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WEIGHTED L7 — L? ESTIMATES OF THE STOKES
SEMIGROUP IN SOME UNBOUNDED DOMAINS

By

Takayuki KoBayasHr and Takayuki Kuso

Abstract. We consider the Navier-Stokes equations in half-space
and a perturbed half-space in L? space with Muckenhoupt weight.
As the first step, we shall describe the Helmholtz decompostion of L?
space with Muckenhoupt weight and the weighted resolvent estimates
for the Stokes equations. Next we shall show the L” — L7 estimates
of Stokes semigroup with {(x)»* type weight. Finally as the applica-
tion of the weighted L? — LY estimates, we shall obtain the weighted
asymptotic behavior of the solution to the Navier-Stokes equations.

1 Introduction

Let n>2. Let Q < R” be the half-space H or a perturbed half-space
with smooth boundary 0Q. To be precise, the half-space H is defined by H =
{x=(x",x,) e R"| x, > 0} and the perturbed half-space is a unbounded domain
which has a positive number R satisfying

Q\Br = H\Br, (1.1)

where Bgr = {x e R"||x| < R}.
In this paper, we consider the following Navier-Stokes equations in :

ou—Au+ (u-Viu+Vn =0 in (0,0) x Q,

Y-u:O in (0,00) x Q, (NS)
limy o u(t,x) =0, u(t,x) =0 on (0,00) x 0Q,

u(0, x) = a(x) in Q.
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Here u(t,x) = (u;(¢,x),...,u,(2,x)) and z(z, x) denote unknown velocity field and
scalar pressure and a(x) is a given vector function.

The Navier-Stokes equations (NS) have been already studied by many
authors in some bounded domains and unbounded domains. In particular, we
have many results concerning to (NS) in L?-framework.

The results of Farwig and Sohr [14] and Miyakawa [33] are the first
step to discuss the nonstationary problem (NS) in the L”-space. They showed
the Helmholtz decomposition of the LP-space of vector fields L7(Q) =
L2(Q) ® GP(Q) for n>2 and 1 < p < oo, where L2(Q) and G”(Q) denote as
follows:

Lé}(Q) = {u € C(?V(Q) |V -u=0 in gZ}H'HLﬂ(n)7

G’(Q) ={VrneL’(Q)|ne Ll (Q)}.

Let P be a continuous projection from L7(Q) to LZ(Q) associated with the
Helmholtz decomposition. The Stokes operator A4 is defined by 4 = —PA with
some domain. It is proved by Farwig and Sohr [14] that —A4 generates a bounded
analytic semigroup e~ on L?(Q).

When we prove the existence theorem of global solution to (NS) with small
data, the following L? — L7 estimates of the Stokes semigroup play the important
role:

||€7tAf||L4 < thrl(l/lkl/q)/z||f||Lp7 (1.2)
Ve 4fl,, < Corninar iy g, (1.3

for feL?(Q) and t >0, where 1 < p<g< oo, (p# w,q#1) for (1.2) and
l<p<g< oo, (q+#1)for (1.3). The L? — L7 estimates of the Stokes semigroup
have been already studied by many authors in some domains. In fact, when Q is
the whole space, applying the Young inequality to the concrete solution formula,
we have (1.2) and (1.3) for 1 < p<g< oo (p # o0, g # 1). When Q is the half-
space, it is proved by Ukai [35] and Borchers and Miyakawa [4] that (1.2) and
(1.3) hold for 1 < p<g< o0 (p# 0, g #1) (cf. Desch, Hieber and Priiss [11]).
When Q is an infinite layer case, Abe and Shibata [1] proved that (1.2) and (1.3)
hold for 1 < p<g < oo. When Q is a bounded domain, (1.2) and (1.3) for
1 < p<gq< o follow from the result of Giga [22] on a characterization of the
domains of fractional powers of the Stokes operator. In an infinite layer case
and a bounded domain case, an exponential decay property of the semigroup is
available.
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When Q is an exterior domain, (1.2) holds for 1 < p<¢g < (p# w0,
g #1) but (1.3) holds only for 1 <p<g<n (g#1). At first Iwashita [25]
proved that (1.2) holds for 1 < p <g< oo and (1.3) for 1 < p < g <n when
n > 3. The refinement of his result was done by the following authors: Chen [6]
(n=3, g = o0), Shibata [34] (n =3, ¢ = «), Borchers and Varnhorn [5] (n =2,
(1.2) for p =¢), Dan and Shibata [8], [9] (n = 2), Dan, Kobayashi and Shibata
[10] (» =2,3), and Maremonti and Solonnikov [31] (n > 2). Especially, it was
shown by Maremonti and Solonnikov [31] that Iwashita’s restriction ¢ <7 in
(1.3) is unavoidable.

