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HOLONOMY GROUPS IN A TOPOLOGICAL
CONNECTION THEORY

By

Kensaku Kitapa

Abstract. We study slicing functions, which are called direct con-
nections in the smooth category, and parallel displacements along
sequences in a topological connection theory. We define holonomy
groups for such parallel displacements, and prove a holonomy re-
duction theorem and related results. In particular, we study a
category of principal bundles with parallel displacements over a fixed
base space. Assuming the existence of an initial object of a category
of principal G-bundles, we obtain a classification theorem of to-
pological principal G-bundles in terms of topological group homo-
morphisms. It is shown that a certain object is an initial object if it
is the holonomy reduction of itself with respect to the identifica-
tion topology. The result is applied to the universal bundle over a
countable simplicial complex constructed by Milnor.

1 Introduction

Connection theory has been one of the most important branch in differential
geometry. Recently, various results have been obtained also in gauge theory. On
the other hand, as known in a series of works relevant to collapsing Riemannian
manifolds, the limit space of the Gromov—Hausdorff convergence of Riemannian
manifolds is not a manifold in general (see [6, 8, 15]). Thus, it seems to be
convenient to study a topological connection theory which is still effective also in
more general spaces including such limit ones. In a category of certain topological
spaces, generalized or analogous theories of connection theory have been studied.
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For example, N. Abe [1] generalized parallel displacements along piecewise
smooth curves to parallel displacements along admissible paths, defined a hol-
onomy group, and proved a holonomy reduction theorem. A. Asada [3, 4, 5]
generalized connection theory to topological fiber bundles using the Alexander-
Spanier cohomology and obtained various results. A connection in the sense of
Asada is the germ of a slicing function at the diagonal set of the base space of a
G-bundle. Slicing functions have been studied in the theory of fibrations ([2, 9]).
Recently, J. Kubarski and N. Teleman [13, 16] have studied a smooth slicing
function, which they call a linear direct connection in smooth vector bundles,
whose infinitesimal part is shown to be a linear connection ([13, Theorem 3]).
They showed that the Chern character of smooth vector bundles can be rep-
resented as the periodic cyclic homology class of a specific cyclic cycle, man-
ufactured from a direct connection. Direct connections have been used without
systematic study for several constructions in K-theory and cyclic homology
([7, 11]). J. Milnor [14] considered slicing functions defined on any subset of
X x X containing the diagonal set Ay, not necessarily a neighborhood of Ay. He
constructed a universal bundle over a polyhedron X of a countable connected
simplicial complex K in the weak topology. Moreover, he showed that any
principal bundle over X associates with this universal bundle ([14, Theorem 5.1])
by constructing slicing functions.

The purpose of this paper is to define, in a topological connection theory,
slicing functions, parallel displacements along sequences, and their holonomy
groups as an analogue of those in [1], and study their fundamental properties.
The main results are holonomy reduction theorems (Theorems 6.3 and 7.5), and a
classification theorem (Theorem 8&.1).

In Section 2, we recall some properties of topological bundles, especially
principal G-bundles, following mostly Husemoller [10].

In Section 3, we introduce slicing functions in topological bundles, which
induce parallel displacements in our sense in the next section. We also give
examples, some of which indicate that the slicing function is a generalization of
the connection in the smooth category. In particular, it is shown that connections
in the smooth category induce smooth slicing functions. Moreover, we generalize
Theorem 3 in [13] to a smooth principal G-bundle.

In Section 4, we define parallel displacements along admissible sequences as an
analogue of those along admissible paths in [1]. Moreover, we define morphisms
which preserve the parallel displacements and study some properties of them.

In Section 5, we define a holonomy group of the parallel displacement as an
analogue of that of the parallel displacement along admissible paths in [1]. We
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study fundamental properties of the holonomy groups. In particular, a relation
between the holonomy group of a connection in the smooth category and that of
the parallel displacement induced by the smooth slicing function in Section 3 is
studied. Moreover, we define a local holonomy group of the parallel displace-
ment. In the smooth category, the Lie algebra of the holonomy group of a
connection is spanned by the image of the curvature. As an analogue of this
fact, we show that the local holonomy group is generated by a curvature of the
parallel displacement, whose germ is the curvature in the sense of Asada [4, 5]. At
the end of this section, we study a relation between the local holonomy group of
a connection in the smooth category and the local holonomy group of the parallel
displacement induced by the smooth slicing function in Section 3.

In Section 6, we define a holonomy bundle of the parallel displacement as an
analogue of that of the parallel displacement along admissible paths in [1] and
study their fundamental properties. In particular, we obtain a holonomy re-
duction theorem (Theorem 6.3) and related results as in the smooth category
and [1].

In Section 7, we define a strong holonomy group whose topology is the
identification topology induced by a certain monoid homomorphism. Especially,
we introduce a concept of strong holonomy reduction and obtain a strong version
of the holonomy reduction theorem (Theorem 7.5).

Finally, in Section 8, we study a category of principal bundles with parallel
displacements over a fixed base space. We obtain a classification theorem
(Theorem 8.1) in the following sense. If there exists an initial object of a category
of principal G-bundles and parallel displacements, the bundles with parallel
displacements are classified in terms of topological group homomorphisms from
the structure group of the initial object to those of bundles. We obtain a sufficient
condition for the existence of an initial object. We see that a certain object is
an initial object if it is the strong holonomy reduction of itself. From this fact, it
follows that the universal bundle constructed by Milnor over X together with the
parallel displacement induced by a certain slicing function is an initial object in
the category. In particular, Theorem 5.1 in [14] follows.

2 Preliminaries

At first we prepare notations of maps and some topological facts. Let
f:X — Ybeamap and 4 c X, B < Y such that f(A4) = B. Then there exists a
unique map k : A — B such that foiy y =ipy ok, where iy y is the inclusion.
We denote by p|f|, the map k. Moreover, we denote by f|, (resp. |f) the map
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vIfl, (resp. g|f|y). If there is no confusion, we denote by f|, or f: A — B the
map p|f|, as usual. Let f: X — Y, g: Z— W be maps. We denote the
composition (g|ynz) © (vnz|/f|r-1(ynz) simply by go f. Note that if Y NZ = &,
then go f: J — W. Suppose that X =Z and let 6 : X — X x X be a diagonal
map. We denote by f X g the composition (f x g)od: X — Y x W. Explicitly,
(f xg)(x) =(f(x),g9(x)) for xe X. If X and Y are topological spaces and
f:X — Y is a continuous map, then g|f|, is also continuous with respect to
the relative topologies. We call f an identification if the topology of Y is
{Ue2(Y)|f1(U) e Oy}, that is, the identification topology with respect to f,
where 2(Y) is the power set of Y and Oy is the topology of X. Note that a
surjective continuous open map is an identification. The following lemmas are
frequently used in this paper.

LemMMmA 2.1. A surjective map [ : X — Y is an identification if and only if
sl fly s A— f(A) is also an identification for any open (or closed) subset A = X
such that f~1(f(A4)) = A.

LEmMA 2.2. A map f:X — Y is an open map if and only if 4| f|r-1(4):
f~Y(A4) — A is an open map for any subset A < Y.

We mostly follow the terminology of [10] with slight changes in notation.
Thus, hereafter in this section, we set up notation for bundles. For a continuous
map n: E — X, we call the map n: E — X itself a bundle while usually the triple
¢=(E,n,X) or the total space E is referred to as a bundle. Let z: £ — X and
n' : E' — X’ be bundles. For continuous maps 2: E — E’ and f: X — X', we
call (h, f) :n — =’ a bundle morphism if 7’ o h = f o . We denote by Hom(z, z’)
(resp. Iso(m, ")) the set of bundle morphisms (resp. isomorphisms). If X = X', we
call (h,idy):n — n' an X-morphism and denote it simply by 4. We denote by
Homy (7, n’) (resp. Isoyx(m, ")) the set of X-morphisms (resp. X-isomorphisms).
For Y c X, put E[y =7 !(Y) and n[y := y|n|,1(y), then we call z[y : E[y
— Y the restricted bundle of = to Y. For a continuous map f:Z — X, the
induced bundle or pull-back of n is denoted by f*n: f*E — Z, where

[FE=ZxxE:={(z,u)e ZXE|f(z) =n(u)}

is a fiber product of Z EN X & E. The canonical bundle map is denoted by f, f).
For topological spaces X and F, a bundle pr; : X x F — X is called a product
bundle. If 7 is X-isomorphic to a product bundle, we say that 7 is trivial. We say
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that 7 : E — X is locally trivial if = is locally V-isomorphic to a product bundle
pr; : V x F — V for some open subset V' = X. An element of Isoy(n[,,pr,) is
called a local trivialization.

We recall G-spaces and G-bundles. Let G be a topological group. A right
G-space is a topological space E equipped with a continuous right action
1:ExG— E. We often denote u(u,a) simply by wua. For ue E and a€ G,
two maps /,: G — E and r,: E — E are given by /,(b) :=ub and r,(v) := va
respectively. A left G-space is defined in the same way. A G-space is a right
G-space unless otherwise mentioned. We call E a free G-space if the right action
is free. We denote by E/G the orbit space, and by ¢& : E — E/G the natural
projection, where the topology of E/G is the identification topology (that is, the
quotient topology) induced by ¢Z. Note that ¢Z is a surjective open map. A
translation function T : E* — G is a (not necessarily continuous) map such that
uT (u,v) = v for any (u,v) € E*, where

E* :={(u,ua) € E*|a e G}.

Let E be a free G-space. Since for any (u,v) € E* there exists a unique a € G
such that v = ua, a translation function T : E* — G is given by T(u,v) := a. We
have the following:

(1) For any ue E, T(u,u) = lg.

(2) For any (u,v)e E* and (a,b)e G? (ua,vb)e E* and T(ua,vb) =
a'T(u,v)b.

(3) For any (u,v,w)e E® such that (u,v),(v,w)eE*, T(u,v)T(v,w)=
T(u,w).

We call E a principal G-space if T is continuous. Let 7 : E — X be a bundle such
that E is a G-space. We call = a G-bundle if g& and r are isomorphic by (idg, f),
where f is a unique continuous map such that f o g¢& =noidg. We denote by
7/  the map f. The following lemma provides a rather practical condition for a
bundle to be a G-bundle.

LemMmA 2.3. Let n be a bundle whose total space is a G-space. Then 7 is a
G-bundle if and only if the map n/ “ s well-defined and a homeomorphism.

Let 7 (resp. ©') be a G (resp. G')-bundle. For a continuous group homo-
morphism p: G — G’ and a bundle morphism (k, f): 7 — 7/, we call a triple
(h, f,p): (x,G) — (z', G') a homomorphism if h(ua) = h(u)p(a) for (u,a) € E x G.
If G=G', we call (h,f,idg) a G-morphism and denote it simply by (4, f).
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We denote by Hom((z,G),(n’,G’)) (resp. Homg((n,G), (7', G))) the set of
homomorphisms (resp. G-morphisms). If cod 7 =cod ' = X, put

Homy (%, G), (7', G")) := {(h, p) € Hom((%, G), (n',G")) | h e Homy (7, ")},
Homy ¢((%, G), (7', G)) := {h e Homy(r, ') | (h,idyx) € Homg((r, G), (7', G))}.

The set of isomorphisms is obtained by replacing Hom by Iso. We call an
element of Homy ¢((%,G),(n',G)) an (X, G)-morphism. We call a G-bundle
n: E — X a principal G-bundle if E is a principal G-space.

Let n: F — X be a principal G-bundle. Using Lemma 2.2, we can see that
the restricted bundle x|, is a principal G-bundle. The induced bundle f*z is
a principal G-bundle in the natural way.

Here we recall associated bundles. Let G and G’ be topological groups,
p:G— G’ a continuous group homomorphism, and E a G-space. The product
space E x G' is a G-space by a right action (u,a)b := (ub, p(b) 'a). We denote by
E? the orbit space (E x G')/G. The orbit space E” is a G'-space by a right action
[u, b]c := [u, bc]. We can see that this action is continuous. We call E” a G'-space
associated with E. If E is a free G-space, then E” is a free G'-space. If E is a
principal G-space with the translation function 7, then E” is a principal G’-space
with the translation function given by

T"([u,al,[v,b]) == a_lp(T(u, v))b

for ([u,al,[v,b]) € (E”)". Using Lemma 2.2, we can see that 77 is continuous.
Let n: F — X be a principal G-bundle. Let n” : E» — X be the map such that
7 o qucl = nopr;. We can see that z” is a principal G'-bundle. We call n” the

principal G’-bundle associated with =. A map 6’ : E — E” is given by
0" (u) == [u,1¢/]

for u € E. Then we can see (07, p) € Homg((%, G), (z”,G")). Let #' : E' — X be a
principal G’-bundle and (4,p) € Homy((%, G), (#’,G’)). A map h”: E? — E’ is
given by

h ([u,a)) :== h(u)a
for [u,a] € EP. Then we can see that i’ € Homy ¢/((n”,G'),(7’,G’)) and h =

h” 0 0”. From Theorem 3.2 and the succeeding observation in [10], Chapter 4,
we have the following lemma.
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Lemma 2.4, If o’ is a principal G'-bundle, then h* € Isox ¢/((n”, G"), (7', G")).

Next, we recall local triviality of G-bundles. Let E - X be a G-bundle.
We say that 7 is locally G-trivial or simply locally trivial if = is locally (V,G)-
isomorphic to a product G-bundle pr; : V' x G — V for some open subset V' < X.
An element of Isoy ¢((n[}, G), (pr;, G)) is called a local trivialization. For a local
trivialization « : (n[,,, G) — (pr;, G), put U, := V. For local trivializations o and
B, the transition function g,z : U,N Uy — G is given by

goc//’(x) = (Prz oo oﬂ_l)(x, IG)'

Note that a locally trivial G-bundle is a principal G-bundle. For a local trivi-
alization o, let s, : U, — E[; be the local section given by s,(x) := o' (x, 1¢).
Then T o (s, X sg) = gup holds. If 7 is a locally trivial G-bundle, we can see that
n[y, f*m, n” are locally trivial respectively.

