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ON THE WAVELET-GALERKIN METHOD WITH

DESLAURIERS–DUBUC INTERPOLATING SCALING

FUNCTIONS

By

Naohiro Fukuda

Abstract. Compactly supported orthonormal wavelets are often

used in numerical analysis. However, since these functions have not

an explicit formula in the time domain, the di‰culty of integrations

often occurs. In this paper, we introduce the Galerkin method with

Deslauriers–Dubuc interpolating scaling functions, and we use the

biorthogonality of the wavelets to overcome the di‰culties of in-

tegration. We present numerical results that show the e‰ciency and

accuracy of this method.

1 Introduction

The Galerkin method is a powerful tool for calculating numerical solutions of

di¤erential equations. In particular, lower-degree polynomials are often used for

the basis and test functions since the resulting coe‰cient matrices of the Galerkin

equations have simpler structures. This method is called the finite element method

(FEM). Let us consider the following problem as an example:

�u 00 þ u ¼ f ; 0 < x < 1;

uð0Þ ¼ uð1Þ ¼ 0:

�
ð1Þ

A weak formula that corresponds to the problem is given by

aðu; vÞ ¼ h f ; viL2 for all v A H 1
0 ð0; 1Þ ð2Þ

with a bilinear form

aðu; vÞ ¼
ð1

0

uv dxþ
ð1

0

u 0v 0 dx:

2000 Mathematics Subject Classification: 65N30, 65T60.

Key words and phrases: wavelet-Galerkin method, Deslauriers–Dubuc interpolating wavelets.

Received January 16, 2013.

Revised May 29, 2013.



Here we denote the Sobolev space H 1ð0; 1Þ ¼ fu A L2ð0; 1Þ j u 0 A L2ð0; 1Þg and

H 1
0 ð0; 1Þ ¼ fu A H 1ð0; 1Þ j uð0Þ ¼ uð1Þ ¼ 0g is its subspace. A solution of (2) is

called a weak solution.

The Galerkin method constructs an approximate solution as the weak solu-

tion. Let Vn HH 1
0 be an n-dimensional subspace, and let j1; . . . ; jn be a basis of

Vn. By substituting un A Vn for u and vn A Vn for v we obtain

aðun; vnÞ ¼ h f ; vniL2 for all vn A Vn: ð3Þ

We consider the approximate solution uJ A VJ of the form

unðxÞ ¼
Xn

j¼1

UjjjðxÞ:

Taking vn ¼ jj ( j ¼ 1; 2; . . . ; n) in (3) we obtain a Galerkin equation:

MU ¼ F ;

where M ¼ faðji; jjÞgi; j¼1;...;n is a coe‰cient matrix, F ¼ tfð f ; jjÞgj¼1;...;n is a

vector generated by the inner products of f and the test functions, and U is a

unknown vector U ¼ tfU1; . . . ;Ung. The coe‰cients fUjgj are thus obtained as

the solution of the equation U ¼ M�1F .

Classical FEM employees the hat function B2ðxÞ ¼ maxf1� jxj; 0g as the

basis and test functions. If we put fjiðxÞ ¼ viðxÞ ¼ B2ðx=h� iÞg1=h�1
i¼1 HH 1

0 ð0; 1Þ,
then we can easily see that the components of the sti¤ness and mass matrices are

given, respectively, by

ai; j ¼ hj 0
i ; v

0
jiL2 ¼ 1

h
�

2; j ¼ i;

�1; j ¼ iG 1;

0; otherwise;

8<
:

and

ci; j ¼ hji; vjiL2 ¼ h

6
�

4; j ¼ i;

1; j ¼ iG 1;

0; otherwise.

8<
:

Thus the coe‰cient matrix M is a tridiagonal matrix, and its components are

given by Mi; i ¼ 2=hþ 2h=3, Mi; iG1 ¼ �1=hþ h=6, and Mi; j ¼ 0 otherwise. The

sparsity of this matrix results in decreased computing costs.