When Q is a perturbed half-space, Kubo and Shibata [30] proved (1.2) for
l<p<g<ow(p#ow,g#1)and (1.3)forl < p<g< oo (q#1)whenn>2.
When Q is an aperture domain, Abels [2], Hishida [24] and Kubo [29] proved
(12) for I<p<g<o (p#w,qg#1) and (1.3) for 1 <p<g< o (¢ #1)
when n > 2.

In usual L?-framework, it is well-known that we can prove the global
existence of the solution to the Navier-Stokes problem with small L” data. In
fact, the time-global existence was proved by many authors in the following
domain cases: Giga and Miyakawa [23] for bounded domains, Kato [27] for the
whole space, Ukai [35] and Kozono [28] for the half-space, Iwashita [25] for the
exterior domain, Abe and Shibata [1] for the infinite layer, Kubo and Shibata
[30] for the perturbed half-space and so on.

On the other hand, the results on the weighted L? space case are not so
much than one of the L? space case. For the whole space and an exterior domain
case, Farwig and Sohr [13] proved the Helmholtz decomposition of the L space
with Muckenhoupt weight. Moreover they considered the resolvent Stokes equa-
tion in the weighted L? space and showed the weighted resolvent estimate and
that the Stokes operator generates an analytic semigroup in L7 space with
Muckenhoupt weight. The result on the weighted L? — L? estimate of Stokes
semigroup was not obtained. For the half-space case, H. O. Bae [3] proved the
Helmholtz decomposition of L? space with some weights (for example, w(x) =
(1+]x])* for 0 <s<1/p’) and he obtained the certain L? — L9 estimate of
Stokes semigroup with the certain weight. A. Frolich [16] proved the one of L?
space with the Muckenhoupt weight and the weighted resolvent estimate of the
resolvent Stokes equation in half-spaces and aperture domains (see [16], [17] for
detail). However, he did not obtain the results on the weighted L? — LY estimate
of Stokes semigroup.

This paper consists of six sections. In the next section, after notation is fixed
we present the statement of our main results: Theorem 2.3 on the resolvent
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estimate with Muckenhoupt weight, Theorem 2.4 on the Helmholtz decomposi-
tion of the weighted L? space, Theorem 2.5 on the generation of the Stokes
semigroup as one of the corollary of Theorem 2.3, Theorem 2.7 on L? — L4
estimates of Stokes semigroup with (x)»* (0 <s<n—2+1/n) which plays
important role when we prove the asymptotic behavior for the solution to (NS)
and Theorem 2.8 on the asymptotic behavior for the solution to (NS) obtained by
Kozono [28] or Kubo and Shibata [30].

In section 3, we introduce the known results concerning the weighted L?
space which we use through this paper. In secton 4, we shall show the Helmholtz
decomposition of L2(Q) in perturbed half-space. Moreover we shall consider the
resolvent Stokes equations corresponding to (NS) and shall show the resolvent
estimate. Our proof is based on the method due to Farwig and Sohr [13]. Since
the results on the bounded domains and half-space are proved by Frohlich
[18] and [20], by cut-off technique with their results, we can prove the resolvent
estimate for large A, which implies that the Stokes operator —A generates analytic
semigroup in L (€2).

In secton 5, we shall prove the weighted L” — LY estimate of Stokes semi-
group obtained in section 4. First we consider the whole space case and the half-
space case. For the whole space case, we can easily prove by Young’s inequality.
For the half-space case, using Ukai’s solution formula (see [35]), we can reduce
to the whole space case. For a perturbed half-space case, we derive the weighted
L? — L1 estimates from the results for the half-space case and the estimate for
QN Br which is proved by Kubo and Shibata [30]. Finally, we consider the
application of the weighted L? — L9 estimates to the Navier-Stokes equations
in section 6. As we mentioned, the Navier-Stokes equations in the half-space
and a perturbed half-space admits a unique strong solution u when the initial
data is sufficient small. As the application of the weighted L? — L9 estimates,
we consider the case where the initial data belongs to L(Q)NL"(Q), where
w(x) =)™ for 0<s<n—241/n.

