know that the diagonal case in (3.14) does not occur for any k, and that the

o¤-diagonal case in (3.14) occurs only for k ¼ 0. For k ¼ 0, as in (i), we set

bþ :¼
ffiffiffi
a

p �1 � 1
2 b

ffiffiffi
a

p
l

0
ffiffiffi
a

p

 !
Bþ A Lþ

4SL2ðCÞ and b� :¼ B�

ffiffiffi
a

p �1
0

� 1
2 b

ffiffiffi
a

p
l�1 ffiffiffi

a
p

 !
A

L�
4SL2ðCÞ, then

c ¼ B�
0 l

�l�1 0

� �
Bþ ¼ b�

0 l

�l�1 0

� �
bþ ¼ tðbþÞ

�1 0 l

�l�1 0

� �
bþ:

This completes the proof of Lemma 3.1. r

Here we define the LSL2ðCÞt-Iwasawa big cell Bt and LSL2ðCÞt-Iwasawa
first small cell Pt.

Definition 3.3.

Bt ¼ ff A LSL2ðCÞ j tðfÞ�1f A Bg; Pt ¼ ff A LSL2ðCÞ j tðfÞ�1f A Pg:

We introduce one of the main theorems here, and this Theorem 3.1 plays an

important role in the next section about the DPW method, in order to construct

the solution of the extended Lax pair which was introduced in the previous

section. We will also study the asymptotic behavior of F near Pt related to

singularities of surfaces in the two latter sections. In Theorem 3.1, we use the

map

C
aðlÞ bðlÞ
cðlÞ dðlÞ

� �� �
¼ aðl2Þ lbðl2Þ

l�1cðl2Þ dðl2Þ

� �
:ð3:15Þ

Theorem 3.1 (LSL2ðCÞt-Iwasawa splitting).

(1) For all f A Bt, there exist F A LSL2ðCÞt UCðis2Þ �LSL2ðCÞt and B A

Lþ
4SL2ðCÞ such that

f ¼ FB:ð3:16Þ
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We can choose B A Lþ
RSL2ðCÞ, and then F and B are uniquely determined. We call

this unique splitting ‘‘normalized.’’

(2) For all f A Pt, there exist F A LSL2ðCÞt UCðis2Þ �LSL2ðCÞt and B A

Lþ
RSL2ðCÞ such that

f ¼ FCB; C ¼
1
2 l

� 1
2 l

�1 1

 !
:ð3:17Þ

Proof. Take any f A LSL2ðCÞ, and set c ¼ tðfÞ�1f. Then, we have

tðcÞ�1 ¼ c, thus we can apply Lemma 3.1 for this c. This implies that

c ¼ tðBþÞ�1tðWÞ�1
WBþ ¼ tðWBþÞ�1

WBþ

for W ¼ I or W ¼ 0 l

�l�1 0

� �
or W ¼

1
2 l

� 1
2 l

�1 1

 !
, and for some Bþ A

Lþ
4SL2ðCÞ. The first two cases occur when c A B (i:e: f A Bt), and the third case

occurs when c A P (i.e. f A Pt).

First we show that F̂F :¼ tðfÞtðWBþÞ�1 A LSL2ðCÞt. The twisted property is

automatically satisfied by definition, and we need to check tðF̂FÞ ¼ F̂F . However, it

is also clear because tðF̂FÞ ¼ F̂F is equivalent to f ¼ tðfÞtðWBþÞ�1
WBþ.

Next we will consider cases:

(i) The case W ¼ I , W A LSL2ðCÞt. We set F :¼ F̂FW A LSL2ðCÞt and B :¼
Bþ A Lþ

4SL2ðCÞ, and this is the required splitting. Moreover, about normaliza-

tion, we set

Bjl¼0 ¼
a 0

0 a�1

� �

for a A Cnf0g. Splitting to

a 0

0 a�1

� �
¼

ffiffi
a
a

p
0

0
ffiffi
a
a

q
0
@

1
A ffiffiffiffiffi

aa
p

0

0 1ffiffiffiffi
aa

p

 !
;

we notice that

ffiffi
a
a

p
0

0
ffiffi
a
a

q
0
@

1
A A LSL2ðCÞt, and that

ffiffiffiffiffi
aa

p
A R>0. Hence, we can

split to f ¼ F 0B 0 for F 0 :¼ F

ffiffi
a
a

p
0

0
ffiffi
a
a

q
0
@

1
A A LSL2ðCÞt and B 0 :¼

ffiffi
a
a

q
0

0
ffiffi
a
a

p
0
@

1
AB

A Lþ
RSL2ðCÞ. So the uniqueness of this splitting follows from uniqueness of the

Birkho¤ splitting on B.