Wavelet theory has been developing rapidly in several fields since its incep-

tion in the 1980’s, and many wavelets has been introduced. The application of
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wavelets to the Galerkin method is an interesting topic, and the flexibility of

wavelet functions provides many options for approximation spaces. Especially,

compactly supported orthogonal wavelets or scaling functions give sparse ma-

trices, including the sti¤ness matrix, because of their locality and orthogonality.

Among these, the Daubechies scaling function [5], which is well known as a

compactly supported orthogonal function, is commonly used for numerical

analysis. But the Daubechies wavelets and scaling functions do not have explicit

expressions in the time domain, so if we try to compute the inner product

on a wavelet h f ;ciL2 or a scaling function h f ; jiL2 with high-dimensional

accuracy, it is computationally expensive. Therefore, in some cases inner

products with scaling functions are simply approximated by its sampling, i.e.,

h f ; 2 j=2jð2 j � �kÞiL2 A f ð2�jkÞ, but the accuracy of these approximations

depends on the smoothness of f , and getting high-precision analysis results

requires evaluation of the integrals. To overcome this di‰culty with integrations,

many methods using wavelets and scaling functions have been introduced [1, 3, 6,

8, 16].

When we use the orthogonal functions as basis and test functions, resulting

mass matrix becomes a diagonal matrix, but in almost all cases, the highest

derivative of the original equation is a leading term. Thus, in the above case,

the structure of the sti¤ness matrix plays an important role. Fukuda et al. [12]

introduced a uniform approach that generates Riesz bases such that the asso-

ciated sti¤ness matrices become tridiagonal. This method is highly accurate, but

the di‰culty with the integral remains unsolved. In this paper, we further develop

the method of [12] and use the propeties of the biorthogonality of the wavelets to

overcome the di‰culty with the integrals of the test functions. The Deslauriers–

Dubuc interpolating scaling functions [9, 10] are used as basis functions.

Section 2 contains the definitions and properties of the Deslauriers–Dubuc

interpolating functions and the biorthogonal B-spline wavelets that will be to be

needed in later sections. In Section 3, we construct a Galerkin equation with our

method and explains how to apply the results derived in [12] to the interpolating

functions. In the last section, we present some numerical results which prove the

e‰ciency and accuracy of this method.

2 Interpolating Schemes

2.1 Deslauriers–Dubuc Interpolating Wavelet

Deslauriers and Dubuc [9] and Dubuc [10] introduced an interpolation

scheme [14] that constructs a function on R from an initial value f f ðkÞgk AZ. The
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functions obtained from the initial value fdk;0gk AZ are called the fundamental

functions. We denote the Deslauriers–Dubuc fundamental functions of order D ¼
2Lþ 1 (L ¼ 0; 1; . . .) by FD. FD satisfies the refinement relation

FDðxÞ ¼
X
k AN

FDðk=2ÞFDð2x� kÞ

and supp FD ¼ ½�D;D�. The smoothness of FD increases as D increases [9].

FD is known as a scaling functions of the interpolating wavelet function. In

general, an interpolating scaling function j has some useful properties. First,

jðkÞ ¼ dk;0 for k A Z, which is useful in terms of the approximation. Second, the

two scale equation is given by jðxÞ ¼
P

k AZ jðk=2Þjð2x� kÞ, which means that

the filter coe‰cients fhkgk are equal to the half values jðk=2Þ. Moreover, the

associate wavelet function is simply cðxÞ ¼ jð2x� 1Þ.
In the case of Deslauriers–Dubuc scaling functions, the filter coe‰cients

fhkgk are easily calculated from the Lagrange polynomial: If

LkðxÞ ¼
YNþ1

i¼�N
i0k

x� i

k � i
; k ¼ �N;�N þ 1; . . . ;N þ 1; ð4Þ

then

h2k ¼ dk;0;

h2kþ1 ¼
L�kð1=2Þ; k ¼ �N � 1; . . . ;N;

0; otherwise.

�

For example,

fh�1; h0; h1g ¼ 1

2
; 1;

1

2

� �

when D ¼ 1, and

fh�3; h�2; h�1; h0; h1; h2; h3g ¼ � 1

16
; 0;

9

16
; 1;

9

16
; 0;� 1

16

� �

when D ¼ 3.