2 Main Theorems and Notations

In this paper, we shall consider the Navier-Stokes equations in the half-space
and a perturbed half-space. For this purpose, we first introduce the definition of
their domains. Let H denote the half-space by H = {x = (x',x,) e R" | x, > 0}.
We call a domain Q perturbed half-space if there exists a positive number R such
that

Q\Br = H\Bg, (2.1)
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where Bgr = {x € R"||x| < R}. We next introduce the class of weight functions
and weighted L? spaces.

DerFINITION 2.1 (Muckenhoupt class .o7,(R")). Let 1 < ¢ < co. A weighted
function 0 <we L. _(R") belongs to Muckenhoupt class .7, if the function w

satisfies
! v g )
sup< J wdx) <—J w4 dx) < C< o,
10| 10l o

where the supremum is taken over all cubes Q = R” and |Q| denotes the
Lebesgue measure of Q.

For example, the weighted function w(x)= (14 |x])* or w(x)=|x|"
(—n < a < n(g — 1)) belong to Muckenhoupt class .«7,(R"). For a perturbed half
space Q we introduce a restricted class of =7, on Q.

DEFINITION 2.2.  Let Q be a perturbed half space with C?-boundary 0Q with
By satisfies (2.1). Then for 1 <g < o0, o, = ,(Q) is the class of weighted
function defined as follows: The each element w of .27, belongs to .«Z,(R") and has
the bounded domain G = G(w) = QN Bgy; such that we C°(G) and w|; > 0.

We define a weighted L¢ space with Muckenhoupt weight w € 7, as follows:

1/q
o= ([ v <

for 1 < ¢ < co. Similarly, we define the weighted spaces as follows:

Li(Q) = {“ € Lioe(Q) | lull ) = llaw'?

Wil(Q) = {ue Li(Q)|Vue LI(Q), |2 <k},
WEa(Q) = {ue L .(Q)|V'ue LI(Q), |a| = k}
and
Wd@) = Cr @) e
for 1 < g < oo, ke N and w e ./,. The space Wk 4(Q) equipped with the norm
1/q
el iy = (Z 1Vl ¢y )
lo| <k

is a reflexive Banach space.
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For 1 < g < oo, let ¢’ denote the dual exponent: 1/¢+1/¢' =1 and w’
denote the dual weight: w’ = w11 The dual space of WI]L,’,",(Q) is denote by
W (@) = W7 (Q)" and endowed with the norm

IPllyo = sup gl
0£pe Y (@) ”Vf””Lj{,(Q)
for Fe W;4(Q).

For the half-space and the perturbed half-space, we shall investigate the
Navier-Stokes equations (NS). As first step of analysis of Navier-Stokes equations
(NS) in Kato’s argument [27], we need the weighted L? — L4 estimates of Stokes
semigroup. To this end, we consider the generalized resolvent Stokes equations
corresponding to (NS):

(A=ANu+Vr=f, divu=¢gin Q u=0 on 0Q, (GS)

where feLi(Q), ge Wh(Q)N W, 14(Q) and LeX, = {ieC\{0}||arg A <
n—¢} (0 <e<m/2). Then the following resolvent estimate holds.

THEOREM 2.3. Let Q < R" be a perturbed half-space with C>*-boundary
and let 1 < q< o, we oy, 0<e<n/2 and 6 >0. For every feLi(Q), ge
wha@Q) N W Q) and ) eX,, |A| =0, the problem (GS) has a unique solution
(u,7t) € W24(Q) x WL4(Q). Furthermore (u,n) satisfies the a priori estimate

(121, V2u, V2l gy < Cles0) IS, V)l gy + 14911 10iq)- (2.2)

In order to define the Stokes operator, we need the Helmholtz decomposition
of the weighted space LZ(Q) for perturbed half-spaces.