(ii) The case W ¼ 0 l

�l�1 0

� �
, F̂FW A Cðis2Þ �LSL2ðCÞt. We can prove the

existence and normalization of splitting in the same way as in (i).
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(iii) The case W ¼
1
2 l

� 1
2 l

�1 1

 !
, we set F :¼ F̂F , C :¼ W and B :¼ Bþ,

and this is the required splitting. Moreover, about normalization, we set Bjl¼0 ¼
a 0

0 a�1

� �
for a A Cnf0g. Splitting to the same form as in (i), we have

C

ffiffi
a
a

p
0

0
ffiffi
a
a

q
0
@

1
A¼ 1

2

ffiffi
a
a

p
þ

ffiffi
a
a

q ffiffi
a
a

q
�

ffiffi
a
a

p� �
lffiffi

a
a

q
�

ffiffi
a
a

p� �
l�1 ffiffi

a
a

p
þ

ffiffi
a
a

q
0
B@

1
CAC;

and we notice that 1
2

ffiffi
a
a

p
þ

ffiffi
a
a

q ffiffi
a
a

q
�

ffiffi
a
a

p� �
lffiffi

a
a

q
�

ffiffi
a
a

p� �
l�1 ffiffi

a
a

p
þ

ffiffi
a
a

q
0
B@

1
CA A LSL2ðCÞt. Hence

we can split to f ¼ F 0CB 0 for F 0 :¼ F 1
2

ffiffi
a
a

p
þ

ffiffi
a
a

q ffiffi
a
a

q
�

ffiffi
a
a

p� �
lffiffi

a
a

q
�

ffiffi
a
a

p� �
l�1 ffiffi

a
a

p
þ

ffiffi
a
a

q
0
B@

1
CA A

LSL2ðCÞt and B 0 :¼

ffiffi
a
a

q
0

0
ffiffi
a
a

p
0
@

1
AB A Lþ

RSL2ðCÞ. r

Remark 3.3. Bt becomes an open dense subset of LSL2ðCÞ because we can

use the same argument as in the proof of Theorem 1.2 (4) in [3].

4. The DPW Method for Spacelike CMC H Surfaces

with 0aH < 1 in S2;1

4.1. Holomorphic Potential. Here we will show that all simply-connected

spacelike CMC H surfaces with 0aH < 1 in S2;1 are given by a holomorphic

potential, defined in Definition 4.1.

Definition 4.1 (holomorphic potential [3], [5]). Let S be a simply-connected

domain, z A S and l A C. A holomorphic potential x is of the form

x :¼ A dz; A ¼ Aðz; lÞ ¼
Xy
j¼�1

AjðzÞl j;ð4:1Þ

where each AjðzÞ is a 2� 2 matrix that is independent of l, is holomorphic in z A S,

is traceless, is a diagonal (resp. o¤-diagonal ) matrix when j is even (resp. odd ), and

the upper-right entry of A�1ðzÞ is never zero.

4.2. The Inverse Problem of the DPW Method. We will show that given

a holomorphic potential x, then we get a conformal spacelike CMC H surface
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f with 0aH < 1 in S2;1. However, in Theorem 4.1, we will see that finding

spacelike CMC H surfaces with 0aH < 1 is equivalent to finding the solution of

the extended Lax pair of the form (2.7), and then the surface is found by using

the immersion formula (2.9). So to prove that the DPW method finds all space-

like CMC H surfaces with 0aH < 1, we want to prove that the DPW method

produces all integrable Lax pairs of the form (2.7) and all their solutions F .