2.2 Average Interpolation

Donoho [11] and Harten [13] generalized the Deslauriers–Dubuc interpola-

tion scheme and also introduced a scheme called average interpolation. The

fundamental functions of the average interpolation scheme AD of order D ¼ 2L
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(L ¼ 1; 2; . . .) still have compact supports supp AD H ½�D;Dþ 1� and satisfy the

two scale equation

ADðxÞ ¼
X
k AZ

ckADð2x� kÞ:

For example,

fc�2; c�1; c0; c1; c2; c3g ¼ � 1

8
;
1

8
; 1; 1;

1

8
;� 1

8

� �

when D ¼ 2,

fc�3; c�2; c�1; c0; c1; c2; c3; c4g ¼ 3

128
;� 3

128
;� 11

64
;
11

64
; 1; 1;

11

64
;� 11

64
;� 3

128
;
3

128

� �

when D ¼ 4.

The fundamental functions AD and FD have a strong relationship. If we set

j ¼ AD and f ¼ FDþ1, then it holds that

f 0ðxÞ ¼ jðxþ 1Þ � jðxÞ: ð5Þ

Since

jðxþ 1Þ � jðxÞ ¼ d

dx

ð xþ1

x

jðyÞ dy

¼ d

dx

ð
R

N1ðy� xÞjðyÞ dy

¼ d

dx
j �N4

1 ðxÞ;

Figure 1: Deslauriers–Dubuc fundamental functions
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(5) is equivalent to

f ¼ j �N4
1 ; ð6Þ

where f4ðxÞ ¼ f ð�xÞ and Nm is the m-th order B-spline, i.e., N1 ¼ w½0;1Þ and

Nm ¼ Nm�1 �N1 (mb 2). For the construction of Riesz bases, this means that

f is an elevation of j with elevator N1 ([12]). In terms of the low-pass filters

mDDðxÞ ¼
P

k h
DD
k e�ikx and mAðxÞ ¼

P
k h

A
k e

�ikx, it is denoted as mDD ¼ mAm,

where mðxÞ ¼ ð1þ eixÞ=2, or simply, fhDDg ¼ fhAg � f1=2; 1=2g.

Remark 1. Deslauriers–Dubuc fundamental functions also have a special

relationship to Daubechies scaling functions [5]. Let FD
N be a Daubechies

scaling function of order N. Then Beylkin and Saito [15] proved the following

equation:

ð
R

FD
N ðxÞFD

N ðx� yÞ dx ¼ F2N�1ðyÞ: ð7Þ

Therefore F2Nþ1 is called the autocorrelation function of FD
N .

Orthogonal wavelets lose several properties due to strong restrictions, but we

can construct many wavelets by discarding the orthogonality. Cohen, Daubechies

and Feaubeau [7] constructed biorthogonal spline wavelets, whose primal and

dual functions both have compact support.

Generally, the biorthogonal B-spline wavelets are specified with two

parameters. Let jp and ~jjp; ~pp be the primal and dual scaling functions of the

biorthogonal B-spline wavelet, then the associated low-pass filters m0 and ~mm0 are

Figure 2: Fundamental functions of the average interpolation scheme
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given by

m0ðxÞ ¼ e�iex=2 cosp
x

2

� �

and

~mm0ðxÞ ¼ e�iex=2 cos ~pp
x

2

� � Xð pþ~ppÞ=2�1

k¼0

ðpþ ~ppÞ=2� 1þ k

k

� �
sin2k x

2

� �
;

where pþ ~pp is an even integer, e ¼ 0 when p is even, and e ¼ 1 when p is odd.

For p ¼ 1, we note that m0ðxÞ ¼ e�ix=2 cosðx=2Þ is just the low-pass filter of

the Haar wavelet. Thus, in this case, j1 ¼ N1ðxÞ. Moreover, Donoho [11] showed

that the dual scaling functions are equal to the fundamental functions: more

precisely, for D ¼ 2; 4; . . . , it holds that

~jj1;Dþ1 ¼ AD: ð8Þ

3 Wavelet-Galerkin Method with Biorthogonal Functions

In this section, we introduce a way to construct approximate solutions for

certain di¤erential equations by using Deslauriers–Dubuc fundamental functions.