3 Slicing Functions and Several Examples

In this section, we introduce slicing functions in, not necessarily locally
G-trivial, bundles and give several examples. Some of them indicate that the
slicing function is a generalization of the connection in the smooth category. In
Section 4, we shall see that any slicing function induces a parallel displacement in
a natural manner.

Let £ X be a bundle, Ay the diagonal set of X, and U < X2 such that
Ay < U. For i€ {0,1}, let pﬁ“ : X? — X be a projection defined by p§1>(x1,xo)
= x; for (x1,x0) € X2

DEerINITION 3.1 (cf. [14]). Let w: ( p(()1>|U)*E — E be a continuous map. Put
Wy =0(x,y,-): E, — F for (x,y) e U. We call w a slicing function in n over
U if it satisfies the following conditions:

1 1 %
(1) (o, p\"|) e Hom((p"|,) "7, ).
(2) wy,x =idg, for any xe X.

Let U be symmetric, that is, (y,x) € U for any (x, y) € U. A slicing function o
is said to be invertible if it satisfies the following condition:

Wy, = w;]} for any (x,y)eU.

Let © be a G-bundle. We say that w is G-compatible if

(0, p{"| ) € Homg(((py|) "7, G), (7, G)).
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We denote by SF(n, U) (resp. SFny (7, U), SF(n, U)) the set of slicing functions
(resp. invertible slicing functions, G-compatible slicing functions) on 7 over U. Put

SFiny(n, U) g := SFiny(n, U)NSF(n, U).

Note that the definition of invertible G-compatible slicing function coincides
with that of Milnor’s if the G-bundle is locally G-trivial.

REMARK 3.1. Let idyn:idyE — X be the induced bundle of 7 by idy.

Let (idy,idy) : idym — m be the canonical bundle map and (y|d x idg, y|0) : id}n

— él)|U)*7z the bundle map, where 6: X — X2 is the diagonal map. For a

continuous map @ : (pf)1>|U)*E — E, we SF(n,U) if and only if the following
diagram commutes:

id;E ——

vloxide
idym T

(”g])‘u)*E

1 *
(rNy)m
1
17(1 )‘U
U

A preordered set [ is said to be pseudodirected set if any finite subset of it is

ulo

bounded above. Let I be a pseudodirected set and (U;);.; a system of subsets of
X2 such that for any i, j e I, Ay c U; and if i < j, then Uj c U;. For i, j e I with
i < J, let p; : SF(rm, U;) — SF(r, U;) be the restriction, that is, pj () = w'(!)ﬁl)\vj
for w e SF(r, U;). Then (SF(xm, Uj),pi); ;)
by [w]; an element of lim SF(x, U;). Similarly we have the inductive limits of
SFiny (n, U;), SF(n, U;)g, and SFyyy(m, U;). For example, let Oy:(Ay) denote the
set of open neighborhoods of Ay in X2, partially ordered by U < V if V < U,
and let a system of subset of X2 be l0 ,(Ax), 2(X2) = (U)UE@X2<AX). Then we have
[a)]@XZ(AX) € liglu SF(n, U).

)'E
<2 is an inductive system. We denote

We have two types of trivial examples of slicing functions.

ExampLE 3.1. Let pr; : X x F — X be the product bundle. Put

CL)(X, Y (yv [7)) = (x,p)

for (x,y,(y,p)) ep(<)1>*(X x F). Then, w e SF(pr;, X X X). Let G be a topo-
logical group and F = G. Then w € SFn(pr;, X x X).
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ExaMpLE 3.2. Let 7: E — X be a bundle. Put
o(x,x,u) :=u

for (x,x,u) e (p(()l)|AX)*E. Then, w € SFiyy(n, Ax). Let 7 be a principal G-bundle.
Then w € SFn (7, Ax); and we can see that this w essentially coincides with the
translation function.

The following is a slight generalization of an example in [13].

ExampLE 3.3. Let X =R, G=R* and pr; : R x R* — R be the product
bundle, where R* := R\{0} is a topological group with respect to the multi-
plication. Let U = R? with Ag = U and f: U — R be a continuous map such
that f(x,x) =0 for x e R. Put

(,U(x7 y, (y7 Cl)) = (x7 aef(xvy))

for (x,y, (y,a)) € (p{"]y)"(R x R¥). Then w e SF(pr), U)g-. If f satisfies the
condition f(x,y) = —f(y,x) for (x,y) € U, then w is invertible.

On a principal G-bundle satisfying appropriate condition, there exists a slicing
function, which corresponds to a flat connection in the smooth category.

ExamMpPLE 3.4. Let n: E — X be a locally trivial G-bundle and A4 a bundle
atlas (a system of local trivializations). Suppose that G is a discrete group and for
any (x,f) € A%, U,N Uy is connected. Put Uy := ], _, U, x U,. For (x,y,u)e
(2"|y,) E. if (x,¥) € Uy, x U,, put

(X, y,u) = o (x, (pry 0 1) (u)).

This definition does not depend on the choice of «. In fact, for any f € 4 and
(x, y.u) € (py|y,)"E, we have

B (x, (pry 0 f)(u)) = o' (x, (pry o o 1) (x, (pry o fo o) (1, (pry 0 ) ()
= o1 (%, gup (X9 (1) (pry 0 2) (1)) = & (x, (pry © &) (w).
We can see that wy € SFiy(m, Us)g. By the definition, we have
(@), 0 (@a), . = (@a),

for any « € A and x, y,z € U,.
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In the following example, we shall review the universal bundle constructed by
Milnor and demonstrate a slicing function which plays an important role in the
proof of Theorem 5.1 in [14].

ExaMpLE 3.5 ([14]). Let X be a polyhedron of a countable connected
simplicial complex K in the weak topology. Put Ux :=|J _.lt| x|t|, X" :=
U,s0 X" (topological sum), and

Gk ={(xn,...,x0) e X |n=>1=Vie{l,....,n}: (x;,x;_1) € Ug}.
An equivalence relation in Sk is generated by the relations
(xl’lv"'7xi7"'7x0) ~ (xlﬂ'"afcia"'axo)

whenever either x; = x;_1 or x;;; = x;_1, where the symbol X denotes deletion
of x. We denote by [x,..., x| the equivalence class of (x,,...,xp). Fix a vertex
vo of K. Put

é]( = QK/N,
Ex = {[*n, -, x1,%0] € Sk | xo = vo},

Gk == {[xn,- -, x1,00] eEK\xn =0y},

where a topology of Sx is the quotient topology and consider Ex and Gk as
subspaces. A unary operation -~ on Sk is defined by

[Xny ooy X1, X0]7 = [X0, X1, -+ Xy]
for [x,...,x1,x0] € Sk. A partial binary operation on Sg is defined by
[Xuy oy X0] [y« o5 V0] := [Xus -« vy X0y Yy« « -5 V0O
for ([xu,...,x0], [Vm,---, »0]) € Sk x Sx such that xy = Ym- We can see that Gx

is a topological group with respect to these operations. A bundle 7g : Ex — X
is defined by

ﬁ](([x,,, . ,X],Uo]) = Xy.

We can see that #gx is a locally trivial principal Gg-bundle and a universal
bundle, that is, Ex is co-connected. For (X, Yiny [Vmy« -5 V1,00]) € (P(()l>|U)*E~K> put

Czi)[((xv yn17[ym>--~ay17U0D = [x7ymHJ’ma---7y1700]-

Then @ € SF (7ix, U)g, -
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In Section 8, we will see that 7g together with the parallel displacement
induced by @k is an initial object in a category of principal bundles with parallel
displacements over X.

ExaMpLE 3.6 ([14]). Let X be a polyhedron of a countable simplicial
complex K in the weak topology and z: E — X a locally trivial G-bundle. Us-
ing an obstruction argument, Milnor proves that there exists w € SFiy (7, Uk)g,
where Ug = (), _glt| x |7].

The next example and the succeeding arguments indicate that the slicing
function is a generalization of the connection in the smooth category.

ExampLE 3.7. Let n: E — X be a smooth principal G-bundle, where G is
a Lie group. A connection (invariant horizontal subbundle) in 7 is a smooth
subbundle H of TE such that

() T,E=Kern, ®H, for ue E,
(2) ruw(H,) = Hy, for (u,a) e E x G,

where 7, is the differential of = (for example, [12]) and r,: E — E is given by
ro(v) := va (see Section 2). Let H be a connection and c: [0,1] — X a piecewise
smooth curve. For u € E, there exists a unique curve ¢ : I — E such that ¢(0) = u,

d L. . . .
moc=c, and j(;(t) € Hy, for tel, that is, ¢ is the horizontal lift of ¢ starting

from u. Let X be a Riemannian manifold. A subset V' in X is strongly convex if
for any (x,y) € ¥V x V there exists a unique geodesic in V joining y to x, and
such that the length of the geodesic is the distance d(x, y), where the geodesic is
y(t) = exp, tv such that y(1) = x. Fix an open covering ¥~ of X which consists of
strongly convex sets. Put Uy := (), _, V x V. Let (x, y,u) € (p(()1>|U1_)*E and p
be the geodesic in some V' joining y to x. Let y be the horizontal lift of y starting
from u. Put

o™ (x, y,u) == j(1).
Then we can see that o € SFyy(rn, Uy); and it is smooth.
In [13, 16], Kubarski and Teleman introduce the notion of direct connections,

which are in fact the smooth slicing functions in smooth vector bundles. They
show that the Chern character of smooth vector bundles can be represented as
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the periodic cyclic homology class of a specific cyclic cycle, manufactured from
a direct connection. Let K € {R,C}, n: E — X be a smooth K-vector bundle,
U < X? an open neighborhood of Ay, and GL(E):= U(x,y)exz Isox (E,, Ey).
Note that GL(E) is a smooth fiber bundle with standard fiber GL(K"). By a
linear direct connection in E they mean a smooth map 7: U — GL(E) such that

(1) z(x,y) : E, — E, for (x,y)e U,
(2) t(x,x) = idg, for xe X.

Let DCk(m,U) denote the set of linear direct connections. Let LE :=
UXE % Isogx (K", E,) be the linear frame bundle and 7=y its projection. For
7€ DCk(n, U), put

wf(x,y,u) = T('x7 y) ou

for (x,y,u)e (p(()l)|U)*LE. Then we can see that w®e SF(npg, U)gpgn. Con-

versely, for w e SF(nre, U)grgxn, put

°(x, y) == w(x, y,u) ou”"
for (x,y) e U and u € Isox (K", E,). Then we can see that this definition does not
depend on the choice of u and that t® € DCk(n, U). Since t°" =1 and o™ = w
for any teDCk(n,U) and w e SF(nrg, U)grgn, an element of DCk(n, U)
corresponds bijectively to the element of SF(mre, U)grgxn-

In [13], they remark that the parallel transport along small geodesics—
defined for a linear connection V in E—produces a direct connection 7V in E.
Their construction is a special case of that in Example 3.7.

ReMARK 3.2, In [13], Kubarski and Teleman assume that the base manifold
is endowed with an affine connection. In that situation, we can also construct
smooth slicing function w’ by taking a similar covering as in Example 3.7.

On the other hand, Kubarski and Teleman show that a linear direct con-
nection 7 induces a linear connection V* in E. We generalize their construction
to a smooth principal G-bundle.

PROPOSITION 3.1. Let n: E — X be a smooth principal G-bundle, U < X? an
open neighborhood of Ay and w e SF(n,U); a smooth map. For ue E, put

H? = {60(7 7[(14), u)*n(u)(v) | ve TH(M)X}’

u
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where o(-, n(u),u) : p1((X x {z(u)}) N U) — E is a map such that = o (o(-, n(u),u))
= idy, (xx{zynv)- Then H” := UMGEH;’ is a connection in E, and if [w]cfXZ(AX)
= [w/](f‘xz(Ax) € lill?U SF(r,U), then H® = H®'. Moreover, if X is a Riemannian

manifold, then H*" = H for any connection H in E.

Proor. We can see that H® is a smooth subbundle of TE. Since
o 0 (0(, (), 4) () = i1, x, we have Kerm, NH ={0}. For WeT,E,
since

(W = 0, 1), 1) ) (Reu (W) = (W) = (W) = 0,

we get W — (-, (u), u) ., (ma(W)) € Ker 7., and consequently 7,,E = Ker m,
@® HY. For ae G, the equality

Taxu © C()(', n(u)v u)*n(u) = CO(', n(ua), ua)*n(ua)

implies 74, (H,) = HY

ua:

Thus, H® is a connection.

Let 2 be the maximal domain of the exponential map, u€ E, and ve
DN TowyX. Put (1) := expy, tv for 1€[0,1] and let y be the horizontal lift of
y starting from u. From the equality y,(s) = y,(st) and the uniqueness of the
horizontal lift, we have 7,,(s) = 7,(st). Then we get

wH(yv(Z)>n(u)7u) = wH(VrL=(1)77Z(u)’ u) = ?m(l) = ?v(t)'

Thus coH(-,n(u),u)*n(u)(u) =9,(0)e H,, and consequently H;’" < H,. Since
dim H*" = dim H,, we have H*" = H,. O

Note that a smooth slicing function @ which is not necessarily invertible
induces a connection H® while a smooth slicing function w? derived from a
connection H is invertible.

In the following example, we give concrete expressions of H” and w” for
o in Example 3.3.

ExampLE 3.8. Let f:U — R and we SF(pr;,U)g« as in Example 3.3.
Suppose that U is an open set and 0;f exists and is smooth on Ag. For
(y,a) e R x R™, since

(/J(', Y, (y>a))*y((al)y) = (61)()17(1) + aalf(y>y)(62)(y.a)7

we have

H(u})v,a) - {C(al)(y,a) + caalf(yay)(aZ)(y,a) |C € R}
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Let (x,y) e R xR and y(r) = (x — y)t + y be the geodesic joining y to x. Then
horizontal lift ¢ of y starting from (y,a) e R x R* is given by

() = ((x— y)t+ y7ae(x—y),[g(?l.f((x—,v)ﬁy- (x—y)-r+y)d5).