Theorem 4.1 (The inverse problem of the DPW method). Let x :¼ AðlÞ dz
¼
Py

j¼�1 AjðzÞl j dz be a holomorphic potential over a simply-connected domain S

in C including the origin, and let f : S ! LSL2ðCÞ be a solution of

df ¼ fx and fðzÞjz¼0 ¼ I :ð4:2Þ

Define the open set So :¼ f�1ðBtÞHS, and take the unique LSL2ðCÞt-Iwasawa
splitting on So:

f ¼ FB;ð4:3Þ

where

F A LSU2ðCÞt; B A Lþ
RSL2ðCÞ:ð4:4Þ

Then, after a change of coordinates and notations, F satisfies the extended Lax pair

in (2.7).

We can prove Theorem 4.1 in the same way as in [3], [4]. We omit the proof.

4.3. The Ordinary Problem of the DPW Method. We will consider the

converse of Theorem 4.1, in the same way as in [4].

Theorem 4.2 (The ordinary problem of the DPW method). Let f : S ! S2;1

be a spacelike CMC H surfaces with 0aH < 1 for simply-connected domain S,

and let F be the extended frame of f satisfying (2.7). Then, there exist f such that

f ¼ FB for some B A Lþ
4SL2ðCÞ and holomorphic potential x such that x ¼ f�1 df.

We can also prove Theorem 4.2 in the same way as in [3], [4]. Again we omit

the proof.

5. Behavior of the Frame and Surface When Approaching Pt

We have introduced LSL2ðCÞt-Iwasawa splitting and defined the LSL2ðCÞt-
Iwasawa big cell Bt and small cell Pt. In the previous section, we also showed
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that on S0 ¼ f�1ðBtÞ the surface f is immeresed since the metric function eu is

positive definite. However, here we will show that on f�1ðPtÞ f is not immersed,

since the metric function eu is approaching zero there.

First, we show the following lemma.

Lemma 5.1. Let B ¼ a b

c d

� �
¼

Py
j¼0 ajl

j Py
j¼1 bjl

jPy
j¼1 cjl

j Py
j¼0 djl

j

 !
A Lþ

4SL2ðCÞ, and

let C ¼
1
2 l

� 1
2 l

�1 1

 !
: Then, there exist three factorizations:

(1) If j2a0 þ b1j > jd0j, then

BC�1 ¼ K1
�BB; K1 :¼

u vl

vl�1 u

� �
A LSL2ðCÞt; �BB A Lþ

4SL2ðCÞ;

where u and v are constant in l, and determined by a, b, c, d.

(2) If j2a0 þ b1j < jd0j, then

BC�1 ¼ K2
�BB; K2 :¼

u vl

�vl�1 �u

� �
A Cðis2ÞLSL2ðCÞt; �BB A Lþ

4SL2ðCÞ;

where u and v are constant in l, and determined by a, b, c, d.

(3) If j2a0 þ b1j ¼ jd0j, then

BC�1 ¼ K3C �BB; K3 :¼
ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 !
A LSL2ðCÞt; �BB A Lþ

4SL2ðCÞ;

where a :¼ � 2a0þb1
d0

.

First two cases imply BC�1 A Bt, and third one implies that BC�1 A Pt.

Proof. By direct computation, we have the following results for the three

cases:

(1) K1 ¼
u vl

vl�1 u

� �
,

�BB ¼
au� cvlþ b

2 ul
�1 � d

2 v �aulþ cvl2 þ b
2 u� d

2 vl

�avl�1 þ cu� b
2 vl

�2 þ d
2 ul

�1 av� cul� b
2 vl

�1 þ d
2 u

 !
;

where u and v are the solutions of the following equations:

juj2 � jvj2 ¼ 1; 2ð2a0 þ b1Þv� d0u ¼ 0:

(2) K2 ¼
u vl

�vl�1 �u

� �
,

�BB ¼
�au� cvl� b

2 ul
�1 � d

2 v aulþ cvl2 � b
2 u� d

2 vl

avl�1 þ cuþ b
2 vl

�2 þ d
2 ul

�1 �av� culþ b
2 vl

�1 þ d
2 u

 !
;
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where u and v are the solutions of the following equations:

�juj2 þ jvj2 ¼ 1; 2ð2a0 þ b1Þvþ d0u ¼ 0:

(3) K3 ¼
ffiffiffi
a

p
0

0
ffiffiffi
a

p �1

 !
,

�BB ¼
ffiffiffiffiffi
2a

p
e�iy 0

0
ffiffiffiffiffi
2a

p
eiy

� �

�
au� cvlþ b

2 ul
�1 � d

2 v �aulþ cvl2 þ b
2 u� d

2 vl

avl�1 þ cuþ b
2 vl

�2 þ d
2 ul

�1 �av� culþ b
2 vl

�1 þ d
2 u

 !
;

where u ¼ affiffi
2

p e�iy and v ¼ 1ffiffi
2

p eiy. r

This is one of our main theorems:

Theorem 5.1. Let fn be a sequence in Bt, with limn!y fn ¼ f0 A Pt. Let

fn ¼ FnBn be a LSL2ðCÞt-Iwasawa splitting. Then,

(1) Writing Fn as

Fn ¼
xn yn

Giy�
n Gx�

n

� �
A LSL2ðCÞt UCðis2Þ �LSL2ðCÞt for x�

n :¼ xnðil�1Þ;

we have limn!yjxnj ¼ limn!yjynj ¼ y for all l.

(2) Writing the constant term of Bn with respect to l as

Bnjl¼0 ¼
rn 0

0 r�1
n

� �
;

we have limn!yjrnj ¼ 0. This implies that f has singularities on Pt, since the

metric function u is defined as u ¼ 2 logðrÞ (i.e. the metric ds2 ¼ 4e2u dwdw ! 0 if

n ! y).

Proof. (1) By LSL2ðCÞt-Iwasawa splitting in Theorem 3.1, we have f0 ¼
F0CB0. Expressing fn as

fn ¼ f̂fnCB0; f̂fn :¼ fnB
�1
0 C�1;

we have limn!y f̂fn ¼ F0. So, for su‰ciently large n, we have f̂fn A Bt. Thus, for

these n, f̂fn is LSL2ðCÞt-Iwasawa split into f̂fn ¼ F̂FnB̂Bn, and limn!y F̂Fn ¼ F0,

limn!y B̂Bn ¼ I . Applying Lemma 5.1 with l replacing �l, we have

fn ¼ F̂FnB̂BnCB0 ¼ F̂FnXn
�BBnB0;
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where Xn ¼ K1ð�lÞ or K2ð�lÞ. Thus, Xn ¼
un vnl

Gvnl
�1 Gun

� �
for un, vn:

constant in l. By the computaion in the proof of Lemma 5.1, we also

have

junj
jvnj

¼ j2âa0;n þ b̂b1;nj
jd̂d0;nj

;

where âa0;n, b̂b1;n, d̂d0;n are determined by the components of B̂Bn ¼Py
j¼0 âaj;nl

j Py
j¼1 b̂bj;nl

jPy
j¼1 ĉcj;nl

j Py
j¼0 d̂dj;nl

j

 !
. So

lim
n!y

b̂b1;n ¼ 0 and lim
n!y

âa0;n ¼ lim
n!y

d̂d0;n ¼ 1ð5:1Þ

because limn!y B̂Bn ¼ I . By (5.1) and junj2 � jvnj2 ¼G1, we get limn!yjunj ¼
limn!yjvnj ¼ limn!ykXnk ¼ y for some suitable matrix norm k � k. Now the

uniqueness of the LSL2ðCÞt-Iwasawa splitting says that

Fn ¼ F̂FnXnDn

for some diagonal matrix Dn which is constant in l. Then we have

kXnk ¼ kF̂F �1Fnka kF̂F �1k � kFnk;

so limn!ykF̂F �1k � kFnk ¼ limn!ykFnk ¼ y, since limn!ykF̂F �1k ¼ kF0k is finite.

Because jxnj2 � jynj2 ¼G1, we get the conclusion limn!yjxnj ¼ limn!yjynj
¼ y.