Turorem 2.4. Let Q = R" be a perturbed half-space with C*-boundary and
let 1 <q< o0 and we o,

(i) LI(Q) has a unique algebraic and topological decomposition

LL(Q) = L] ,(Q) @ VI ,;4(Q),

w, o
where L (Q) is the closure of Ci°(Q) ={ue C*(Q)|V-u=0} with

respect to the norm || - || ). In particular there exists a unique bounded
projection operator

P, : L]

w

(Q) = L ,(Q)

w,

with null space VWL4(Q) = {Vr|ne Wh4(Q)} and range L4 (Q).

w,o
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(i) (Pg)” =Py and (LY Q)" =LY,

w', o'

(iii) If ue LI(Q)NLE(Q) for gye(l,00) and wje oy, (j=1,2), then

Wa
Py wiu = Py, 1.

Given the Helmoltz projection P, ,, the Stokes operator A4, , in LI (Q) for

w,o

a perturbed half-space is defined by 4, , = —P, A with domain

D(Agw) ={ue WH(Q)NLL (Q)|u=0 on 6Q}.

w,a

For the Stokes operator, we obtain the following results which say that the
Stokes operator generates an analytic semigroup in LgJ(Q):

THEOREM 2.5. Let Q < R" be a perturbed half-space with C*-boundary
and let 1 < g < oo, we., and 0 <& <m/2. Then for every L€X, and every
feLi (Q) the resolvent problem

w,o

u+Agu=f, ue “@(Afk w)
has a unique solution ue Z(Ay,,).

(i) For 2€X, and |A| =5 > 0, this solution satisfies the resolvent estimate

[[(2a; Agwit) [ L0y < C (2,01 |2y

(i) The Stokes operator generates an analytic semigroup {e~"4a»} _ .
(iil) Moreover Ay, is a closed operator and (Ag,)" = Ag .

In this paper, for simplicity, we use the abbreviations 4 for 4,, and P for
P, if there is no confusion.

REMARK 2.6. The same results as Theorem 2.3-2.5 for half-space and
exterior domains have been proved by Frohlich [18] and Farwig and Sohr [13].

We next consider the weighted L? — L9 estimates for the Stokes semigroup
e, As well-known, The L” — LY estimates play an important role when we
prove the unique existence of a global solution to (NS). Here setting the weighted
function w as w(x) = <x>” = (1 + |x|*)*/* (1 < p < ), we obtain the following
weighted L? — LY estimates for the Stokes semigroup in the half-space and a
perturbed half-space:

THEOREM 2.7 (Weighted L? — LY estimates). Let n>2 and let Q be the
half-space or a perturbed half-space with C*-boundary. Let 1< p <gq < oo,
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0<s<m—1)(1—-=1/p) and w(x)=<{x)". Then for ae LP(Q)NL(Q), we
have

|\<x>se*’APaHL,, < Cfn(l/pfl/q)/ZH<x>sa||U + C,fn(l/pfl/q>/2+s/2HaHU’
[<xY* Ve A Pal|, < Cro" VPV (3|, 4 Co P OG0 g

Jor t>0.

Finally we shall apply the weighted L? — L? estimates to Navier-Stokes
equations (NS). Following Kato’s argument [27], we can prove the unique
existence of global solution to (NS) with small initial data. By applying the
Helmholtz projection P to (NS), we can rewrite (NS) as follows:

O+ Au+ Pl(u-Viul =0, u(0) =a. (P-NS)

By Duhamel’s principle, we obtain the integral equation:

t
u(t) = e a — J e~ AP (u - V)u(7) dx.
0
By the usual L” — L9 estimate and contraction mapping principle, we can prove
that there exists the unique strong soluton u to (NS) with small initial data and
the solution u satisfies the following asymptotic behavior as ¢ — oo:

[u(0)|] Loy < CoV/2H13D for n < g < oo,
IVu()| Loy < Cr™/24) for n < g < o0

(see Kozono (28] and Kubo and Shibata [30]). Here for given a e L!(Q) and
0 < T < oo a measurable function u defined on Q x (0,7) is called a strong
solution to (NS) on (0,7) if u belongs to

ue C([0,T); Ly(Q)) N C((0, T); D(4) N C'((0, T); Ly (€2)

together with lim,_o||u(?) — a||;» = 0 and satisfies (P-NS) for 0 < ¢ < T in L?(Q).
When the initial data belongs to L (Q) (w(x) = <{x)>™) additionally, we can

show the following theorem on the weighted asymptotic behavior as t — oo by
the weighted L? — L7 estimates:

THEOREM 2.8. Let n > 2, Q be the half-space and a perturbed half-space. Let
0<s<n—241/nand w(x)=<{x)™. If ae L (Q)NLIQ) with small ||al|;., the
solution u(t) satisfies the following asymptotic behavior:
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Lo < CtoV2QO+S2 - for < g < o0, (2.3)

[[<x>*u(2)]

1G> Va(t)ll < CrRDR2 for < g < o (2.4)

as t— oo.