Thus, " € SFy(pr,R x R)g~ is given by

e [30uf ey

w X,y,(%a)):(xvae

From this expression, it follows that [wHw](ﬁRz(AR) = [@]¢,, (ap) € lim,, SF(pr, U)gs
if and only if f(x,y) = [0, f(t,¢)dt for some open neighborhood V = U of Ag
and any (x,y)eV.

A connection in the sense of Asada is a germ of slicing functions over
neighborhoods of the diagonal set of the base space of a G-bundle.

ExampLE 3.9 (cf. [3, 4, 5]). Let n: E — X be a G-bundle and U = X2 such
that Ay = U. We denote by C!(r, U) the set of continuous maps s: E*[;, — G
such that

(1) s(u,u) =1¢ for uekE,

(2) s(va,ub) = a~'s(v,u)b for (v,u)e E*[, and a,be G.
Regarding an element [s] ;- s, € lim | Cl(n,U); as a connection in 7, Asada
generalizes connection theory to a category of topological fiber bundles, where
Nx2(Ayx) is the set of neighborhoods of Ay in X2 For se Cl(n,U);, a map

o (pi|,) E — E is given by

o*(x, y,u) = vs(v,u)
for (x,y,u) e (p(()l)|U)*E, where v € E,. We can see that this definition does not
depend on the choice of v and that w* € SF(xn, U),. Suppose that 7z is a principal
G-bundle. For w e SF(n,U)g, a map s@: E*[,, — G is given by

s (v,u) := T(v,0(n(v), n(u),u))

for (v,u) € E*[,. By the definition, s* € C'(n, U),. We can see that s”° = s and
o =w for any se C'(n,U); and we SF(n,U),;. Let U be symmetric and
Cl (z,U); denote the set of se Cl'(n, U), such that s(u,v)=s(v,u)”" for

mnv

(v,u) € E*[;. Then Cl (7, U)g corresponds to SFyy(m, U)g.

mv
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4 Parallel Displacements along Admissible Sequences

In this section, we introduce parallel displacements along admissible
sequences. First of all, we introduce admissible sequence spaces, which is
topologized so that operations are continuous.

Let X be a topological space and X" := |
Two maps pg, po : X" — X are defined by

=0 X! the topological sum.

Po(Xny -+, X0) = X0, Poc(Xny .05 X0) = Xy

for (x,,...,x0) € X”. A binary operation e on X" is defined by

o(X,y) :=X0y:= (Xp,..., X1, Vs -+ J0)

for (x,¥) = ((xny---%0), Wiy ---520)) € X x XY, Let XY xy X" be a fiber
product of X" 2 x %2 XY, Hereafter in this paper, we denote by the same
symbol e the restriction of the binary operation e to X" xy X!, which is a
partial binary operation on X". A unary operation -~ on X" is defined by
X~ = (X0, X1,--.,X,) for x = (x,...,x1,x0). For x € X", we say that the length
of x is n if x € X"*'. For any subset © = X" and n >0, put S, := SN X"
Note that for © =« X", S = UnzO S(,). We can see that (X", e) is associative and

generated by X U X?, and maps po, p., e, and -~ are all continuous.
DrrINITION 4.1, We call a subspace © <= X" an admissible sequence space
over X if it satisfies the following conditions:

(a) o(S*N(X" xy X1)) c &,
(b) XUAy c G.
() {x |xeG} =@

We denote by o/ (X) the set of admissible sequence spaces over X. Let
Se.Z¥(X). We say that X is S-connected if (p., X po)(S) = X?, that is, for
any (x,y) e X2, there exists x € © such that po(x) =y and p,(x) =x. For a
subset 4 = X2, put

S4 = (Pl X pols) ' (A).

For (x,y) e X%, put S, := S((y,,); and S, := S, . For a symmetric subspace
U < X? such that Ay < U, put

KUY == {(xXn,-..,x0) e X n>1=Vie{l,....,n}: (xi,x;_1) e U}.
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Note that for xe X, Sy, = (pole) '({x}) and Sy = (Pole)” ({x)).
The condition (a) implies (&) = &.

DEerFNITION 4.2. Put
Pyr(Ay) ={U c X*|Vxe X,3V e Ox(x): V x {x} c U},

where Ox(x) is the set of all open neighborhoods of x.
The following example of admissible sequence space is typical.

ExampLE 4.1 (cf. [14]). Let X be a polyhedron of a countable simplicial
complex K in the weak topology. As we have already seen in Examples 3.5 and
3.6, put Ux := |, k|l x |t]. Then, Ay « Ux = X? and (Ux) € /¥ (X). Note
that Sx = (Uk). For xe X, let Vk(x) be the open star neighborhood of x in
X. Then, Vi(x) x {x} = Uk and {Ux )y = Ux € #x2(Ay). If K is connected as
simplicial complex, then X is {(Ug )-connected.

We have a sufficient condition for a pathwise connected space to be ©-
connected as follows.

PrROPOSITION 4.1. Let X be pathwise connected and S e o/ (X) with Sy €
Ix2(Ax). Then, X is {S)-connected, and consequently S-connected.

Proor. Let (x,y) € X x X. Since X is pathwise connected, there exists a
curve ¢:[0,1] — X such that ¢(0) = y and ¢(1) = x. For ze X, fix V. € Ox(z)
such that V. x {z} = Sy). Then, (¢"'(V.))..y is a covering of [0,1]. Let ¢ >0
be a Lebesgue number of (¢!(V2))..y. Let (11)icqo,..xy be a partition of [0, 1]
such that 0= <t <---<fx=1 and t,—t,_; <e for ie{l,...,k}. For
ie{l,....k}, put w;:=c(t;) and fix V. such that c([t;_1,t]) = V... Then,
(zi,wic1) €{zi} x Vo, € Sy for any i€ {2,...,k} and (w;,z;) € V2, x {z;} = S
for any ie{l,... k}. Therefore,

(X, Zk, W15, W1, 21, Y) €Sy = ©
and this completes the proof. O
We prepare the following proposition which will not be needed until the

proof of Theorem 6.3 (Holonomy Reduction Theorem) but being related only
to admissible sequences.
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ProposITION 4.2. For G e 49 (X), we have the following:

(i) pPwle:© — X is an identification.
(i) If X is S-connected and Sy € Sx2(Ax), then p.|

- 6/\’><(.\‘}

: 6X><{x} — X is
an identification for any x e X.

Proor. Note that pylg, = pff)|6() for n >0, where p{" : X"*! — X is the
o & 'S0
projection such that p,”’(x,,...,X0) = X,.
Firstly we show (i). Let ¥ < X such that (p..|s)" (V) is an open set in &.
Since

(pele)™' (1) = U (0i1e,) " (9,

n>0

(pﬁ,")|e(”))7l(V) is an open seto in &, for any n > 0. Equalities S = X and
= idy imply that V = (p(() ))71(1/) is an open set in X, and we obtain (i).
Secondly, we show (ii). Let V' < X such that ( pm|eXx{X})71(V) is an open set

in Sy, (y. Since

(Peley. )" ) = U 0 ey ,) " (),

m=0
(Pl 12y, )7 (V) is an open set in (Sx. ), for any m = 0. Note that

-1 m—
(P,(nm)\(emx))(m)) (V) =CumN(Vx X" x{x})
for any m > 1 and (p(()0)|(6XX(X))<0))_l(V) =VN{x}. Let yeV and (y,x4_1,...,
x1,x) € €, . Then

n+1 -1
(y7 Yy Xn—1,.-- ,X) = (ya y) 4 (y7xn717 R 7x) € (p;(p:rl )l(‘SXX{X})(”H)) (V)

Let V' be an open neighborhood of y in X such that V' x {y} = S. Since
0(6(1) Xx \D ) C(ﬂ-‘rl we have V' x {y} X {x,, 1} X - ] - X {x} c 6(,1_”) N
n -1
(Xl x {x}) (Sxx{x})(ns1)- On the other hand, since (P£,++1 )|(vam),,+1)) V)
is an open set in (Syx(x})(, 1), there exists an open set W in X "2 such that

-1
(Sxx)) ) (V) = (6X><{x})(n+]) nw.

Then for ie{0,...,n+ 1}, there exists an open neighborhood W; of x; in X
such that W, x--- x Wy < W, where xo = x and x,.; = x, = y. Thus

nl
Ul

(V/m Wn+1) X {y} X {xnfl} X X {x} < (eXx{x})(n+l) nw

_ (n+1) -
= (Pu1 |(‘s,(x{x}>w+1>) 7).
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Therefore, (V'NW,11) X {y} x {xp_1} x - x{x} =V xX"x{x}. Thus ye
V' N W,y =V and V is an open set in X. ]

Next we introduce parallel displacements along admissible sequences. Here-
after in this section, let z: E — X be a bundle and S e /¥ (X).

DEFINITION 4.3. Let P: (polc)"E — E be a continuous map. Put Py :=
P(x,-): E,
it satisfies the following conditions:

(1) (P Pv\ ) € Hom((pols) 7, 7).

(2) P = idg, for any (x,x)e &)

(3) x.y_P o Py for any (xy)e@zﬂ(X“xXXU).
4) xf—Plforanyxe

) — E for xe ©. We call P a parallel displacement along © in n if

1

Let G be a topological group and = a G-bundle. Then, P is said to be G-
compatible if (P, p.|z) € Homg(((pole) n, G), (7, G)). We denote by 2%(r, )
(resp. 22 (rn, S);) the set of all parallel (resp. G-compatible) displacements along
S in 7.

Note that for x € Sg) = X, P = idg,. Suppose that there exists P € 2%(rn, ©)
and X is G-connected. Let (x,y) € X* and x e S, ,. Then, from the condition
(4), Px: E, — E, is a homeomorphism. Thus z has a standard fiber. A parallel
displacement is induced by a given invertible slicing function in a natural manner
as follows.

ProrosITION 4.3 (cf. page 283 of [14]). Let we SFy(n,U) and S =<U>.
Put

Pe((Xny ...y X0),u) := (@, x,_, O O Wy x)(U)

Sor ((xn,...,x0),u) € (polc)“E. Then P” € 29 (r, S). If w is G-compatible, so is P*.

Proor. Since & is the topological sum of S, with n >0, we only need to
show that P“ is continuous on each S,. In fact, we can see that P® is written
as a composition of continuous maps on each S(,. The G-compatibility of P®
follows from that of w. O

Let Pe 2% (n,S). For any n >0, restricting P to &(,, we obtain a con-

tinuous map P| g If m=1, then P| )£ 1s a invertible slicing function

(Pol P0|

over ().
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EXAMPLE 4.2. Let pr;: X x G — X, we SFy(pr, X x X); be as in Ex-
ample 3.1. Namely, «o(x, y,(y,p)) = (x,p) for (x,y,(y,p)) € p;(X x G). Then
for ((xn,...,xo0),(x0,a)) € p;(X x G), we have

Pw((xnv s va)v (an a)) = (wxn,an ( o (wxbxl (wxl,xo (an a))) o )
= (wxman ( o (wxz.,xl (X],a)) o ) = (X,,,(l).

Thus, P” € 2%(pr;,X"); is a trivial one.

ExaMpLE 4.3 (cf. [14]). Let @x be the universal bundle which we have
reviewed in Example 3.5. A map P : (po|@K)*EK — Eg is defined by
PK((XH» v 7X17)/m), [yrm SRR ylva]) = [xm < X1 ym][ym» e YVl UO]
for ((~xn, e X1y Yy [V - V1, 00)) € (po\eK)*EK. Then Py € 2% (g, k)¢, We
call Pg the universal parallel displacement on 7g. Since

Pr((Xny ey X1 Vi) iy -« o5 Y1,00]) = [Xus -« oy X1 Vi) [ Vs - - -5 V1, V0]
= [Xus Xn1] - - v, Yl [y -5 1,500
= (WK, 5,1 ©* © WKy, 3,) (Vs -5 y1, 00])
= PO ((Xus -+ X1, V) [V - > Y15 00))

for ((Xu,--.,%0), [X0, ¥m-1,---, »0]) € (pole,)"Ex, we have Pg = P,

For any subset 4 — X2, restricting P to S, we obtain a continuous

map P|(p0‘SA)¥E. In particular, for any n >0, we obtain a continuous map

- We shall see in Section 5 that P| g plays a similar role

P
|(P0|(5AX)(n>> po‘(eAX)(g))

of curvature in the smooth category and the germ of P“’v|< g 1s the

Polorgy)m)
curvature of a connection [s] ;- ) elan Cl (n,U); in the sense of Asada
N2

mv
[4, 5]. Thus we call P|(1,0‘(3AX)(3)

Local trivializations of a bundle are induced by a parallel displacement along
an admissible sequence satisfying an appropriate condition.

)g the curvature of P and denote it by R”.

THEOREM 4.4. (i) Let n: E— X be a bundle and P e 2% (n,S). Suppose
that X is S-connected and Sy € Sy2(Ax). Then for any xe X, n is a locally
trivial bundle with standard fiber Ej.

(i) Let G be a topological group, n:E — X a principal G-bundle, and
Pe2%(n, @) Suppose that X is S-connected and Sy € Sy2(Ay). Then m is a
locally trivial G-bundle.
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Proor. Firstly, we show (i). For y € X, fix ¢, € €,  and a neighborhood V,
of y in X such that V, x {y} = &(;). A continuous map o, : E[VI — V), x E; is
defined by

% (v) = (n(v), P(c, @ (y,7(v)),v))

for veE [Vy. Then prjoa, ==z, . On the other hand, a continuous map
Ky : Vyx Ex — E[, is defined by

Ky(zvp) = P((Zvy) b c}’7p)

for (z,p) eV, x E,. We can see that x, = (2,)"'. Therefore, o, is a local
trivialization.

Secondly, we show (ii). Let u€ E. For ye X, fix ¢, € S, ;) and a neigh-
borhood V) of y in X such that Vy x {y} = S1). A continuous map «, : E[), —
V, x G is defined by

% (v) := (=(v), T(u, P(c, o (y,7(v)),v)))
for ve E[}, . Then pryoa, =n[, . For (v,a) € E[, x G, we have
oy (va) = (n(v), T(u, P(c, o (y,7(v)), va)))
= (n(v), T(u, P(c, o (y,7(v)),v)))a = o (u)a.
On the other hand, a continuous map x,: V, x G — E [VJ: is defined by
Ky(z,a) := P((z,y) ® ¢,,ua)

for (z,a) € ¥V, x G. Then we can see that x, = (x,)"'. Thus, «, is a local
trivialization. ]

Next we introduce morphisms preserving parallel displacements. Let X and
X' be topological spaces. For a continuous map f: X — X/, let f“: X" — X'V
be a continuous map such that

fu|X"+‘ :fn+1 ::f N, f . Xn+l N X/n+l

for n > 0.