(2) In the same way as in the proof of (1), we get limn!yjr�1
n j ¼ y, by using

(5.1). r

6. Criteria for Singularities of Spacelike CMC H Surfaces with

0aH < 1 in S2;1

In this section, we study singularities of spacelike CMC H surfaces f with

0aH < 1 in S2;1, similarly to our previous work [12] of spacelike CMC H

surfaces with H > 1 in S2;1. We will use the frame-changing method, called

the s-spectral deformation, in order to specify the types of singularities. Here we

introduce criteria for cuspidal edges, swallowtails and cuspidal cross caps on

spacelike CMC H surfaces with 0aH < 1 in S2;1.

Let f : S ! S2;1 be a spacelike CMC immersion of a simply-connected

domain SHC, with the metric ds2 ¼ 4g2 dwdw ¼ 4e2u dwdw and unit normal
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vector N. First, we consider the frame F such that

f ¼ Fs3F
t;

Fw ¼ FA; Fw ¼ FB; where A ¼ 1

2

uw 2euð1�HÞ
�e�uA �uw

� �
;ð6:1Þ

B ¼ 1

2

�uw �e�uA

�2euð1þHÞ uw

� �
:

This F is related to ~FF in (2.5) such that F ¼ ~FF jm¼1. For this F, the compatibility

condition implies the Gauss and Codazzi equations (2.1). We define s-spectral

deformations as follows:

Definition 6.1. The s-spectral deformation of the spacelike CMC surface f

in S2;1 is the deformation defined by ð1þHÞ ! isð1þHÞ, ð1�HÞ ! is�1ð1�HÞ
in Equations (6.1) for the parameter s > 0.

The s-spectral deformation maps spacelike CMC surfaces to other spacelike

CMC surfaces conformally, as follows:

Theorem 6.1. For all s A R>0, the s-spectral deformation deforms a surface f

in S2;1, with mean curvature H, metric ds2 ¼ 4e2u dwdw and Hopf di¤erential A,

into a surface f s with mean curvature H s ¼ sð1þHÞ�s�1ð1�HÞ
sð1þHÞþs�1ð1�HÞ , metric 4e2u

s

dwdw ¼
4ðksÞ2e2u dwdw and Hopf di¤erential As ¼ �ik sA for ks ¼ sð1þHÞþs�1ð1�HÞ

2 .

Proof. Checking the Gauss-Weingarten equations for f s, we get the

conclusion. r

Lemma 6.1. ð f sÞ�1=s ¼ f .

Proof. Direct computation implies ðHsÞ�1=s ¼ H, ðksÞ�1=s ¼ � 1
k s ,

ðAsÞ�1=s ¼ A, ðusÞ�1=s ¼ u: r

We define the s-spectral Lax pair.

Definition 6.2 (s-spectral Lax pair). We define F s as a solution of the

following system:
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Fs
w ¼ FsAs; Fs

w ¼ FsB s; where As :¼ 1

2

uw 2euis�1ð1�HÞ
�e�uA �uw

� �
;

B s :¼ 1

2

�uw �e�uA

�2euisð1þHÞ uw

� �
:

Further, we define the form Ws :¼ ðFsÞ�1
dFs.

Theorem 6.2. For f given by the frame F, and mean curvature 0aH < 1,

there exists a member of the s-spectral deformation, for the special value

s ¼ s0 :¼
ffiffiffiffiffiffiffiffi
1�H
Hþ1

q
, that generates a frame ~FF ¼ F s0 A SU1;1 (defined in p. 3 of

[12], etc.).

Proof. It is easy to see that choosing s ¼ s0 :¼
ffiffiffiffiffiffiffiffi
1�H
Hþ1

q
gives the only de-

formation that makes the Maurer-Cartan form become an su1;1-valued form.

r

As s approaches s0, the mean curvature goes to infinity, and ~ff :¼ ~FFs3 ~FF
t

degenerates to a point, but there still exists a map ~FF from S to SU1;1 such that
~FF�1 d ~FF ¼ ~WW defined by the following (6.2).