As mentioned above, these functions have compact support, are symmetric, and

satisfy FDðkÞ ¼ dk;0; the Daubechies functions do not have these properties.

With j ¼ F3, h ¼ 1=ðnþ 1Þ and nb 5, we seek a numerical solution

unðxÞ ¼
Xn�2

k¼3

Ukjðx=h� kÞ ð9Þ

Figure 3: Biorthogonal B-spline functions
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for the Dirichlet boundary value problem (1). The standard Galerkin method

leads to

aðun; jkÞ ¼ h f ; jkiL2 ; k ¼ 3; 4; . . . ; n� 2: ð10Þ

From this, we obtain the Galerkin equation

MU ¼ F ; ð11Þ

where M ¼ f
Ð
R
j 0
ij

0
j dxþ

Ð
R
jijj dxgi; j is a coe‰cient matrix; F ¼

tfh f ; jjiL2gj¼1;...;n; and U is a unknown vector U ¼ tfU1; . . . ;Ung. This equation
can be solved to obtain the coe‰cients Uk.

In this case, the sti¤ness matrix is a heptadiagonal matrix, which is relatively

full compared with the one for classical FEM. Moreover, as in the case of the

Daubechies function, Deslauriers–Dubuc fundamental function jk does not have

an explicit formula; the di‰culty of the integral on the right-hand side of (10)

thus remains.

To deal with this problem, we replace the jk by the hat functions vk ¼
B2ð�=h� kÞ and consider

aðun; vkÞ ¼ h f ; vkiL2 ; k ¼ 3; 4; . . . ; n� 2:

This leads to a new Galerkin equation:

~MMU ¼ ~FF ; ð12Þ

with ~MM ¼ f
Ð
R
j 0
i v

0
j dxþ

Ð
R
jivj dxgi; j; ~FF ¼ tfh f ; vjiL2gj¼1;...;n; and U ¼ tfU1; . . . ;

Ung. Equation (12) is more convenient and manageable than (11) for the fol-

lowing reasons:

(i) Both F3 and B2 are elevated functions of pair of biorthogonal functions

with elevator N4
1 , thus the resulting sti¤ness matrix is a tridiagonal

matrix, which is sparse compared with the one of (11).

(ii) Both F3 and B2 are refinement functions; therefore we can explicitly

calculate the mass matrix.

(iii) Compared to (10), the integrals on the right-hand side of (12) are

simpler, and they can be processed more quickly by computer. Thus our

scheme quickly obtains the solution u once f has been set.

Let us more fully consider the advantages stated in (i), above. Fukuda et al.

[12] proved that if j is orthogonal, i.e., hj; jð� � kÞiL2 ¼ dk;0, then the sti¤ness

matrix generated by its elevated function F ¼ j �N1 is a tridiagonal matrix, i.e.,

hF 0;F 0ð� � kÞiL2 ¼ 2dk;0 � djkj;1. We can easily see that this is also true for a pair
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of biorthogonal functions, i.e., if hj1; j2ð� � kÞiL2 ¼ dk;0, then

hðj1 �N1Þ0; ðj2 �N1Þ0ð� � kÞiL2 ¼ 2dk;0 � djkj;1: ð13Þ

Since F3 and B2 are elevated functions of the pair of biorthogonal functions

A2 ¼ ~jj1;3 and N1 ¼ j1 with elevator N4
1 (see (5) and (8)), the resulting sti¤ness

matrix is a tridiagonal matrix.

Remark 2. One may expect that there exists an elevator E such that the

sti¤ness matrix become a diagonal matrix, i.e., hj � E; j � Eð� � kÞi ¼ dk;0 with

an orthogonal function j. But this means that E is the sign function, and the

resulting elevated function is thus non compactly supported. We therefore can not

use this function for the Galerkin finite element method.