3 Preliminaries

In this section, we shall introduce some facts and lemmas which we use
in this paper. First we shall introduce the lemma concerning the Muckenhoupt
weight function. The weights w € </, have the important property that regular
singular integral operators are constinuous on LZI(R") into itself.

LemMa 3.1. Let 1 < g < o, we o/, and let T be a regular singular integral
operator. Then T is bounded on LI(R"). More precisely, there is a positive
constant C such that for all f e LL(R"), we have

1T Mo < ClIA g
Proof. See [21, Chapter IV, Theorem 3.1]. O

By Lemma 3.1, the Riesz transforms R;f and the partial Riesz transform S/
define by

. x.:r%@f P n
&ﬂ»J¢meﬂj Lo, (3.1)
i) 1= 77 [ AN )| = n (32)

are continuous on LI(R") and LI(H) into itself respectively. Here #, and %
denotes the Fourier transform with respect to x and the partial Fourier transform
with respect to x’ = (xi,...,x,_1) respectively. These Riesz transforms are used
in Ukai’s solution formula. Here the weight w(x) = {x)® considerd for fixed x, as
weight in R"™! is in the class .o/, only —(n—1)/g<s< (n—1)(1—1/q).

In this paper, we consider a perturbed half-space by using the cut-off
technique. For this purpose, we introduce the cut-off function. We fix R, sat-
isfying (2.1). Given R > Ry, let y € C'(R) be nondecreasing with (&) =1 if
|£] = R and (&) =0 if |£] < R—1 and set g = y(]x]).

By this cut-off function, we can show the following lemma which means the
interpolation between W24(Q) and Li(Q).
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LemMA 3.2. Let Q be a perturbed half-space with C*-boundary and let
1 <g< 0 and we o, Then there is a constant ¢ = c(q,w,Q) > 0 such that for

all ue ng(Q) and all €€ (0,1),

[IVu

L:(,(Q)) : (3.3)

+ ! I
q —||U
Li@ T

LL(Q) < C<6||V2u

Proor. Since the half-space case is proved by Frohlich [18, Corollary 4.5], it
is sufficient to consider a perturbed half-space case. Let iy, be a cut-off function
defined above. Recall that the following estimate holds in a bounded domain G
with Lipschitz boundary:

[IVu

1
LG = C(eHVzuHL(,(G) +E||u||u((;)) (3.4)

for all ue W?4(G) and 0 < ¢ < 1 (see Frohlich [18]). Applying u(1 — ) to (3.4)
and wyp to (3.3) for half-space H, we have

IVu

e < IVt =¥l 1o + IV )l a0

< (6Pt = Pl + L1 = Ul )

1
< Ce||V2u||L‘z{(Q) + C(e + E) llull o) + Ce||Vu

1
+C(alV )+

L1(Qg)
Applying the third term [[Vu(/,¢q,) to (3.4), we obtain (3.3). ]

The following four lemmas proved by Frohlich [18], [16] and [20].
First lemma says that the weighted resolvent estimate holds in bounded
domains.

LemMa 3.3. Let G<R" be a bounded domain with boundary of class
Chand let 1 < g < oo, 0<e<mn/2 and we </, Then for every f € Li(G), g€
Whi(G)N W 4(G) and ).eZ,U{0} the resolvent Stokes equation (GS) with
boundary condition: u=0 on 0G has a unique solution (u,m)e W>I(G) x
WL4(G). Further

1222, V2, V1) 36y < ClI(F V)l i) + 11291110
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with a constant C, > 0 independent of f, g, /. and u, n. Here ||V2u||L3<G) may be
replaced by ||uHW‘§J,<G).

Second lemma means that the weighted resolvent estimate in half-space H.