Definition 6.3. We call ~FF : S ! SU1;1 the adjusted frame of F and the form
~WW ¼ ~FF�1 d ~FF the adjusted Maurer-Cartan form, where

~WW ¼ 1

2

uw �2ieu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H 2

p

�e�uA �uw

 !
dwþ 1

2

�uw �e�uA

�2ieu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H 2

p
uw

� �
dwð6:2Þ

¼: ~AA dwþ ~BB dw:

Remark 6.1. Defining G :¼ F � ~FF�1, we have Gs3G
t ¼ Fs3F

t ¼ f .

By the above remark, we can use a new frame G instead of F, to construct

the criteria for singularities of f .

We denote ~FF ¼ ~FFðw; wÞ ¼ e�u=2 u1 u2

u2 u1

� �
A SU1;1, where g ¼ eu is the metric

function of f , and ju1j2 � ju2j2 ¼ g. So we define h :¼ u2
u1
and o :¼ u21 . By Remark

6.1, we have f ¼ Fs3F
t ¼ Gs3G

t. Setting a :¼ ð1�HÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H 2

p
and b :¼

�ð1þHÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H 2

p
, we get
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ds2 :¼ 4g2 dwdw ¼ ð1� jhj2Þ2joj2 dwdw;

G�1 dG ¼ a
�h 1

�h2 h

� �
o dwþ b

h �h
2

1 �h

 !
o dw:

This implies that, wherever ds2 is finite, f has a singularity if and only if

h A S1 or o ¼ 0. However we consider only extended CMC surfaces f defined in

the following Definition 6.4.

Definition 6.4 ([16]). A CMC surface f restricted to the subdomain D ¼
fp A S j ds2 < yg is called an extended CMC surface if o, resp. h2o, is never zero

on D when jhj < y, resp. jhj ¼ y.

Remark 6.2. By this definition, any point p A S is singular only when

jhðpÞj ¼ 1. (See [16].)

We have the following criteria for singularities of spacelike extended CMC H

surfaces with 0aH < 1 in S2;1. The proof of Theorem 6.3 is parallel to the

proof of Theorem 7.5 in [12]. (See also [9], [16], [17].)

Theorem 6.3. Let S be a simply connected domain, and let f : S ! S2;1 be a

spacelike extended CMC H surface with 0aH < 1. Then:

(1) A point p A S is a singular point if and only if h A S1.

(2) f is a front at a singular point p A S if and only if Re A
h2o2

	 
��
p
0 0. If this is

the case, p is a non-degenerate singular point.

(3) f has a cuspidal edge at a singular point p A S if and only if

Re
A

h2o2

� �����
p

0 0 and Im
A

h2o2

� �����
p

0 0:

(4) f has a swallowtail at a singular point p A S if and only if

Re
A

h2o2

� �����
p

0 0; Im
A

h2o2

� �����
p

¼ 0

and

Re
A

ho

� �
Awho�Að2Aþ 2howÞ

h3o3

� �( )�����
p

0Re
A

ho

� �
�2Aow

h2o3

� �� �����
p

:
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(5) f has a cuspidal cross cap at a singular point p A S if and only if

Re
A

h2o2

� �����
p

¼ 0; Im
A

h2o2

� �����
p

0 0

and

Im
A

ho

� �
Awho�Að2Aþ 2howÞ

h3o3

� �( )�����
p

0 Im
A

ho

� �
�2Aow

h2o3

� �� �����
p

:

Proof. We can use the same argument as in the proof of Theorem 7.5 of

[12], which is the case of CMC H > 1. Then, we get the exactly the same claim

as Theorem 7.5 of [12], for example: ‘‘ f has a swallowtail at a singular point

p A S if and only if

Re
hw

h2o

� �����
p

0 0; Im
hw

h2o

� �����
p

¼ 0 and

Re
hw

h

� �
hw

h2o

� �
w

( )�����
p

0Re
hw

h

� �
hw

h2o

� �
w

� �����
p

:’’

However, we also have A ¼ �2hwo, Aw ¼ 0 and hwjp ¼ 0, since H is constant.