Now let us consider (ii), above. Let f and g be compactly supported refinable

functions. Then, Ik ¼
Ð
R
f ðxÞgðx� kÞ dx ¼ f � g4ðkÞ. Here we remark that

p4ðxÞ ¼ pð�xÞ is also refinable when p is refinable. Since the convolution of

refinable functions is refinable [2], it can be given as a solution of an eigenvalue

problem.

In the case f ¼ F3 and g ¼ B2, the above is summarized as follows:

Theorem 3. Set Mk ¼ hF3;B2ð� � kÞiL2 and Sk ¼ hF 0
3;B

0
2ð� � kÞiL2 . Then

we obtain

Mk ¼

131=180 if k ¼ 0;

37=240 if k ¼G1;

�11=600 if k ¼G2;

1=3600 if k ¼G3;

0 otherwise;

8>>>>><
>>>>>:

ð14Þ

and

Sk ¼
2 if k ¼ 0;

�1 if k ¼G1;

0 otherwise:

8<
: ð15Þ

Proof. Equation (15) is easily seen from (13), so let us prove (14). Set f ¼
F3 � B4

2 ¼ F3 � B2. Then f is a refinable function with filter coe‰cients

fhkg4k¼�4 ¼
1

2
� 1

16
; 0;

9

16
; 1;

9

16
; 0;� 1

16

� �
� 1

2
; 1;

1

2

� �

¼ � 1

64
;� 1

32
;
1

8
;
17

32
;
25

32
;
17

32
;
1

8
;� 1

32
;� 1

64

� �
:
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From the two-scale equation, we get Mk ¼ f ðkÞ ¼
P

m hm f ð2k �mÞ ¼P
m h2k�m f ðmÞ ¼

P
m h2k�mMm, and we can obtain the Mk as the eigenvector

of

M�3

M�2

M�1

M0

M1

M2

M3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

h�3 h�4 0 0 0 0 0

h�1 h�2 h�3 h�4 0 0 0

h1 h0 h�1 h�2 h�3 h�4 0

h3 h2 h1 h0 h�1 h�2 h�3

0 h4 h3 h2 h1 h0 h�1

0 0 0 h4 h3 h2 h1

0 0 0 0 0 h4 h3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

M�3

M�2

M�1

M0

M1

M2

M3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð16Þ

under the normalization
P

k Mk ¼ 1. r

Remark 4. In [12] and [17], with FD
2 and elevator N1, a Riesz basis jD

2 ¼
FD

2 �N1 was constructed. Since FD
2 is orthogonal, hjD0

2 ; jD0
2 ð� � kÞi corresponds

to Sk in Theorem 1. Moreover, hjD
2 ; j

D
2 ð� � kÞi also corresponds to Mk in the

theorem. Although this may seem strange, it is justified by the autocorrelation

property (7); from F̂F3 ¼ F½FD
2 �FD4

2 � ¼ jF̂FD
2 j

2, we have

hF3;B2ð� � kÞiL2 ¼ 1

2p

ð
R

F̂F3ðxÞB̂B2ðxÞeikx dx

¼ 1

2p

ð
R

jF̂FD
2 ðxÞj

2
N̂N1ðxÞN̂N1ðxÞeikx dx

¼ hjD
2 ; j

D
2 ð� � kÞiL2 :

4 Numerical Results

In this section we present some numerical results to showing the e‰cacy of

our method. Let us illustrate some numerical examples. All computations were

carried out with a Mac OS X, Intel Core i7, 3.4GHz, and by using Mathematica

ver. 8.0.1.0.

We consider the following Dirichlet boundary value problem:

�u 00 þ u ¼ f ; 0 < x < 1;

uð0Þ ¼ uð1Þ ¼ 0:

�

In classical FEM, the hat function B2 is used to represent an approximate

solution, and in [12], an elevated Daubechies scaling function jD
2 ¼ FD

2 �N1 was
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used. To compare these two, we calculated the approximate solutions using the

Galerkin method:

~uuðxÞ ¼
X2 j�1

n¼1

unB2ð2 jx� kÞ;

~uuðxÞ ¼
X2 j�4

n¼0

unj
D
2 ð2 jx� kÞ;