AL (X'). We say that

DEFINITION 4.4. Let CSe«9(X) and €' e
@' Let n:E— X (resp.

f:X = X' preserves S and & if [fY(S)
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n':E'— X') be a bundle and Pe2%(n,S) (resp. P' e 2%(n',S")). Let
(h,f) e Hom(z,7') such that f preserves S and &'. We say that (A, f) preserves
P and P’ if

h(P(x,u)) = P'(f"(x), h(u))
for (x,u) € (pol) E.

We obtain a category whose objects are bundles with parallel displacement
along admissible sequences and morphisms are bundle morphisms preserving
parallel displacements.

DerFiNiTION 4.5. Let n (resp. n') be a G (resp. G')-bundle and Pe
PY(n,S); (resp. P e 2%9(n',&')s). For (h,f,p) e Hom((n,G), (7', G")), we
say that (h,f,p) preserves P and P’ if (h,f) preserves P and P’ as a bundle
morphism.

Similarly, we obtain a category whose objects are G-bundles with G-
compatible parallel displacement along admissible sequences and morphisms
are homomorphisms preserving G-compatible parallel displacements, where G
runs throughout the whole topological groups and p runs throughout the
whole continuous group homomorphisms. For a map f: X' — X, a map
[ P(X"Y) — 2(XM) is defined by

[rA=f1(4) = (") (4)

for A e 2(X"). Let =: E — X be a bundle and P e 2%(xn,S). For Y < X, put
Sly =iy x(S) and

Ply = E[Y|P|<p0\e[y)*5[y-

We call P[y the restricted parallel displacement. For a continuous map
f:X"—= X, an induced parallel displacement f*P: (po|;.c)'f*E — [*E is
defined by

(P (G- 30), (x0,10)) 2 = (s P (s 0). f (0,))
= (%X, P(f (%, - - - X0), 1))

for ((Xu, ..., X0), (x0,u)) € (pols-c)"f*E. The following properties are fundamental
and the proof is straightforward.
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PrROPOSITION 4.5. (i) The bundle map (ig, g,iy x) preserves P[y and P.

(i) The canonical bundle map (f,f) preserves f*P and P.

(iti) If = is a G-bundle and P is G-compatible, then P[, and f*P are also
G-compatible.

Let 7: E — X be a principal G-bundle, G’ a topological group, p: G — G’
a continuous group homomorphism, and z” the G’-bundle associated with z.
For Pe 2%(n,€),; put

Pp(X, [“7 a]) = [P(Xv u)aa]

for (x,[u,a]) € (pole) E”.
PROPOSITION 4.6. We have P’ € % (n’, ).

Proor. We can see
(ids x g&*%) " ((pol ) E?) = ((pols) "E) x G

Then, from Lemma 2.2, ¢":= .y g |(idg X quG/)|(<p0|:>*E)XG, is an open map.
Since ¢’ is surjective, it is an identification. Thus, the continuity of P? follows

from the equality PP oq’ = quc’ o (P x idg). Since

PP(x,[u,alb) = P’(x,[u,ab]) = [P(x,u),ab]

= [P(x,u),alb = P”(x, [u,a])b
for ((x,[u,a]),b) € ((po|lc) E”) x G', PP is G'-compatible. !

We call P? a G’'-compatible parallel displacement associated with P. By
straightforward arguments, we obtain the following fundamental propositions,
which will be needed in the proof of Theorem 8.1 (Classification Theorem).

ProposITION 4.7. The homomorphism (0”,p) e Hom((%, G), (n”,G")) pre-
serves P and P?.

PropoSITION 4.8. Let n: E — X (resp. o' : E' — X) be a principal G (resp.
G')-bundle. Let Pe 2?%(n,S); and P' € P9 (n',S),. If (h,p) € Hom((n,G),
(', G")) preserves P and P', then h* € Homy ¢ ((n”,G"),(n’,G")) preserves PP
and P'.
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5 A Holonomy Group of the Parallel Displacement

In this section, we define a holonomy group of the parallel displacement and
study its fundamental properties. In particular, a relation between the holonomy
group of a connection in the smooth category and the holonomy group of the
parallel displacement induced by the smooth slicing function in Section 3 is
studied. Moreover, we define a local holonomy group of the parallel displace-
ment. In the smooth category, the Lie algebra of the holonomy group of a
connection is spanned by the image of the curvature at every point of the
holonomy bundle. As an analogue of this fact, we show that the local holonomy
group is generated by the curvature of a parallel displacement. At the end of this
section, we study a relation between the local holonomy group of a connection in
the smooth category and the local holonomy group of the parallel displacement
induced by the smooth slicing function in Section 3.

Let #: E— X be a principal G-bundle with translation function 7' (see
Section 2) and P a G-compatible parallel displacement along & in 7, that is,
P e 2%(n, @), For x e X, we denote by S, the subset (p..|s X pols) ™ ({(x,x)})
of & (see Definition 4.1).

DerFINITION 5.1. For ue E, a map P": S;,) — G is defined by
PY(x) := T(u, P(x,u))
for x € 4. A subgroup
O 1= ®“(P) := P"(Syu)
of G is called the holonomy group of P with reference point u. We assume that

the topology of ®" is the relative topology induced from G.

Note that S, is a monoid with identity element 7(x) and P is a monoid
homomorphism. We show in Proposition 5.1 that ®“ is in fact a subgroup of G.
The following examples of holonomy groups are typical.

ExampPLE 5.1. Let pr; : X X G — X, P® € 2%;(pr;, X") be as in Example
4.2 and (x,a) e X x G. For (x,x,_1,...,x1,x) € Sy
(P (x, X1, X1, X) = T((x,a), PP((X, Xp_1, - . ., X1, X), (x, @)))
= T((x,a),(x,a) =a'a=1g.

Thus, ®%9(P?) = {15}.
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ExampLE 5.2 (cf. [14]). Let 7x be the universal bundle which we have
reviewed in Example 3.5, Px the universal parallel displacement as in Example
4.3, and [vo] € Eg. Since

P[I?)](U(an—la e X1, 00) = Pr((v0, Xut1, - - -, X1, 00), [vo])
= [U(),xn,], e 7x17170]
for [vo, Xu—1,...,X1,00] € Gk, we have @) (PK) = Gg.

Similar to the holonomy group of a connection in the smooth category, the
following fundamental properties hold (for example, [12]).

ProrosITION 5.1. (i) For ue E, ®" is a topological subgroup of G.
(i) For u,ve E and x € & such that P(x,u) =v, we have ®" = ®".
(iii) For (u,a) e E x G, ®" = a~'®"a.
Proor. Firstly, we show (i). For a = P*(x), b = P¥(y) € ®“, since
ab = T (u, P(x,u)) T (u, P(y,u)) = T (u, P(x,uT (u, P(y,u))))
= T(u, P(x, Py, u))) = T(u, P(x 0y, u))
and
aP*(x”) = T(u, P(x,u)) T (u, P(x",u)) = T(u, Px(P;' (1)) = lg,

we have ab e ®" and a~! = P*(x~) € ®“. Thus, from the property of the relative
topology, ®" is a topological subgroup of G.
Secondly, we show (ii). For a = P*(y) € ®“, since

P(xeyex ,v)=P(x,P(y,P(x,v))) = P(x, P(y,u)) = P(x,ua) = va,

we have a = P'(xeyex ) and a € ®". Similarly, we have ®° < ®*.
Thirdly, we show (iii). For b = T'(ua, P(y,ua)) € ®*“, since

b= T(ua,P(y,u)a) = a’lT(u, P(y,u))a= a’lP“(y)a,

we have b e a'®"a, where y € S,,) = Sy(y). Similarly, we have ¢ '®"a = @™
and this completes the proof. O

Let 7 : E — X be a principal G-bundle and u € E. Let I be a pseudodirected
set and (S)),.; € #L(X)" such that for any i, je I, if i < j, then &; = &;. For
i,jel with i < j, let n; : 29(rn, S;)g — P9(n, S)) (resp. {; : Hom((S)),,), G)

n(u)?
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- Hom((ej)n(u)’
Gilf) = folg,,. @, for Pe?P(n,Gi); (resp. [feHom((S),,,0)),
where  Hom((S;),,),G) is the set of monoid homomorphisms. Then
(22(7, @) M) i jyerr (resp. (Hom((S:),,), G), i) jyer2) 18 an inductive sys-
tem. For iel, let ¢;: 2%(n, S;)g — Hom((S;),(,), G) be a map given by

G)) be the restriction, that is, #;(P)=P|,, ) (resp.
g

¢;(P) :== P".

Since ¢, 0n; =00, for i,jel with i<j, a map liLni @; : lim, PY(n, Si)g
— lim, Hom((&;) ), G) can be defined. A map E;:lim Hom((S),,,G) —

{G' = G| G’ : submonoid of G} is defined by
(/)= ) Im[f".

frelfl;

u)’

Put ®;:=E;olim ¢, Then ®;([P];) is a subgroup of G for [P, €
lim #%(n, S;)g. We call ®f([P];) the holonomy group of [P];. For iel, let
Y; 2 SFin(m, Up)g — 2%(r, i) be a map given by y,(w) := P“. Since ;0 p; =
nioy; fori,jel with i < j, amap lim y; : lim SFny (7, U;)g — lim. 2%(n, S;)
can be defined. In particular, we consider @ AX>([P‘”b,3(2 (Ay)) @s @ holonomy
group of a topological connection [w](@z( Ay) E liLnU SFiny(7, U); in the sense of
Asada, where Ay2(Ay) is the set of neighborhoods of Ay in X2.

DerFmiTION 5.2, Let n: E— X be a smooth principal G-bundle, X a
Riemannian manifold, and H a connection in E (see Example 3.7). For any
piecewise smooth curve ¢:[0,1] — X, let 77 : E o — E) be the parallel dis-
placement along ¢ derived from H. For u e E, put

Wi (H) = {T(u,z (u)) € G|c

geo
is a closed curve consisting of geodesic segments}.

The following proposition shows a relation between the holonomy group of a
connection and the holonomy group of the parallel displacement induced by the
smooth slicing function in Example 3.7.

ProposITION 5.2. Let n: E— X be a smooth principal G-bundle, X a
Riemannian manifold, H a connection in E, and o € SFy(n,Uy"); as in Ex-
ample 3.7, where V" is an open covering of X which consists of strongly convex sets
and Uy =\ ),., V x V. Then Woeo (H) = ®“(P*"), and consequently Wieo(H) =
(I)}}%(X)([P“’H]e(/(g(,()), where S€(X) denotes the set of open coverings of X which
consist of strongly convex sets, preordered by V" < W if W is a refinement of V.
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Proor. Let (P°")"“(x,,...,x1,x0) € ®“(P®"), where x, = xo = n(u). Then
there exists a unique family of shortest geodesics (y;: [0,1] = X);.4o 1} such
that ,(0) = x; and y;(1) = x;41. Since tf = ! for i€ {0,...,n— 1}, we have

PV (X, . x1,x0) = T, (0 oo )(u))

XnXp—1 X1X0

= T (e oot )W) = T(u,tl |, (W) € Wiy (H).

7 177170 geo

Thus ®“(P*") = W _(H).

(0]
Conversely, letg T(u,tf, (1) € Yoo H), where (y;:[0,1] = X),cy i
a family of geodesics. For ie{l,...,n}, (37'(V)),., is an open covering
of [0,1]. Let 6' >0 be a Lebesgue’s number of (y;'(V)), ., and 0=¢ <
tf <--- <t =1 a partition of [0,1] such that ¢/ — /| <4'. Then there exists a
sequence V/,..., V/} e 7" such that y,([t]_,,7]]) = V; for je{l,...,k;}. Therefore,

(7:(1), yi(tli,—l)a cee yi(t{)v 7:(0)) € <Uy~>. Since

H

H
T, =T, ol oyl =T o---0T) oTy
Vi y“[lllﬂ'*l'l]o Om[ff‘%]om[""f] }/‘[’I:,-—l‘l] /:‘[,]!,,21] /‘[0,,11]’
we have
H _ _H . H
e e © °Ty,
H H H H H
= 0--+0T. oT o o(1) 0---0T, T
( Vn\[r,';” 1 /u‘[z]”.t;] yn‘[(),(;l]) ( }1|[,/117 1 }1\[,11 21] V]\[Ov,ll])
H H H
= o o) 0] 0]
(@m0 ) D (1), 7,(17) © ©a(11),7,(0))
H
o [¢] o o
(@000 ) A 1]) © o) 0)
H
— P(U R .
(D)7 (8 )y 71.(])571(0))
Thus,

Tt () = (P*") (1), 7, 1), -1 (1), 71(0) € @*(P")

and W (H) c ®“(P°"). O

geo

Next we study local holonomy groups for the parallel displacements. For a
symmetric subspace U — X? with Ay c U and x e X, put

<U>)lc = {(xaxnfla"'axlax) € <U>X|Vke {1,...,}’17 1} : (Xk,x) € U}

Then <U >; is a submonoid of (U),. Let 7: E — X be a principal G-bundle and
Pe2?9(n, ).
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DerFINITION 5.3. For ue€ E, we call a subgroup
! (P) = P“({S(1)Da)

of ®“(P) the local holonomy group of P with reference point u.