Applying these, we get the conclusion. r

7. Example: Smyth-Type Surfaces with 0aH < 1 in S2;1

and Their Singularities

7.1. Smyth Surfaces. Smyth studied a generalization of Delaunay surfaces

in R3, which are CMC surfaces with rotationally invariant metrics, in [15]. These

surfaces are called Smyth surfaces, and there are numerous studies about them.

For example, Bobenko and Its studied relationships between Smyth surfaces

and Painleve III equations in [1]. The DPW method was also applied to Smyth

surfaces in Riemannian spaceforms, in [1], [5]. In our previous work of [12], we

constructed the analogue of Smyth surfaces in R2;1, S2;1 and H2;1, and specified

the types of singularities they have. However, in [12] we omitted the case

of 0aH < 1 in S2;1 because the Iwasawa splitting given here becomes quite

di¤erent from the H > 1 case.

Here we will construct Smyth-type surfaces with 0aH < 1 in S2;1. In

Equation (7.3), we will notice that Smyth-type surfaces with 0aH < 1 in S2;1

have an umbilic point at the origin, thus Smyth-type surfaces can be constructed
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by applying only Proposition 2.1, not by Proposition 2.2. Hence, Smyth-type

surfaces with 0aH < 1 are good examples of applying the DPW method

introduced in this paper. We also identify the types of singularities on Smyth-type

surfaces, using the criteria in Section 6.

7.2. Reflective Symmetry of Smyth-Type Surfaces. Define

x ¼ l�1 0 1

cwk 0

� �
dw; c A C; w A S ¼ C;ð7:1Þ

and take a solution f such that df ¼ fx and fw¼0 ¼ I . Now we can assume

c A R>0 using a reparametrization of w and a rigid motion of f , as in [3].

The following Proposition 7.1 is proven in the same way as Theorem 8.2 in

[12].

Proposition 7.1. The surfaces f : f�1ðBtÞ ! S2;1, produced via the DPW

method, from x in (7.1), with fjw¼0 ¼ I and F0 ¼ F jl¼e�q=2 for q < 0, has reflective

symmetry with respect to k þ 2 geodesic planes that meet equiangularly along a

geodesic line.

7.3. The Gauss Equation of Smyth-Type Surfaces. Here we assume the

mean curvature is H ¼ i
2 for simplicity, and then we show that the metric of

Smyth-type surfaces is rotationally invariant.

Theorem 7.1. The Gauss equation (2.1) for a surface in S2;1 generated by x

in (7.1), with fjw¼0 ¼ I , is equivalent to a special case of the Painleve III equations,

and the metric function u is rotationally invariant.

Proof. When H ¼ i
2 , the Gauss equation is of the following form:

4uww þ e2u þ jQj2e�2u ¼ 0:ð7:2Þ

By the proof of Theorem 4.1, we have

Q ¼ �2H
b�1

a�1
¼ �icwk ði:e: A ¼ cwkÞ:ð7:3Þ

Set v :¼ u� 1
2 logjQj, and (7.2) is equivalent to

4vww þ 2jcj � jwjk coshð2vÞ ¼ 0:ð7:4Þ
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Using vww ¼ 1
4 q

2
r vþ 1

4r qrv for r :¼ jwj, (7.4) becomes

q2r vþ
1

r
qrvþ 2jcj � rk coshð2vÞ ¼ 0:ð7:5Þ

Next we set x :¼ 1
1þk

2

r1þk=2
ffiffiffiffiffi
jcj

p
, and (7.5) is equivalent to

q2xvþ
1

x
qxvþ 2 coshð2vÞ ¼ 0:ð7:6Þ

(7.6) is a special case of the Painleve III equation that is yxx ¼ 1
y
ðyxÞ2 � 1

x
yx �

1
x
ðay2 þ bÞ þ gy3 þ d

y
, for y ¼ ev, a ¼ b ¼ 0, g ¼ d ¼ �1. r

Using polar coordinates w ¼ reiy and setting g :¼ eu, the Gauss equation and

the suitable choice of the initial conditions are as follows:

g grr þ
gr

r

� �
� g2r þ c2r2k � 4H2g4 ¼ 0; gjr¼0 ¼ 1; grjr¼0 ¼ 0:ð7:7Þ

This solution g depends only on r, and some examples of g are seen in Figure 2.