~uuðxÞ ¼
X2 j�3

n¼3

unF3ð2 jx� kÞ;

with test functions B2ð2 jx� kÞ (k ¼ 1; . . . ; 2 j � 1); jD
2 ð2 jx� kÞ (k ¼ 0; 1; . . . ;

2 j � 4); and B2ð2 jx� kÞ (k ¼ 3; 3; . . . ; 2 j � 3), respectively. The error was esti-

mated by the relative l2-error:

ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2 j

k¼0ðuðk=2 jÞ � ~uuðk=2 jÞÞ2
q

kukL2

: ð17Þ

The results with various choices of u are presented as follows:

Table 1: The case of uðxÞ ¼ x5ð1� xÞ5

B2-B2 jD
2 -j

D
2 F3-B2

2 j ej ej�1=ej ej ej�1=ej ej ej�1=ej

6 1:50� 10�4 — 2:87� 10�4 — 3:65� 10�4 —

7 5:30� 10�5 2.83 4:66� 10�5 6.16 1:76� 10�5 20.7

8 1:88� 10�5 2.83 9:49� 10�6 4.91 8:13� 10�7 21.7

9 6:63� 10�6 2.83 3:33� 10�6 2.85 3:68� 10�8 22.1

10 2:35� 10�6 2.83 3:15� 10�6 1.06 1:20� 10�9 30.7

Table 2: The case of uðxÞ ¼ N5ð5xÞ

B2-B2 jD
2 -j

D
2 F3-B2

2 j ej ej�1=ej ej ej�1=ej ej ej�1=ej

6 1:51� 10�4 — 4:31� 10�4 — 6:18� 10�4 —

7 5:33� 10�5 2.83 6:76� 10�5 6.38 5:50� 10�5 11.2

8 1:88� 10�5 2.83 1:28� 10�5 5.29 4:88� 10�6 11.3

9 6:66� 10�6 2.83 3:80� 10�6 3.36 4:32� 10�7 11.3

10 2:36� 10�6 2.83 3:14� 10�6 1.21 3:77� 10�8 11.4
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Table 3: The case of uðxÞ ¼ N3ð3xÞ

B2-B2 jD
2 -j

D
2 F3-B2

2 j ej ej�1=ej ej ej�1=ej ej ej�1=ej

6 1:51� 10�4 — 3:64� 10�2 — 7:50� 10�2 —

7 5:22� 10�5 2.90 1:31� 10�2 2.78 2:67� 10�2 2.81

8 1:87� 10�5 2.79 4:66� 10�3 2.81 9:46� 10�3 2.82

9 6:57� 10�6 2.85 1:65� 10�3 2.82 3:35� 10�3 2.82

10 2:33� 10�6 2.82 5:84� 10�4 2.83 1:19� 10�3 2.83

Table 4: The case of uðxÞ ¼ N3ð10x=3� 1=6Þ ðsupp u ¼ ½1=20; 19=20�Þ

B2-B2 jD
2 -j

D
2 F3-B2

2 j ej ej�1=ej ej ej�1=ej ej ej�1=ej

6 1:51� 10�4 — 8:24� 10�4 — 2:01� 10�6 —

7 5:21� 10�5 2.91 2:13� 10�4 3.87 7:80� 10�7 2.55

8 1:86� 10�5 2.80 5:17� 10�5 4.12 6:39� 10�8 12.4

9 6:63� 10�6 2.81 1:36� 10�5 3.79 2:61� 10�8 2.45

10 2:34� 10�6 2.84 4:47� 10�6 3.05 2:57� 10�9 10.1

Table 5: The case of uðxÞ ¼ sin2ð2pxÞ

B2-B2 jD
2 -j

D
2 F3-B2

2 j ej ej�1=ej ej ej�1=ej ej ej�1=ej

6 1:53� 10�4 — 8:24� 10�4 — 2:01� 10�6 —

7 5:41� 10�5 2.82 2:13� 10�4 3.87 7:80� 10�7 2.55

8 1:91� 10�5 2.83 5:17� 10�5 4.12 6:39� 10�8 12.4

9 6:77� 10�6 2.83 1:36� 10�5 3.79 2:61� 10�8 2.45

10 2:39� 10�6 2.83 4:47� 10�6 3.05 2:57� 10�9 10.1

Figures 4–7 shows the CPU time required to calculate the integrals of F , i.e.,

the inner products of f and the test functions versus the error (17).