Let Hommv(<U>)lC,G) be the set of feHom((U}i,G) such that for
(X, Xn—1, - - -, X1,%0) € <UD,
f(xn,xnfl,...,Xj,...,XI,X()):f.(xn,xnfl,...,)zi,...,X],X())

if x;y1 =x;_1 or x; =x;_1 for some i€ {l,... ,n}, where the symbol x denotes
deletion of x. Note that Im f is a subgroup of G for f e Hom;, (<UY., G). A
map

2% Homiy (UYL, G) — {G' = G| G' : subgroup of G}
is given by

E°!(f):=1Im [

for fe Hominv(<U>i, G). A map ¢":29(n,S); — Hominv(<€<1>>;(u), G) is
given by

¢"(P):=Po i<‘5(1)>

;(u)’ SO
Then we can consider ®“' as a map 2%(n, €), — {G' = G| G’ : subgroup of G}
such that ®*! = =271 cu,
Let 2*(U,G) be the set of continuous maps f : ((U),)s — G such that
(1) for (X3,X27X1,X0) S (<U>x)(3): f(X3,x2,x1,x0) = IG if Xi = Xij—1 for some
ie{1,2,3},
(2) f(x7) = f(x)7" for xe (KU ).

Let <S)) denote the subgroup of G generated by a subset S < G. A map
EYEN: 9%(U,G) — {G' = G| G’ : subgroup of G}

is given by EVE(f):=Im f)). We show that there exists a one-to-
one correspondence between Homi, (<UY! G) and 2%(U,G). Two maps
9 : Homyy (UYL, G) — 2%(U, G) and ¢ : 2°(U, G) — Hom,, (U, G) are given
by

() =T ol ws!
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for feHominv(<U>;,G) and

U(f,)(xnﬂxn—h' .. ;x17x0)

[l if ne{0,1,2}
L Xty X, X) e £ (3, X3, 0, %) f (3, X2, X1, x) i >3

for f'e 2*(U,G) and (Xp,Xp_1,-..,X1,%0) € (UYL For [’ e 2%(U,G) we have
(a(f")) = f'. Conversely, for f e Homiy (<UD, G) and (x,, %, 1,...,X1,X) €
UYL, we get

J(S(f))(xﬂ7xn711"'7~x1)x0) = IG :f(-xn7xn717"'7x17x0)
if ne{0,1,2}, and

a(3(f))(Xns Xn-1, .-, X1,X0)
‘g(f)(xa Xn—1, Xn-2, )C) T 19(f)(x, X3, x27x)‘9(f)(x> X2, x17x)

= f(x, Xp—1, Xn—2, %) - - - f(x, x3, x2, x) [ (x, X2, X1, X)

= S (X, Xn-1,Xn—2,X) ® - @ (x,x3,x2, X) ® (X, X2, X, X))
= f(X,Xp_1,Xn_2, X, ..., X, X3, X2, X, X2, X], X)

= (X, Xp_1,Xn—2y -+ -, X3, X2, X, X)

if n>3. Thus ¢ = 9 '. Note that %! = =% &no 9,
For ©e.27%(X), we denote by %(m,S) the set of continuous maps
h: (pols,.), ) E — E such that

Ay )(3)
(1) (h’pml(eAx)u)) € Hom((po‘(eAX)a))*n’ ), .
(2) for (x3,x2,Xx1,X0) € (SXO)(3>, hixs xo,x1,x0) = idE\,0 if x;=x;_; for some
i e {17 27 3}7
(3) hx = hy' for x € (Ey)p),

where hy := h(x,-) : Ey — E, for xe (Sx)<3). For a G-bundle 7, we denote by
A(n, ), the set of h € #(n, S) such that (h71’°0|(6AX)<3)) is a G-morphism. A map
0:2%9(n,S) — R(n,S) is given by assigning to P e % (n, S) the restriction
Py polieg, ) B which we call in Section 4 the curvature of P and denote by R”.
Note that o(22(n,S);) < #(n,S). Let m be a principal G-bundle, u € E, and

he %#(n, ). Then a continuous map h": (Syy))s) — G is given by

h(x) == T(u, h(x, u))
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for x € (Sz())3)- A map &": A(n,S)g — ,@”<“)(6(1),G) is given by

gu(h) ==h"o i(<e(l)>n(zd)>(3)7(Sﬂ(xl))@).

We have Joc* =¢g" o p. Put Q" :=E"":&" o gt In the smooth category, the Lie
algebra of the holonomy group of a connection is spanned by the image of the
curvature at every point of the holonomy bundle. We obtain an analogue of
this fact.

PROPOSITION 5.3. For Pe 2%(n, @), ®“'(P)=Q"(R").

Proor. Since

7(u), 1 Ogu _ En(u),gen oeto 0= Err(u).gen 0do gu _ En(u),gen oeo 0,

[1]

we have the conclusion. |

Let I be a pseudodirected set and (S;),.; € LY (X )Y such that for any
i,jel, if i<j, then € <&, For i,jel with i<j and xelX, let
i : Hominv(<(6[)(l)>;, G) — Hominv(<(6j)<1>>;, G) be the restriction. A map

=zt s lim Homiy (<(S) ! G) - {G' = G| G : subgroup of G}

X’
i

is defined by

)= ) Imy’
frelfl
for [f]; € liLn,- Hominv(<(6i)(l)>};7 G).
For i,jel with i <j and xe X, let x; : 2%((S:) 1), G) — 27((S)) (1), G) be
the restriction. A map

Ep ¥ lim 27((€:) ), G) — {G" = G| G" : subgroup of G}

1

is defined by

) = () Kim 7.
Selfl

For the maps 9 : Hominv(<(6i)(1)>i, G) — 27((Si) 1), G) and 0;: 2%((Si) 4, G)
— Hominv(<(6i)(1)>;, G), since o; = 97! for iel, lim, o; = (lim, 9)7".
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ProposiTioN  5.4. For  [f]; € lim, Homin, (<(&;) 0. E(U1)=
—X gen((]ini 9,)([f]l))

Proor. Note that Im /' = Im $(f)). Let aeEy l([f],). Then, for any
felfl;, aelm f'. For f"e(lim %)([f];) with f"e2%(S)q),G), since
ai(f") € [fl;, aeIm 3i(ai(f")» = KIm f". Thus ae =7 *"((lim, 4)([f];))

and :1‘1([f]1)c”*ge“((hm 9)([f];))- By a similar argument, we have
271 (1) = &7 (tim, 8)([11)). O

For the maps ¢}:2%(n,S;), —>Hommv(<(6,-)<l)>7lz(u),G), since ¢} o 77,
=¢yo0¢g for i jel with i<j a map liLni [ liLni PY(n, S)g —
lim, Hominy ({(&) 1) >2()> G) can be defined. Put P! = gy olim, ¢f. Then
®}*'([P],) is a subgroup of ®Y([P],) for [P],elim 2%(n,E;); We call
(I)"‘l([ ];) the local holonomy group of [P], with reference point u.

For i, jel with i< j, let {;: %(n,S); — A(n,E;); be the restriction.
For the maps ¢, : % (%, S;) — A(n, S;), since g;on; = ;00 for i,jel with
i< j, a map lim o :lim 2%(r,S;) — lim, #(n,S;) can be defined. We call
(lim, 0;)([P];) = [R”]; the curvature of [P]; € lim, 2% (n, ;). Let 7 be a G-bundle.
We can also define a map lim 2%(n, S;); — lim. #(n, S;) .

For the maps ¢: Z(n, S;)s — Q”(”)((e,»)(l), G), since ¢ o(; =rxjog! for
i,jel with i <j, a map lim & : lim %#(r, S;); — lim 27((&)) ), G) can be
defined. Put Q¥ := 27" o lim_ &/

PROPOSITION 5.5.  For [P, elim 2%(x, €;), @' ([P],) = Qf ([R"])).

PrOOF. Since ;0¢) = ¢/ o g; for any i € I, liLn[ 9o liLni ¢l = liLni gl o li_n}i 0i.
Then, from Proposition 5.4, we get

cHE ((n;n g;'> <[P1,>> = Eﬁ“)’ge“((n;n a—) ((n;n g,-“> <[P1,>>>

and obtain the conclusion. OJ

For U < X? such that Ay < U, put

V(E2 (U) = {(W,U,u) € E’ | (U,u), (w,u), (W, U) € E? |—U}
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We denote by C?(n, U), the set of continuous maps f : V(E*[,;) — G such that

(1) f(w,o,u) =16 if w=v or v=u for (w,v,u) e V(E?[,),
(2) f(wa,vb,uc) = b='f(w,v,u)b for (w,v,u) e V(E*[,) and a,b,ceG.

A map 6}, : C'(z,U); — C*(n,U) is given by
O48) (w, v, 1) = s(v, u)s(w, u) " s(w, v)

for (w,v,u) € V(E?[,). We call ;s the curvature of se C'(n, U)..

Let / be a pseudodirected set and (U;);.; a system of subsets of X2 such
that for any i,jel, Ay c U;, and if i < j, then U; = U;. We can see that a
map lim. dy, : lim. C'(x, U;); — lim_ C2(, Uj) is defined. We call (lim. d7,)([s],)
the curvature of [s|; € lim C'(z, U;)s. In particular, (lim,_ 5}/)([3]%( J(ay) 18 the
curvature of [S]A,;(Z(AX) eliglU Cl(n,U); in the sense of Asada (|4, 5)).

Put

VUE?[y) = {(u1,u0,u2) € V(E?[ ) [uo = u}.

We denote by C>¥(r,U), the set of continuous maps f : V*(E*[;) — G such
that

(1) f(ur,u,up) = lg if uy =u or up =u for (uy,u,ur) € V*(E*[),
(2) f(wa,ub,urc) = b= (ur,u,us)b for (ur,u,us) € V*(E*[;) and a,b,c € G.

A map ¢: C*(n,U); — C>*(n,U) is given by

e(f) = J o dyupr,), vigrr,)

for f € C*(rn,U)g. Let C2 (n, U), denote the set of f € C*(n, U), such that for

mv
(u,v,w) € V(E*[), f(u,0,w) = 1g if u=w, and f(u,v,w) = f(w,v, u)”". There
is a one-to-one correspondence between C2 (m, U)g and #(n,{U»);. Two maps
v:CE (n,U)g — #(n, U and A: R(n,{U); — C2 (n,U); are defined by

v(f)((x0, X2, X1, X0), to) := uo f (11, uo, Un)

for ((xo,x2,x1,%0),u0) € (Pol(cv, )m)*E and u; € E,, for ie{1,2}, and
x /(3

A (w0, uz) = T (uo, f'((m(uo), n(u2), m(ur ), m(up)), o))

for (uj,up,u2) € V(E*[;). We can see that A=v"!. For the maps
A C2 (7'[, U,’)G — 9?(7[, <Ul>)G and )\.j : %(7’[, <Ul>)G — C~2

inv mv(
the equality lim, 2; = (lim, vi)

7, Uj)g, we obtain
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ProrosiTION 5.6. For

[s]; € lim, cl

mv

(m, Ug, @' ([P”];) = Q“((lim, vi 06y, ([s]))).

In particular, ®%' \ (P*) - x) = Q“((lim vi03L) (15 a) for ] ian)
ehm Cl (m, U)G.

mv

Proor. It suffices to show that for se Cl (7, U)., R?” = v(d).s). We have

R ((x0,x2,x1,X0), o) = P ((x0, X2, X1, X0), Up)
= oy (03, (0F  (40))) = uos(uo, uas(uz, urs(ur, uo)))

= ups(ug, u2)s(uy, ua) " s(ur, up) = v(015) (X0, X2, X1, X0)

for ((xo0,x2,X1,X0),uo) € (p0|(<U>AX)(3))*E and u; € E,, for ie{1,2}. O

Let #: E — X be a smooth principal G-bundle, X a Riemannian manifold,
and H a connection in E. We denote by W[ (H) the local holonomy group
of H, that is, W\ .(H) =), ¥"“°(H|,), where U runs through all connected
open neighborhoods of n(u), H|, is the connection in E[, induced by H, and
yuOH |) is the restricted holonomy group of H|, with reference point u.

ProposITION 5.7. Under the assumption of Proposition 5.2, we have

Wioe (H )”‘Pgeo( ) = (D';wlg( )([Pw”}f/(g(X)) for o™ € SFy,(x, Us)e

ProoF. Let aed);fg(x)([P”H],ﬂg(X)) and W be a connected open neigh-
borhood of 7(u). Let 7" be the open covering of X \{z(u)} consists of all strongly
convex sets contained in any element of #°. On the other hand, let V € ¥~ with
n(u) € V and C be an open strongly convex set with n(u) e C = WN V. Then
™" .= v""U{C} is an open covering of X consists of strongly convex sets and
a refinement of 7", In particular, we have a e Im((P*")"| Uy ) )). Then, by a
similar argument as in the proof of Proposition 5.2, there exists "&n, .oy X1,X0) €
Uy ~> ) and a unique family of shortest geodesics (7, : [0,1] = X), (o ,-1y such
that yk(O) = x; and y.(1) = xzy1, and

a=(P”"V'(xp,...,x1,x0) = T, 7™ . (u)).

i
Since (xg,7m(u)) € Uy for any ke{l,...,n—1}, we get x, € C and Imy, <
C < W for any k € {0,...,n — 1}. Note that the curve y,_; - - - 7,7, is homotopic to
the point 7(u). Therefore, a € ¥*“°(H|,,) NWg,(H), that is, Q’;(IK(X)([P“’H]y(g(X))
< Wioe (H) NWgeo (H)-

geo
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Conversely, let ae W, (H)NWg,(H) and fe[(P“’H)“]y(g(X). Then, there
exists # € Y%(X) such that f| ., M = (PwH)u\<U%>71W). Put W' = {Vew|
n(u) e V}. Since W' is connected, we get ae‘I’“’O(H|W,)ﬂ‘I’geo(H). Then,
there exists a family of geodesics (y;:[0,1] — W'),

qp such that a=
T (u, Ty]j--vl (1)). By a similar argument as in the proof of Proposition 5.2, for any

ke{l,...,n}, there exists a partition 0 =#§ <1f <--- <5 =1 of [0,1] such
that y, ([t} |, F]) is contained in some V; € %" with n(u) € V; for [ € {1,...,my},
and

H (UH

Bt = L0 e ()21 (0)"

Then we have

_ H
a=T(uz, .., (1)

= (P")" (D), atg, 1)1 (1), 71 (0)) € IM((P") "y, 1),

that is, aelm(f]y, >i<~>) cIm f. Therefore, Wi (H)NYPL (H) <

geo

u, 1 ot
Q5 ([P gax))- U

6 A Holonomy Reduction Theorem and Related Results

In this section, we define a holonomy bundle of the parallel displacement
and study its fundamental properties. As in the smooth category and [l], we
obtain a holonomy reduction theorem and related results. In order to clarify the
arguments, we introduce a category C, whose objects are quadruples (z, G, P,u),
where 7 is a principal G-bundle, P € % (n, S) is a parallel displacement, and
ue E=dom z.