THEOREM 3.4. Let n>2, 1<g< oo, we.o, and 0 <e<m/2. Then for
every f e LI(H), ge WH(H)NW Y 4(H) and ). € X,, there exists a unique solu-
tion (u,m) to the resolvent problem (GS). This solution satisfies the estimate

(12, Ve, V) oty < CU VD g + 1290, (3:5)

where C > 0 dependents only on n, q, & Moreover if for some re (1,00) and
some v e </, additionally feL!(H) and ge W) "(H)N WV (H), then (u,n)e
W (H) x W' (H).

Next two lemmas are used when we consider the Helmholtz decomposition of
the weighted L7? space.

LemMA 3.5. Let 1 < q < oo and w e o/, Then there is a constant c € R such
that

IVal,,<C  sup [V, V)|
) 0¢¢EW1_',{//(H) ”V¢||q’,w’

for me WLa(H).
LeMMA 3.6. Let 1 < g < o0 and we o4, Then —A, , is an isomorphism, i.e.
for any F e W,V 4(H), there exists me WYL4(H) such that
(Vr,Vg) =CF.¢>  for ¢ W7 (H)
and the weak solution m satisfies

1Vl o(any < CIE v

4 Helmholtz Decomposition and Resolvent Estimate

The goal of this section is to prove Helmholtz decomposition of the weight
L?-space (Theorem 2.4) and the resolvent estimate (Theorem 2.3) in a perturbed
half-space. Since their facts can be proved by the method due to Farwig and Sohr
[13], we may omit their complete proof. Here we shall describe the outline of the
proof.
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We shall first show the Helmholtz decompositon (Theorem 2.4). In order to
prove Theorem 2.4, we need the uniquness theorem of the corresponding weak
Neumann problem which implies the Helmholtz decomposition (Theorem 2.4)
(see [13] for detail).

THEOREM 4.1. Let Q be a perturbed half-space and let 1 < q < oo and
w e oA, Then for every F e W;l’q(Q) the weak Neumann problem

J V-V dx = (F, ), yeWhi(Q) 4.1
Q

has a unique solution ©we W44(Q). Furthermore

19750 < CUFlloiy (42)
with a constant C = C(Q,q,w) > 0. Moreover if F e W,F4(Q)NW 1%(Q) for

w2

weights w; € 4y, q; € (1,0), j=1,2, then the weak solution u of (4.1) satisfies
ne Who(Q)n WL ()

Proor. This theorem can be proved by the method due to [13]. Here we
shall remark the difference between the exterior domains case considered in [13]
and the perturbed half-spaces. Compared with the exterior domains case, proof of
the following preliminary estimate is different:

19750 < CUIFN 10y + 17l 221c0) (4.3)

given F e W;9(Q) and = e W.4(Q) satisfying (4.1). If we obtain (4.3), we can
prove Theorem 4.1 in a same way as [13]. Therefore here we shall prove the (4.3).
A well-known variational inequality on W9(Qg) yields

IV =YDl Lo < CUF I, m00) + 17l Ly0n);

where Y is the radially symmetric cut-off defined in section 3 (see Frohlich [16]
for example). Therefore it is sufficient to prove

IV )y < CUF vy + Il s (4.4)
To prove (4.4), we consider a test function ¢e C;°(Q) and define ¢ =
¢ — Q| Jo, ¢ dx. Then we see mjp € W4(H) and

J V(nyg) - Ve dx = J V- V() dx — J Vi ¢V dx + J Vg - Vo dx
H Q Qr Qg

- J Vi V0 of) dx + J 7+ div(gVip ) dx + J AV - Vb d,
Q Qr

Qr
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where we used the fact: supp Viyr = Qg and e, - Vg = 0,0 r(x) = ¢/ (|x]) x4 /| x|
vanishes at x, = 0. By using Lemma 3.6, we obtain (4.4). O

Theorem 2.4 can be proved by the method due to [13] with Theorem 4.1.
The next lemma tells us a regularity property of the Helmholtz decomposition.
By using their method, we can obtain the following lemma.