From these results, we can conclude that our method obtain smoother

approximate solutions within the time required to perform classical FEM. In

particular, we note that when an exact solution rapidly decays to zero near the

boundaries of the domain, our method is more e¤ective. When the decay is not

rapid, there is a slight loss of accuracy, which is presumably due to the shape of

the basis F3. Since F3 is nearly zero at the endpoints of its support, non zero

values of the exact solution cannot be represented well in this region. However,

this weakness can be easily eliminated. Recall that our proposed method denotes
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an approximation solution using F3 as

~uuðxÞ ¼
X2 j�3

n¼3

unF3ð2 jx� nÞ: ð18Þ

To capture the behavior of u near the boundary of the domain, we denote the

approximate solution using F3 and B2 as

Figure 4: case 1; uðxÞ ¼ x5ð1� xÞ5

Figure 5: case 2; uðxÞ ¼ N5ð5xÞ
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~uuðxÞ ¼
X2 j�3

n¼3

unF3ð2 jx� nÞ þ
X

n A f1;2;2 j�2;2 j�1g
unB2ð2 jx� nÞ: ð19Þ

Figure 8 illustrates the basis and test functions of (18) and (19). This modification

increases the size of the coe‰cient matrix from 2 j � 5 to 2 j � 1, but the form of

the sti¤ness matrix does not change. In Figure 9 we show that the computational

Figure 6: case 3; uðxÞ ¼ N3ð3xÞ

Figure 7: case 4; uðxÞ ¼ N3ð10x=3� 1=6Þ (supp u ¼ ½1=20; 19=20�)
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cost of the modification is comparable to the unmodified form and that the

e‰ciency of the modification.

Appendix. Cases of Higher-Order Equations

In the previous sections, we considered only second-order di¤erential equa-

tions, but higher-order di¤erential equations, such as the beam equation, are also

important. In the Galerkin equation, a 2m-th order di¤erential appears in the

coe‰cient matrix form as hjðmÞ; jðmÞð� � kÞiL2 . For an orthogonal function F,

Fukuda et al. [12] proved using the formula of inverse matrix of Vandermonde

type [4] that

hjðmÞ; jðmÞð� � kÞiL2 ¼

ð�1Þ02mCm if k ¼ 0;

ð�1Þ12mCm�1 if k ¼G1;

..

.

ð�1Þm2mCm�m if k ¼Gm;

0 otherwise;

8>>>>>>><
>>>>>>>:

ð20Þ

where j ¼ F �Nm. Applying this approach to the biorthogonal function, we

obtain a pair of basis and test functions j ¼ F3 �Nm�1 and ~jj ¼ Nmþ1. There is

no di‰culty with the integral of the test function Nmþ1, since Nm is a piecewise

polynomial that has an explicit expression in the time-domain, similarly to the

previous case of m ¼ 1. Moreover, j is a refinement function, so if we consider

the di¤erential equation uð2mÞ þ u ¼ f , we can obtain an explicit coe‰cient

matrix. However, the basis function F3 �Nm�1 is no longer an interpolation, so it

needs a little adjustment. From the Parseval theorem we get

hF3 �Nm�1;Nmþ1iL2 ¼ 1

2p
hF̂F3N̂Nm�1; N̂Nmþ1iL2

¼ 1

2p
hF̂F3; N̂Nmþ1N̂Nm�1iL2

¼ 1

2p
hF̂F3; N̂Nmþ1N̂Nm�1e

im�iL2

¼ 1

2p
hF̂F3; N̂N2me

im�iL2

¼ hF3;N2mð� þmÞiL2 :

This means that by using F3 and N2m we can construct an e¤ective scheme for

numerical computations.

335Wavelet-Galerkin method and Deslauriers–Dubuc interpolating wavelets



Figure 9: case 3; uðxÞ ¼ N3ð3xÞ

Figure 8: basis and test functions for (18) and (19)
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