Let 7: E — X be a principal G-bundle, P € 2%(n, ), and u € E.

DEFINITION 6.1. Put
Eu = EM(P) = {P(X,u) |X € eXX{n(u)}}-

The bundle 7" := 7|z, : E¥ — X is called the holonomy bundle of P through u.
We assume that the topology of E* is the relative topology induced from E.

Note that if X is S-connected, then 7* is surjective. Similar to the holonomy
bundle of a connection in the smooth category, the following fundamental pro-
perties hold.
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ProposITION 6.1. (i) For u,ve E and xe€ S such that v = P(x,u), we have
E*=E".
(i) For (u,a) € E x G, E" =r,(E"), where r, : E — E is a map assigning va
to v.

(iii) If X is S-connected, E =), _. E" for ueE.

aeG

Proor. For w= P(y,v) € E’, since w= P(yex,u) e E", we have E" < E".
Similarly, we have E* < E” and obtain (i). For w = P(y,ua) € E", since w =
P(y,u)a € r,(E"), we have E" < r,(E"). Similarly, we have r,(E*) = E** and
obtain (ii). For ve E and x € S, (), since

v = P(x,u)T(P(x,u),v) = P(x,uT (P(x,u),0)),

we have v e E* where a := T(P(x,u),v). Since E* < E for any a € G, we have
U,cq E* = E and obtain (iii). m

Let 7: E— X (resp. #': E' — X) be a G (resp. G')-bundle and (4,p):
(n',G’) — (n,G) a homomorphism. We call (h,p) a reduction of n to =’ if h
and p are injective. Let (4, p) be a reduction of = to n'. For P e 2%(n, ), and
P e 296 (n', &), if (h,p) preserves P’ and P, we say that P reduces to P’
and call P’ a reduced parallel displacement of P. For clarity, we introduce
the following category C. For a principal G-bundle 7n: E — X, P e 2%(n, ),
and u € E, we consider a quadruple (z, G, P,u) as an object in C. We denote
by Cp the collection of objects in C. A morphism between (7, G,P,u) and
(', G’,P',u’") in C is a homomorphism (4, f,p) : (z,G) — (n’, G') preserving P
and P’, and satisfying /1(u) = «’. For simplicity, we denote by P[. the restriction
E"|P|(Po\e)
Thus, once 7* is proved to be a ®“-bundle, it is a principal ®"-bundle. Again,

«g«. From the property of the relative topology, ¢«

T (g is continuous.

from the property of the relative topology, (i« g, ipv ) is a reduction of 7 to 7"
and P, € PD¢«(n", S) is a reduced parallel displacement of P. Then, we define
a holonomy reduction of (7, G, P,u) € Cy.

DerNiTION 6.2, For ue E, we call a quadruple (7%, ®", P[g.,u) the hol-
onomy reduction of (n,G,P,u) if (n",®" P[.,u) € Co.

Suppose that X is S-connected. Then a map s*:=s*(P): X — E"/®" is
defined as follows. For x e X, choose xe S, ;) and put

s*(x) = [P(x,u)].
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This definition does not depend on the choice of x as follows. For any y € S, (),
since

P(y,u) = P(x,uT(u, P(x" o y,u))) = P(x,u) P"(x" oy),

we have [P(y,u)] = [P(x,u)]. Note that ="/ " (see Section 2) is well-defined.
Since

7/ (s"(x) = 7"/ ([P(x,0)]) = m"(P(x,u)) = x

for xe X and

s“(7"/ P ([P(x,)])) = (2" (P(x,u))) = s"((Po] ) (%)) = [P(x, 1)

for [P(x,u)] € E*/®Y we have s* = (z*/®")"'. From Lemma 2.3, n* is a ®"-
bundle if and only if 7"/ *isa homeomorphism. Thus, by the Definition 6.2, we
have the following proposition.

PROPOSITION 6.2. For ue E, (n",®", P[gu,u) is the holonomy reduction of
(n,G,P,u) € Cy if and only if s" is continuous.

We have a sufficient condition for an object to admit the holonomy reduction
as follows.

THEOREM 6.3 (Holonomy Reduction Theorem). Let (%, G, P,u) € Co, where
n: E — X is a principal G-bundle, P € 2%(rn, ), is a parallel displacement, and
ue E. Suppose that X is S-connected and Sy € Sy2(Ay) (Definition 4.2). Then
(", @Y, P[ pu,u) is the holonomy reduction of (n, G, P,u). Moreover, n" is a locally
trivial ®"-bundle.

Proor. Note that the diagram

P(': ) u
Sxufay ——— E

" u
E
pmgXx{n(u))J( / lqm”

X — . EYo
S!(

commutes. From Proposition 4.2, py|c is an identification. Then, from

Sxx{n(u)}
upper half of the diagram, " is an identification. Again, from lower half of the
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diagram, s* is continuous. Thus from Proposition 6.2, (7", ®¥, P[p.,u) is the
holonomy reduction of (7, G, P,u). Then, from Theorem 4.4 (ii), z* is a locally
trivial ®“-bundle. [

Suppose that two objects both admit the holonomy reduction defined in
Definition 6.2. Then a bundle homomorphism between holonomy bundles which
preserves the structure involved induces a continuous group homomorphism
between holonomy groups. Moreover, we obtain a relation between Ker P* and
Ker P

PropoSITION 6.4. Let (n, G, P,u) (resp. (n',G',P',u’)) € Cy, where w: E — X
(resp. n':E'— X') is a principal G (resp. G')-bundle, Pe P%(n,S), (resp.
P e 29(n',@)z) is a parallel displacement, and ue E (resp. u' € E'). Suppose
that X (resp. X') is & (resp. @')-connected and (z*,®", P[.,u) (resp. (2", ®"
P'[pw,u')) is the holonomy reduction of (n,G,P,u) (resp. (n',G’, P’ u’)). Let
f:X — X' be a continuous map preserving S and S', and satisfying f(n(u)) =
n'(u"). Then we have implications (i) = (ii) and (i) = (iii):

(i) There exists a bundle morphism (h”"ﬁf) cn — ' preserving Pl . and
P'[pw, and satisfying h*"(u) = u'.

(ii) There exists a continuous group homomorphism p** : ®* — ®* such that
pito PU=P" o fY.

(iii) f“(Ker P*) c Ker P

Proor. Firstly, we show the implication (i) = (ii). Put p"*:= T'(u',-) o
hvol, : " — (I)”’, where 7' is the continuous translation function of 7’*'. Then
we can see that p“* satisfies required condition.

Secondly, we show the implication (ii) = (iii). Let x e Ker P*. Since
PU(x) = g,

P (fY(x)) = p*(PU(x) = p"“(lo*) = Lgu.
Thus f"(x) € Ker P O
Note that the bundle morphism (resp. continuous group homomorphism)
satisfying the condition in (i) (resp. (ii)) is unique. For b € G, let Ad, be the inner

automorphism of G given by Ady(c) := beh™! for ce G.

COROLLARY 6.5. For a' € G', we have p™'" = Ad,. o p*".
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Proor. For b = P%(x) € ®“, since
P b) = p U (P(x) = P FU(N) = Tl P () o)
— T P(FOX), 0))a = Adyer (0 (D)),

we have the conclusion. O

The following proposition gives the canonical definition of the bundle
homomorphism satisfying the condition (i) of Proposition 6.4.

ProposSITION 6.6. Let (7, G, P,u) (resp. (n',G’,P',u"))eCy and f: X — X'
be a continuous map preserving S and S', and satisfying f(n(u)) = n'(u'), where
n:E— X (resp. ' : E' — X') is a principal G (resp. G')-bundle, P € % (n, <)
(resp. P'e 29(n',S")) is a parallel displacement, and u e E (resp. u' € E').
Suppose that X is S-connected and f“(Ker P*) = Ker P"'. Then a map h**:
EY — E™ is defined by

R (v) = P'(f7(x),u')

for v=P(x,u) € E*. The map h*" satisfies the conditions n" oh*" = f on",
h" o Pl g, = P'[guw o (fY x h*™), and h"*(u) = u'. Moreover, every map sat-
isfying these conditions coincide with h"™.

Proor. The definition of A“* does not depend on the choice of x as is
shown below. Let ye Sy, be any sequence such that v = P(y,u). Since
P(y~ ex,u) = u, we have P“(y~ e x) = lg«. By the assumption, since f"(Ker P¥)
< Ker P™, we have P" (f"(y~ ex)) =1g.. Then P'(fY(x),u’) = P'(f"(y),u').
We can see that 4“* satisfies the required conditions. Let k : E¥ — E™' be any
map satisfying the required conditions. For v = P(x,u) € E¥, since

k() = k(P (%, 1)) = P'T s (F2 (%), k() = P'T pur (/7)) = " (v),

we have k = h*'t, O

In this proposition, we do not require that (z*, @, P[.,u) (resp. (n"', ®Y,
P'[w,u')) is the holonomy reduction of (r, G, P,u) (resp. (n',G’, P',u")) or h**
is continuous. Under an appropriate condition, we have the implication (ii) = (i)
in Proposition 6.4.

PrROPOSITION 6.7. Under the assumption of Proposition 6.4, suppose further
that X (resp. X') is G-connected (resp. S'-connected), Sy e Sy:(Ax), and
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6{1) € Sxn(Ax). Then for each continuous map f : X — X' preserving S and S/,
and satisfying f(n(u)) = n'(u'), conditions (i) and (ii) in Proposition 6.4 are
equivalent.

Proor. From Theorem 6.3, (z*, ®“, P[,.,u) (resp. (2", @, P'[pu,u’)) is
holonomy reduction of (7, G, P,u) (resp. (n’,G’, P’,u’)). Thus from Proposition
6.4, (i) implies (ii). Conversely, suppose that (i) holds. Again from Proposition
6.4, we have f”(Ker P*) c Ker P"'. Let h*'* : E* — E'' be the map defined in
Proposition 6.6. Let x € X and V be an open neighborhood of x in X such that
Vex{x} = Syy. Fix ¢y € S, 44 and let o, : E|—V\,_) V. x G be a local trivial-
ization defined in the proof of Theorem 4.4 (ii). Moreover, let Vi) be an open
neighborhood of f(x) in X” such that V; ) x {f(x)} = 6{1). Put ¢ == fH(ex) €
S/ f(nuy) and let Ayt E'lyr — Vi x G’ be a local trivialization defined in

/)
the proof of Theorem 4.4 (ii). Then, for v = P(x,u) eE“[VXW-,I(V/( ) we get

(2f ) o (f x p*) 0 o) (v)
= P/((f(1(0)), £ () ® iy b (p*(T (1, P o (x,7(0)),0)))))
= P'((f(2(0)). f(x)) ® cfi). h"(P(c @ (x,2(0)) @ X, )))
= P'(f*((n(v), x) o cx), P'(f"(c; o (x,7(v)) @ x,u")))
= P'(f(x),u') = h""(v).

! . .
Thus, A"* is continuous. O

COROLLARY 6.8. Under the assumption of Proposition 6.7, suppose that there
exists a continuous group homomorphism p** : ®* — ®“ such that p*“ o P* =
P o fY Then (b, f,p"™"): (z*, ®" P[g.,u) — (@™ @, P'[gw,u') is a mor-
phism in C.

7 Strong Holonomy Reduction

In this section, we introduce a concept of strong holonomy reduction and
obtain further results applied in the succeeding section. In Proposition 6.6, if
fY(Ker P*) = Ker P"', the map h"":E" — E" satisfying the required con-
ditions is uniquely defined. Recall that A“* is not necessarily continuous in
general. For the continuity of 4%, we introduce the identification topology to
holonomy groups and holonomy bundles, while ®“ is no longer a topological
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group in general. For this reason, we consider sufficient conditions for ®“ to be
a topological group with respect to the identification topology. We begin with
the definition of strong holonomy groups and bundles.

DerFINITION 7.1, Let n: E — X be a principal G-bundle, P e 2%(n,S),
and u € E. We call the subgroup ®“ = P"(S,,)) of G the strong holonomy group
of P with reference point u if it is endowed with the identification topology
P". We call the subbundle z* : E* — X the strong holonomy bundle
through u if the topology of E" is the identification topology induced by
gu|P(-,u).

induced by ¢«

Note that the binary operation of ®“ is not necessarily continuous whereas
unary operation is always continuous. Hereafter in this section, let (z, G, P,u) €
Co, where 7 is a principal G-bundle, P € #%(n,S),;, and ue E, and unless
otherwise mentioned, we assume that ®“ (resp. 7*) is the strong holonomy group
(resp. bundle). Note that since the identification topology is stronger than the
relative topology, ir« g and ig« ¢ are continuous.

DrFINITION 7.2, A quadruple (7%, ®", P ., u) is called the strong holonomy
reduction of (m, G, P,u) if (n",®", P[g.,u) € Cp when ®" and E* are endowed
with the identification topology induced by ¢«|P* and g«|P(-,u) respectively,
where C is the category introduced in Section 6.

With the identification topology on E*, we have the following theorem.

THEOREM 7.1. Let (m,G,P,u) (resp. (n',G',P',u’)) e Cy, where n: E — X
(resp. n' : E' — X) is a principal G (resp. G')-bundle and P e 2?%(n,S) (resp.
P e 29(n',&")) is a parallel displacement. Suppose that X is S-connected and
(", @Y, P[ gu,u) is the strong holonomy reduction of (n,G,P,u). Let f:X — X'
be a continuous map preserving S and €', and satisfying f(n(u)) =n'(u’).
If fY(Ker P*) c Ker P, then there exists a unique morphism (h*", f p*"):
(", ®", P[pu,u) — (n',G',P',u') in C. In particular, h*“(E*) < E™ and
pu’u((Du) p (Du/.