LemMA 42, Let 1<q< o, west, and f € Li(Q) satisfying V(V- [)e
Li(Q) and N - f =0 on 0Q, where N denotes the outer normal vector on 0.
Further let f = fo+Vr with foe Ll (Q), ne Wha(Q) be the Helmholtz de-

composition of f. Then V’me Li(Q) and V- f € LI(Q).
We next consider the weighted resolvent estimate (Theorem 2.3). For this
purpose, we consider the generalized resolvent problem
A=Au+Vre=f, divu=g, u=0 on 0Q, (GS)
where feLi(Q), ge Wh(Q)NW_14(Q) and LeZ, = {ieC\{0}||arg | <

n—¢} (0 <e<m/2). Since we can prove Theorem 2.3 in the same way as [13],
we shall show the outline of its proof. First step of its proof is to show the

following lemma which tells us a priori estimates:

Lemma 4.3. For a given solution (u,n) € W21(Q) x Wh4(Q) to (GS) it holds
the a priori estimates

1 Git, V22, V) gy < €IV Ly + gl vy

+ 1| (w, Vu, )]

Lon) T 12ull e o) (4.5)

with a constant C = C(Q, R, w,q,&) > 0 independent of ). € X,. Here W4 (Qg)* is
the dual space of W1 (Qp).

Next step is to show that the operator S, (/) defined as follows is injec-
tive: S, (1) is the operator from W29(Q) x WL4(Q) to LI(Q) x W, 14(Q) by
Syw(A)(u,n) = ((A—Au+Vn,V-u) with domain 2(S, (1)) = (W24(Q)N
W()lf(Q)) x W4(Q). The following lemma implies the uniquness of the solution

to the resolvent problem.

Lemma 4.4. S, (4) is injective and its range R(Syw(L)) is dense in
Li(Q) x W h9(Q) for all )eX,.
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Lemma 4.3 and Lemma 4.4 can be proved by the method due to Farwig
and Sohr [13]. By two lemmas above and Lemma 3.2, we can prove Theorem 2.3
(see [13]).

5 Weighted L? — L7 Estimates of Stokes Semigroup

In this section, we shall prove weighted L? — L7 estimates of Stokes semi-
group in half-sapces and perturbed half-spaces. To this end, we begin to prove
the following lemma on weighted L? — L9 estimates in the whole space R” and
the half-space H.

LEMMA 5.1. Letn>2, 1< p,r<q< oo and w=<x)". Let Q be the whole
space R" or the half-space H. Let s be a positive number such that 0 <5 <
n(l—1/p) if Q=R"or 0<s< m—1)(1—-1/p) if Q= H. Then for ac L2(Q)N
L"(Q), we have

[<x>e™" Pal

Li@) < C[fn(l/l’*l/‘l)/z||<x>5a||Lp(Q> + Cvlfn(1/}'71/11)/2%\'/2||a||Lr<Q>7

[[<x>*Ve " Pal

Li@) = Cl_n(l/p_l/q)/2_l/2||<x>sa||u(9)

+ D2 g o

for t > 0.

Proor. We shall first consider the whole space R” case. In this case, it is

—14

well-known that the Stokes semigroup e is represented by

e Mf = (Eyx f)(x) ::J

. Eo(t,x = y)f(y) dy

for feL? (R"), where Ey(f) is heat kernel: Eo(f) = (4nt)"/2e~"/4) . Since

w,a

)P < x— p>¥+<{p>’, we have

_ C Xx= 1\ e
|<X>SV|O’«‘8 lAPa| < WJR” <x_y>S(Ty> e [x=y| /4[Pa(y) dy

C X—=J) ! —|x—y|? s
+(4m)”/2jm( T, )e Iy Y Pa(y) dy

=: G| * Pa+ Gy * ({x)*Pa).
We first consider the first term Gj. Since Gy is estimated by

Gy (£, x)| < Ct=/>H—lh/2=Ix"/80)
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we obtain

1Gy||; < Ct"(1-1n/2+ 1)/

for 1 <7< co. Thus by Young’s inequality with 1+ 1/¢=1/r+ 1/F, we have
Gy * Pally, < ||GilllIPally, < Com" U VORHZEDR  paj .
We next consider the second term G,. By Young’s inequality, we have
1G> (<> Pa) | 1 < (|1G2ll o I<x)* Pall , < ComVP=VORR| Cxy P .

Since the weight function (x)>¥ and the Helmholtz projection P can be com-
mutable when the exponent s satisfies —n/p < s <n(l —1/p), we obtain the
desired result for the whole space.