The singular set Sð f Þ :¼ fðr; yÞ A C j gðrÞ ¼ 0g corresponding to this data of g is

seen in the right-side of Figure 2. As in Figure 3, Smyth-type surfaces with H ¼ i
2

in S2;1 arrive at the singular set Sð f Þ repeatedly before they diverge to infinity.

This phenomenon does not occur in the case of H > 1. (See [12].)

7.4. The Types of Singularities on Smyth-Type Surfaces. By numerical

calculation, we know that these Smyth surfaces have cuspidal edges, swallowtails

and cuspidal cross caps, using the criteria as in Section 6, see Figure 4.

Fact 7.1. There exist Smyth-type surfaces in S2;1 which have cuspidal edges,

swallowtails and cuspidal cross caps. (See Figures 4.)

Figure 2: The left image is a solution g of Equation (7.7), and the right image is the corresponding

singular set.
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Here we show, for the surfaces in Fact 7.1, that there are at least 2ðk þ 2Þ-
swallowtails, without relying on numerical calculation, and using only geometric

properties. Before doing that, we have a lemma.

Lemma 7.1. Let ~FF ¼ ~FFðw; wÞ be the solution of the adjusted Lax pair (6.2)

with ~FFw¼0 ¼ I for the case of a Smyth-type surface. Then ~FFðwÞ ¼ s3 ~FFðwÞs3:

Proof. By direct computation, we have ~AAðwÞ ¼ � ~BBðwÞ t. By this equation

and ~FFw¼0 ¼ I , we get the conclusion. r

Corollary 7.1.

(1) hðwÞ ¼ �hðwÞ, oðwÞ ¼ oðwÞ.
(2) At ðr; yÞ ¼ ðr0; 0Þ for gðr0Þ ¼ 0, we have hðr0; 0Þ ¼Gi, oðr0; 0Þ A Rnf0g,

owðr0; 0Þ ¼ owðr0; 0Þ.

Proposition 7.2. Let f ðwÞ ¼ f ðr; yÞ be a ðk þ 2Þ-legged Smyth-type surface

in S2;1, and let r0 satisfy gðr0Þ ¼ 0. Then f has a swallowtail at ðr0; 0Þ.

Figure 4: The values of Re A
h2o2

� ����
p
, Im A

h2o2

� ���
p
, Re A

ho

	 
 Awho�Að2Aþ2howÞ
h3o3

� �n o���
p
�Re A

ho

	 
 �2Aow

h2o3

� �n o���
p

and Im A
ho

	 
 Awho�Að2Aþ2howÞ
h3o3

� �n o���
p
� Im A

ho

	 
 �2Aow

h2o3

� �n o���
p

for a 3-legged Smyth-type surface with

H ¼ i
2 in S2; 1 at ðr0; yÞ such that gðr0Þ ¼ 0 and 0a ya 2p (left to right).

Figure 3: The middle image is a 3-legged Smyth-type surface with H ¼ i
2 , and the left image is part of

the middle one, from the origin to the first singular set. The right image is a part of the middle one,

near second singular set (using the hollow ball model as in [8]).
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Proof. We will use the criteria of Theorem 6.3, and by the data of the

above Corollary 7.1 we can get the conclusion. r

Similarly, we have the same conclusion when y ¼ p
kþ2 .

Proposition 7.3. Let f ðwÞ ¼ f ðr; yÞ be a ðk þ 2Þ-legged Smyth-type surface

in S2;1, and let r0 satisfy gðr0Þ ¼ 0. Then f has a swallowtail at r0;
p

kþ2

� �
.

By the above two propositions and the reflective symmetry, we get the

following main result:

Theorem 7.2. If a ðk þ 2Þ-legged Smyth-type surface in S2;1 has singularities,

then it has at least 2ðk þ 2Þ swallowtails.

Remark 7.1. We have checked numerically that there are cuspidal cross

caps along the cuspidal edges between each adjacent pair of swallowtails. Thus

the surface as in Theorem 7.2 will also have at least 2ðk þ 2Þ cuspidal cross caps.
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