Proor. From Proposition 6.6, there exists a unique map k**“:E* — E"
such that 7' ok = f o m, kv o P, = P'[ guro(f1 x k), and k""(u) = u'.
Since k** o pu| P(-,u) = pu|P'(-,u') o /% and pu|P(-,u) is an identification, k" is
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continuous. Put 4*" := i 1 © k. Then h*" is continuous. A continuous group
homomorphism p**: ®* — G’ is defined by p"*:=T'(u',-) o h"* o l,. We can
see that (h"“, f,p*"): (z*,®", P[g.,u) — (x',G', P',u’) is a morphism in C.

O

In this context, under an additional assumption we obtain the implication
(iii) = (i) in Proposition 6.4.

COROLLARY 7.2. Under the assumption of Theorem 7.1, suppose that
(n’l‘l7(I)”/,P’fE,u/,u’) e Cy with respect to any topology, not necessarily the relative
topology or the identification topology. If f"(Ker P*) = Ker P, then there exists
a unique bundle morphism (h*", f): " — 1" preserving P[p. and P'[p., and
satisfying h**(u) = u'.

COROLLARY 7.3. Suppose that (n*,®", P| ., u) (resp. (n’“/,CI)”’,P’[Emr,u’)) is
the strong holonomy reduction of (n,G,P,u) (resp. (', G', P u")). If f:X — X'
is a homeomorphism and f“(Ker P*) = Ker P, then (n",®", P[p.,u) =
(2", @ P'[ pur, ).

The following proposition is a version of Proposition 6.2 and the proof is
similar to that of Proposition 6.2.

PROPOSITION 7.4.  Suppose that ®" is a topological group, E" is a free ®"-
space with the continuous translation function, that is, a principal ®"-space, and
P[g. is continuous. Then (n",®", P[gp.,u) is the strong holonomy reduction of
(m, @, P,u) if and only if s*: X — E"/®" is continuous.

Now, we can state a strong holonomy reduction theorem as a version of
Theorem 6.3 by showing a sufficient condition for the assumption of Proposition
7.4. We call a covering (C;),., of a topological space X a compact covering if C;
is a compact subset of X for any A€ A.

THEOREM 7.5 (Strong Holonomy Reduction Theorem). Let (r, G, P,u) € Cy,
where n: E — X is a principal G-bundle, P e ?%(n,S), is a parallel displace-
ment, and u € E. Suppose that E and X are Hausdorff spaces, X is S-connected
and has the weak topology with respect to a countable compact covering, S is a
closed set in X", and Sy € Sy2(Ax). Then (n",®",P[g.,u) is the strong hol-
onomy reduction of (n,G,P,u). Moreover, n" is a locally trivial ®"-bundle.



Holonomy groups in a topological connection theory 247

We prepare some lemmas to prove this theorem. The first two lemmas are
rather elementary, yet we supply a proof for the sake of completeness.

LEMMA 7.6. Let X and Y be Hausdorff spaces. Suppose that X (resp. Y) has
the weak topology with respect to a compact covering (X,),.n (resp. (Ym),en)-
Then, X x Y has a weak topology with respect to a compact covering
(X x K11)(n7m)eN3~

ProOF. Put X|:=X; (resp. Y/:=7Y;) and X, : =X, ,UX, (resp. Y, :=
Y, ,UY,) for any ne N\{l}. Then, X, Y are k-spaces filtered by (X))
(Y,),)en Tespectively. From (6.5) in [17], X x Y is filtered by (Z,)
Zy = UieNXn/ XY,

neN>
sens Where

we1—i- We will show that X x Y has the weak topology with
respect to (X X Yiu)(, pyenz- Let 4 = X x Y. Suppose that AN (X, x ¥,) is a
closed set in X, x Y,, for any (n,m)eN?. Since X, x Y,, is a closed set in
X x Y, AN(X, x Y,,) is a closed set in X x Y for any (n,m) e N°. Then, since
we have

n n
ANZy =) AN(Xi X Yppro) = (U/m()c x Ym_i)) NZ,,
i=1 i=1

ANZ, is a closed set in Z, for any n € N. Thus, 4 is a closed set in X x Y and
X x Y has the weak topology with respect to (X, x Y,,) (1, m) N2+ Since X, Y,, are
compact sets of X, Y respectively for (n,m) e N?, (X, x Ym)(n’msz is a compact
covering of X x Y. |

LemmaA 7.7. Let X and X' be Hausdorff spaces. Suppose that X (resp. X')
has a weak topology with respect to a compact covering (X,),cn (resp. (X))),en)-
Then, for any Hausdorff spaces Y, Y' and identifications f : X — Y, f': X' — Y,
the product f x f': X x X' — Y x Y’ is an identification.

Proor. Amap f: X =), _({n} x X,) = Y :=J, ({1} x ¥,) is defined
by assigning (n, f(x)) to (n,x). Similarly, a map f': X’ — Y’ is defined. Since
Xy x X, is a compact set and f(X,) X f"(Xy) is a Hausdorff space, (/"% f7)[y, . x
is an identification for any (n,m)e N2, Thus, f x f': X x X' = ¥ x ¥’ is an
identification. We can see that Y, Y’ have the weak topology with respect to
compact coverings (f(Xy)),cn> (f'(X)))),cn respectively. Then from Lemma 7.6,
Y x Y’ has the weak topology with respect to (f(Xy) X f"(X,,)) (s menz- Thus,

amap p: Y x Y' — Y x Y’ defined by p((n, y,m, ")) := (y,y') is an identifi-
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cation. Therefore, since po(f x f') is an identification and (f x f')oq=
po(fx f), fx [ is an identification, where ¢: X x X' — X x X’ is a map
defined by ¢(n,x,m,x’) := (x,x). O

Lemma 7.8. Let X be a Hausdorff space and G € o/ S (X). Suppose that X
has the weak topology with respect to a countable compact covering, and S is a
closed set in XV. Then for any xe X, S, Cxxix}, and S have the weak topology
with respect to countable compact coverings respectively.

Proor. Let (X,),.n be a countable compact covering of X. For any
n>0, from Lemma 7.6, X"*! has the weak topology with respect to
(Xiy % -+ X X3, )i, inenwt- Then, XY =1{] _,
with respect to (Xj x --- XX"k>(io,-~,i/<)EU”ZON"“' Since © is a closed set, ©

X" has the weak topology

has the weak topology with respect to a countable compact covering
(SN(X; x -+ X X"k))(io,-»-vik)eUHZON"“' Since X is a Hausdorff space, {x} is a
closed set in X and Gy, yy), Sy are closed sets in S. Thus, Sy, (resp. S,)
has the weak topology with respect to a countable compact covering (Sy (N
(X %+ X X))o iyel, et (1D (S (X 5 X X))ot ).

[

geeny

Now we are in a position to prove Theorem 7.5.

Proor oF THEOREM 7.5. We denote restrictions

2
EvxyE" (Eu |P(7 u)) |6X><{7I(U)} XXe)(x{n(u)}

and

SXXE“KidG X E”|P('au))"‘

SXx Sy ufa()}

simply by (g|P(-,u))* [y, po and (ide x pu
From Lemma 7.8, S, Gy, (awu), and Sy, have the weak topology with

P(-,u))[ gy, v respectively.

respect to countable compact coverings respectively. Since S, is a closed set
in Sy(zwy and the equality (g« P(-,u)” (£« P(-,u))(Sa)) = Sxgy holds,
from Lemma 2.1, g« |P(-,u) is an identification. Let 7 : E* — G be the

ls
n(u) m(u)
translation function. Since the equality T'(u,-)o Ev P(-,u) Sy = O P" holds,

(u)

T(u,-): Ey, — ®" is a homeomorphism. Thus, since EY, is a Hausdorff

space, so is ®". Therefore, from Lemma 7.7, (g«|P(-,u))?*, ids X gu|P(-,u),
£u|P(,u) X ou|P¥, and (o«|P*)* are identifications. Again, using Lemma 2.1, we
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can see that (EH\P(~,u))2fEuXXEU and (idg x g«|P(-,u))[ s, g« are identifications.
Since

2 — .
0| T|gueypu © (20| P 0) [ puspu = o[ PYowo (7 Xide, )

and (Eu|P(-,u))2fEuXXE,, is an identification, ¢|T|zu, g« is continuous. Let
u: Ex G— E be the right action and v: G x G — G the multiplication. Since

P|—E" o (ng X Eu

P('vu)) SxyE" — E* P("u) ce,

Eulptl puxge © (g0 P 1) X @[ P") = pu|P(-,u) o 0,
and
o Vlprcar © (00 P*)? = gr|P 0

hold, maps P[p., gv|ttlpusgr, and gu|v|gu,q« are continuous. Therefore, ®* is a
topological group and E" is a free ®“-space with the continuous translation
function ¢|T' |z, fu-

By the same argument as in the proof of Theorem 6.3, s* is continuous.
Then, from Proposition 7.4, (n*%,®", P[g.,u) is the strong holonomy reduction of
(n,G, P,u). Moreover, from Theorem 4.4 (ii), z“ is locally trivial. O

The following is a typical example of the base space X of n satisfying the
assumption of Theorem 7.5.

ExaMpPLE 7.1. Let X be a polyhedron of a countable simplicial complex K
in the weak topology. Note that |7| is a compact set of X for any 7€ K. Put
Uk := U, cxltl x 7] and S :=<Ug)>. As we saw in Example 4.1, (Sx)) =
Uk € ¥x2(Ax) and X is Sg-connected. We can see that Sk is a cell subcomplex
of CW-complex XU, thus Sk is a closed set.

8 A C(lassification of Principal Bundles with Parallel Displacements

In this section, we study a subcategory C(X,x, S) of C defined in Section 6,
where (X,x) is a topological space with base point x and S e /¥ (X) is an
admissible sequence space. Objects in C(X,x, &) are such quadruples (, G, P,u),
where 7: E — X is a principal G-bundle, P e 2% (n,S) is a parallel displace-
ment, and u € Ey, and morphisms in C(X,x,&) are such homomorphisms
(hyidx,p) : (=, G, P,u) — (n',G’, P',u’) preserving P and P’, and satisfying
h(u) = u'. We denote by (%, p) the morphism (4, idy, p), and by C(X,x, €), (resp.
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C(X,x,S),) the collection of objects (resp. morphisms) in C(X,x,S). Assuming
the existence of an initial object in C(X,x, &), we shall see that objects are
classified in terms of topological group homomorphisms from the structure group
of the initial object to those of bundles. Next we consider a sufficient condition
for the existence of an initial object in C(X,x, S). We shall see that a specific
object is an initial object if it is the strong holonomy reduction of itself. From
this fact, we can see that (7x, G, Pk, [g]) is an initial object in C(|K]|, vy, Sk),
where K is a countable connected simplicial complex in the weak topology. In
particular, we obtain Theorem 5.1 in [14].

Let G be the category of topological groups. We denote by Gy (resp. Gi)
the collection of objects (resp. morphisms). Let G € Gy. An equivalence relation
on {peG|domp= G} is defined as follows. Two morphisms p,p’ € G| with
dom p = dom p’ = G are equivalent if there exists a topological group iso-
morphism 7 : cod p — cod p’ such that p’ =70p. We denote by [p] the equiv-
alence class of p. Then we have the following classification theorem.

THEOREM 8.1 (Classification Theorem). Let (7, G, P,ii) be an initial object of
C(X,x,S) with #: E — X. Two maps

{peGi|domp=G} > CX,x,S), 2 {peG|domp= G}

are defined as follows. For pe Gy with domp=G, put A(p):= (7", cod p,
P [it, 1eoa ). For (m,G,P,u) e C(X,x,S), with the unique morphism (h,p) :
(#, G, P,it) — (n,G,P,u) in C(X,x,3), put O(n,G,P,u) :=p. Then ® o A = id,
and A(O(n,G,P,u)) and (n,G,P,u) are isomorphic for each (mn,G,P,u)e
C(X,x, ), Moreover, for p,p' € Gy with dom p=dom p’ = G, p and p' are
equivalent if and only if A(p) and A(p') are isomorphic. Thus, the induced map

AZ{[p]|p€G1,d0mp:G}—>{[(n,G,P,u)]|(n,G,P,u)eC(X,x,S)O}

is bijective, where [(n,G,P,u)] is the isomorphic class of (n,G, P, u).

Proor. For (p:G— G)eGy, let (07,p): (7, G) — (7”,G) be the homo-
morphism given by 0”(v) := [v, 1] for ve E as in Section 2. From Proposition
4.7, (6”,p) preserves P and P”. Thus (0”,p): (, G, P,ii) — (7", G, P’,[ii, 1¢]) is
a morphism in C(X,x,&). Since (#,G,P,i) is an initial object, (0”,p) is
the unique morphism from (7, G, P, i) to (7”,G, P’ [i,1¢]). Thus O(A(p)) =
o(z’, G, P, i, 15]) = p.

Let (n,G,P,u)eC(X,x,S), and (hp): (% G,P,ii) — (n,G,P,u) be the
unique morphism in C(X,x,&). Let (h*,idg) : (*,G) — (n,G) be the (X, G)-
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morphism given by /”([v,a]) := h(v)a for [v,a] € E” as in Section 2. From
Proposition 4.8, (h”,idg) preserves P? and P. Since h”o0” =h, we have
h*([a,1g]) = h(a) = u. From Corollary 2.4, (h*,ids) is an (X, G)-isomorphism.
Thus (h*,idg) : A(O(n, G, P,u)) — (7, G, P,u) is an isomorphism in C(X,x,S).

Suppose that [p: G — G| =[p' : G — G'] and let 7: G — G’ be a topological
group isomorphism such that p’ =top. A map k:E’ — E” is defined by
k([v,a)) := [v,7(a)]’ for [v,a] € E*. The equalities

[vb, 2(p(b) " @))" = [vb, 7(p(b)) ' 2(@)])" = [vb, p' (b) "' 2(a)] = [v,7(a)]'

EXG
G

imply that k is well-defined. Since koqéxc = quc’ o (idz x 7) and ¢ is an

identification, k is continuous. From the equalities

~p! ol ~p' I ’ . - . -~ ~ I
7 okoql @ =n" 0qi*” o(idgx 1) =fopr o (idg x 1) =7opr; =& 0 g Y,

we have 77’ ok = 7, hence, k : #” — 7”’ is a bundle morphism. Since
k([v, ale) = k([v,ac]) = [v, 7(ac)]" = [v,7(a)]"t(c) = k([v, a])z(c)

for ([v,a],¢) € E” x G, (k,7): (7, G) — (#”',G') is a homomorphism. Since the
equalities
k(}N)/’(x7 [U, a])) = k([i)(x’ U)7a]) = [P(X7 U>’ T(a)]/
= P (x, [0, 7(@)]") = P (x, ([0, a]))

hold for (x,[v,a]) € (pols)“E”, (k,t) preserves P and P?". The equality
k([i,16]) = [i#, 1/ implies that (k,7) : (77, G, P’, [ii,1¢]) — (7', G', P*",[it, 16/])
is a morphism. By the same argument, a bundle morphism k’: 7’ — 7 is
defined by k'([v,d]’) :=[v,77'(a)] for [v,a) € E*" and (k',z"):(z"',G’", P,
[i,1¢]") — (7, G, P’ [ii, 15]) is a morphism. We can see that (k/,7') = (k,7)”".
Thus (7%, G, P”,[ii,1¢]) and (7”',G', P”",[ii,1¢/]") are isomorphic.

Conversely, suppose that (7”,G,P” [i,15]) and (7”,G' P’ [ii,1¢]') are
isomorphic, and let (k,7): (7”, G, P?,[i,1¢]) — (7", G',P" [ii,1¢]") be an iso-
morphism. Then (k0 0”,70p) : (7, G, P,it) — (#”,G’, P, [i1,15/]") is a morphism.
Since (#,G,P,ii) is an initial object, uniqueness of the morphism implies
(ko0,top)=(0",p"). Thus [p] = [p’]. O

In the smooth category, flat principal G-bundles over a fixed base space are
classified by group homomorphisms from the fundamental group of the base
space to G. We can think of Theorem 8.1 as a topological counterpart of the
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classification theorem for flat bundles in the smooth category. Note that our
theorem does not require any kind of flatness of the parallel displacement.

Next we consider a relation between an initial object and its holonomy
reduction.

ProposiTION 8.2. Let (7, G,P,u) € C(X,x,8), with n: E — X and (n",®",
P[ ., u) be the holonomy reduction of (n, G, P,u). If (n, G, P,u) is an initial object,
then (n*,®", Pl ., u) = (n, G, P,u).

ProorF. Since (7, G, P,u) is an initial object, there exists a unique morphism
(h,p) : (7, G, P,u) — (=", ®", P .,u) in C(X,x,S). Moreover, since (n" @Y,
P[pu,u) is a holonomy reduction of (n, G, P,u), (igv g, ipv ) = (2", @Y, P gu,u) —
(n,G,P,u) is a morphism in C(X,x,S). Thus

(iE“.E o h, i(D“,G Op) = (iE“,Ea l.q;,u,(;) o (h,p) : (7'[, G7 P, u) — (7[7 G, P, M)

is a morphism in C(X,x, ). Since (idg,idg) : (%, G, P,u) — (%, G, P,u) is also
a morphism in C(X,x,S), from the uniqueness of the morphism, we have
(igv,g o higu g o p) = (idg,idg). Thus ig«p and ipe ¢ are surjective, that is,
E*=F and ®" = G. [

The converse of this proposition does not hold in general. Namely, even if
(n,G,P,u) is the holonomy reduction of itself, it is not necessarily an initial
object. We shall see that if an object is the strong holonomy reduction of itself,
then it is an initial object.

Let (X,x) be a topological space with base point x, U < X? a symmetric

subspace such that Ay < U, and S :=<U). An equivalence relation on & is
generated by the relations

(Xny ooy Xigo vy X0) ~ Xy v ooy Xiy e v vy X0)

whenever either x; = x;_; or Xx;.; = x;,_, where the symbol X denotes deletion
of x. We denote by ¢q: © — &/~ the natural projection, and by [x,...,xo] the
equivalence class of (x,,...,xp). Put

éU = 6/’\/,
Ey = {[%n, .., x1,%] € Sy [ x0 = x} = q((pole) ' ({x})),

Gy = {[xn,...,x1,X] € Ey| x, = x} = q(E,),
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where a topology of Sy is the quotient topology and consider Ey and Gy as
subspaces. A map 7y : Ey — X is defined by 7y([x]) := p..(x). The subset Gy
is a group with a binary operation vy given by vy ([x],[y]) := [xey], a unary
operation -~ given by [x]”' := [x"], and an identity element [x]. A right action
:[fU : Elj x Gy — Ey is defined by [x][y] :=[xey]. If [x][y] =[x] for ([x],[y]) €
Ey x Gy, then [y] = [x7][x][y] = [x][x] = [x]. Thus the action g, is free. Since
Gy is the subspace of Ey, Iy = idGU Gy — (Eu)x = Gy is a homeomorphism.
A translation function Ty : Ey Xy Ey — Gy is defined by Ty ([x],[y]) := [x~ ey].
A map Py : €@ xy Ey — Ey is defined by Py(x,[y]) := [x ey]. For any (x,[y]) €
S xy Ey,

Py(x™, Py(x,[y])) =[x exey] =y

Similarly, we have (Py), o (Py), = digy) o’ and consequently (Py), =
_ oo (x

((Pu),)™". For ((x,[y)), [2]) € (S xx Ev) x Gy, we have

Py(x,[yl[2))) = [xey ez = [xey]lz] = Pu(x,[y])[z].

A map 7u/% :Ey/Gy — X is defined by #y/%([[x]]) = 7u([x]) (see
Section 2). Since for ([x],[y]) € Ey x Gu,

Ty ([X][y]) = po(x@y) = poo(x) = wp([x]),

7y /% is well-defined. Suppose further that X is S-connected. A map 5y : X
— Ey/Gy is defined as follows. Let yeX and xe &, ,. Then put Sy(y):=
[Pu(x,[x])] = [[x]]. We can see 5y = (7y/“)". For simplicity, we denote by
q[g, (resp. qlg,) the restriction Ev|q|3“m (resp. ¢, lqlg,)- Similarly, we denote
the restrictions

2
E”’UXXEUKq’VEU) |6Xx{x}><X6Xx(.\‘)

and
GX){EUKIdS X qI’Eu)|6X){6xﬂw

simply by (q[EU)2 [GyxyB, and (idg x q[Ey)[ex)(EU~respectively. We have a

sufficient condition for maps 7y, vy, fy, Tv, and Py to be continuous.

PROPOSITION 8.3. Suppose that X and Ey are Hausdorff spaces, X is G-
connected and has the weak topology with respect to a countable compact covering,
and S is a closed set in X“. Then
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4[5, : (pole)™ ({x}) — Ev.
leéb : €, — Gy,
(QfEU)ZfEUXXEU : Syxpn) Xx Syxpny — Ev xx Ev,
(ide % ql g, ) [ ex B, * © Xx Cxxix) = S xXx Ey,
‘I[EUXCI[G”U P Cxxay X Gy — Ey x Gy,
and
(Q[GU)2 : G, x & — Gy x Gy

are identifications. In particular, Gy is a topological group, and Ty, [y, Ty, and
PU are continuous.

PROOF.  Since Sy (y is closed in & and ¢~ (¢(Syx(y})) = Sxxqy}, from
is an identification.

2 arc

Lemma 2.1, ¢[g, is an identification. Similarly, ¢[gs,
2 .

From Lemmas 7.7 and 7.8, (q[g,)", ide % q[g,. 4[g,*4ql¢,, and (¢[¢,)

identifications. Again, from Lemma 2.1, we can see that (q[EU)z(EUxX £, and

(ide x qlg,) e« 5, are identifications. Since 7y oq|g, :p°0|€xX<.\-}’ 7y 1is con-

O

tinuous. Similarly, we can see that -~!, i, Ty, and Py are continuous.
By a straightforward argument, we have the following lemma.

Lemma 8.4. Let (n,G,P,u) e C(X,x, &), Then, the following conditions are
equivalent: (1) n* =n, (i) ®" = G, and (iii) P[z. = P.
Maps Sy, @y, fiy, Tv, and Py and the quadruple (7y, Gu, Py, [x]) have the
following properties.
ProposiTION 8.5. (i) If U € Sy2(Ax) (Definition 4.2), then Sy is continuous.
(ii) Suppose that Gy is a topological group and #y, iy, Ty, and Py are
continuous. Then (7iy, Gy, Py, [x]) € C(X,x,S), if and only if 5y is
continuous. In this case, if U e %y:(Ax), then 7ty is a locally trivial
Gy-bundle.
(iii) Suppose that (7y,Gu,Py,[x]) e C(X,x, &), If qlg, and ql¢, are
identifications, then (7y, Gy, Py, [x]) is the strong holonomy reduction of
itself.
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ProOF. Firstly, we show (i) and (ii). If Ue ¥¥2(Ay), from Proposition
4.2, p@|3“m is an identification. Then, since §y opao|g“(\_} = q?b oqlg,, s is
continuous, and we obtain (i). Under the assumption that 7y is continuous, sy is
continuous if and only if 7y/ % is a homeomorphism. Then, from Lemma 2.3,
we obtain (ii).

Secondly, we show (iii). Note that z Py(-,[x]) =q[z, and 4 (P =
o|(@lg,). By the definition, if ((ﬁU)M,@lx],PU[(EU)[\.],[x]) e C(X,x,©),, it is
the strong holonomy reduction of (7y, Gy, Py,[x]). For [x] € Gy, since [x] =
Tu([x], Pu([x],[x]) e DY, we have Gy = @M. From Lemma 8.4, ((7y)™, @M,
Py ’V(EU)N’ [x]) = (7v, Gu, Py, [x]) and this complete the proof. O

In particular, from the viewpoint of a holonomy reduction, we obtain the
following proposition.

ProposSITION 8.6 (cf. [14]). Let X be a polyhedron of a countable connected
simplicial complex K in the weak topology and 7k the universal bundle. Then,
(ix, Gk, Pk, [vo]) is the strong holonomy reduction of itself.

Proor. Put Ug:=|) _gl7] x|z|, and &g :=<Ug). Note that X is a
Hausdorff space. As we have already seen in Example 7.1, X has the weak
topology with respect to a countable compact covering {|z||te€ K}, X is
Sk-connected, Uk € Fy2(Ay), and Sk is a closed set in X“. From Lemma
3.2 in [14], EUK:EK is a Hausdorff space. Thus, from Proposition 8.3,
GUK — Gk is a topological group, iy, = Mg 1s a principal Gk-bundle, and Py €
P9(nk, k)G, Moreover, from (i) in Proposition 8.5, Sy, is continuous.
Then, from (i) in Proposition 8.5, (%k, Gk, Pk,[w]) € C(X,x, Sk),. By using
Lemma 2.1, we can see that ¢[;z and ¢[; are identifications. Thus, from
(iii) in Proposition 8.5, (#k, Gk, Pk,[vo]) is the strong holonomy reduction of
itself. O

As we have already mentioned, an object which is the holonomy reduction of
itself is not necessarily an initial object. While, if the quadruple (7y, Gy, Py, [x])
defined above is the strong holonomy reduction of itself, then it is an initial
object.

THeorREM 8.7. If the quadruple (ﬁU,GU,f’U, [x]) is the strong holonomy
reduction of itself, then it is an initial object in C(X,x,S).
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Proor. Let (7,G,P,u)e C(X,x,S), and (X,X,_1,...,X],X)€ Ker(f’y)[x].
Then,
(X, Xp 1,0, X1,X] = (PU)[X](x,xn,l, co XL X) = [x],

that is, (x,X,—1,...,X1,x) ~x. By the definition of ~, there exists m e NU {0}
and a sequence (X,X,_1,...,X1,X) = Xg,X1,...,X,; =X such that for any je
{1,...,m} at least one of the following conditions hold:

(1) there exist ke N and ie{l,...,k} such that
Xj—lz(yk;~~-,y17y0), Xf:<yka~~~a.]>i,"~aylay0)

and y; = yi-1 OF yip1 = pi-1, OF
(2) there exist ke N and i€ {l,...,k} such that

Xi1 = (Vhyooos Dise o5 1,00)s - X = (Vhs o5 V1, 0)
and y; = y;1 OF yiy1 = yi-1.
In case (1), whether y; = y;-1 or yi1 = yi—1, we have
P(xj-1,u) = P((Vk,-- -, y1, o), )
= (Pln) © 0 Py © Plyyi) © 0 0 Py ) (W)
= (Pyey) © 0 Plyryin) © 0 Py yg)) (1)
=P((Vks--s Dis -, V1, Vo), u) = P(x;,u).

In case (2), we get P(x;_1,u) = P(X;,u) by a similar computation to that of case
(1). Then, we have

P(xp,u) = P(x1,u) =--- = P(x,u) = u.

Thus (x,x,-1,...,x1,x) € Ker P*, that is, Ker(ISU)[x] < Ker P*. Then, from
Theorem 7.1, there exists a unique morphism (h*M, p“M : (7zy, Gy, Py, [x]) —
(n,G,P,u). O

As a corollary, we obtain Theorem 5.1 in [14].

CoroLLARY 8.8 ([14, Theorem 5.1]). Let X be a polyhedron of a countable
connected simplicial complex K in the weak topology and 7g : Ex — X the
universal bundle (principal GK-bundle). Then, for any topological group G, any
locally trivial G-bundle ©n: E — X is associated with Tig.
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Proor. From Proposition 8.6, (7g, Gk, Px,[vo]) is a strong holonomy re-
duction of itself. Thus from Theorem 8.7, (Zx, Gk, Pk, [vg]) is an initial object
in C(X,vp,Sk). On the other hand, from Theorem 5.2 in [14], there exists
w e SF(n, Ug)g. Then (n,G,P”,u)e C(X,v,Sk),, where ue E,. Thus there
exists a unique morphism (4,p) : (7ig, Gk, Px, [v0]) — (n, G, P®,u). Therefore n
is associated with 7zg by p. O
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