Next we consider the half-space case. In half-space, we have the solution
formula obtained by Ukai [35]. Let R; and S; be the Riesz transform and the
partial Riesz transform defined by (3.1) and (3.2). And let yf = fly, of = fly
and e zero extension operator from H to R”. Finally, let E(z) be the solution
operator for the heat equation in H, which is derived from Ejy(¢#) by odd ex-
tension from H to R”. Then the solution (u(#),n(t)) of the non-stationary Stokes
equations in H is

u(t) = WE(t)Va, =n(t)=—Dyd,E(t)Va,

I —sU 2
vl ) )

Szt(Sl,...,Sn_l), UZVR,~S(R,'S+R,,)€, Rlzr(Rl,...,Rn_l),

where

with

Via=—-S-a' +a", Vya=ad + Sa"

and D is the Poisson operator for the Dirichlet problem of the Laplace equa-
tion in H. Taking the fact that R; and S; is bounded operator on LZ(R") and
LI(R"1) to themselves respectively into account, we can reduce to the whole
space case, so that we obtain the desired result for the half-space. O

Next we shall prove the perturbed half-space case by using cut-off technique
with Lemma 5.1. We first consider the L? — L9 estimates for 7 > 2.

LemMA 5.2. Let n>2, 1 < p,r<q< oo and Q be a perturbed half-space
with C*-boundary. Let s be a positive number such that 0 <s < (n—1)(1 —1/p).
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Then for ae LE(Q)NL"(Q) and w = {x)>*¥, we have
1<) e ™ Pal| ) < Cr"VPVORIx) al| (g
T T P (51
<G> Ve Pall gy < C IR G all

+ G R g o 52
for t>2.

PrOOF. By using the cut-off technique, we divide Q in Q\Qr and Qg. By
the result on Kubo and Shibata [30] and Sobolev’s embedding theorem, we can
obtain

1> % S Nl Loy < Clle™ | Lagay < o712 £l < CoME2Y G

for fe L] (). This implies (5.1) for Qg. Similarly we can prove the (5.2)
for Qp.
We shall next consider the L” — L4 estimate for Q\Qg. For R > Ry + 2, set
g=ef e 2(4A"), u(t) = e *+VAf We set
Z(1) = pru(t) = B[(Vipg) - u(1)],  ©(1) = Ygn(r),

where u(t) and z(¢) are the solution to Stokes equations with

JD 7(t) dx =0, (5.3)

where Drp={xe€Q|R—1<|x| <R} and B is the Bogovskii operator. It is
observed that (Z(r),®(¢)) satisfies the equations:

0,Z(t) — AZ(H) + V(1) = L(1), V-Z(1)=0, in H,

Z(0) = yrra — B[(Virg)a] =: 2o,

where

L(1) = =2V - Vu(t) — (A p)u(t) + (3 = A)B[(VYg) - u] + (Vipg)(2).
Since Z(t) e C'([0, 0) : L} (H))NC([0,00); Z(Ap)), we can write Z(1) as
follows:

t
Z(t) = e Mrzy — J e PL(7) dt = z) + 2 (5.4)
0

where e~'# is the semigroup in half-space obtained by Frohlich [18].
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Given ¢ e Cy°(H), we set
1
(Vi =5 | (wadas

and then fDRG)dx: 0. By a property of Bogovskii operator, we can choose
x € WP (Dg) such that V-y =0, y|,p, =0 and

1xllwie (o) < CIOI Lo (pgy < ClPll Lo (py)
for 1/p+1/p’ =1. On the other hand, by (5.3), we have

(VyR)r(t), §) = j 7(0© dx = (7,V - 7) = —(Vu, V) — (2, 7).

Here we recall the estimate for Qg obtained by Kubo and Shibata [30]

Ve P oy + 10 Pf | i < CE @72 £ g

for t>2, 1<r< oo and feLl(Q). This estimate implies that

L' @p) T ”atu”LF(QR)||XHLﬂ’(QR)

L (Qp) |

[(VYR)n(2), 9)| < [[Vul

< C(L+ 0" Y £l bl -

By duality argument, we see

(V)@ < C(L+ 1) 72| £

Since we have supp L(f) < Qg, we obtain
1 S CIL@ e < CO+ 072 1, 121

< ClIL()]

1PL(2)]
for 1 <r < p < oo. Therefore we see

[ PLO L < CIGY L) < CA+ )21 . (55)
Now we consider the estimate Z(z) by using (5.5). We can show the estimate
of z; in (5.4) by using the weighted L? — LY estimates in the half-space as
follows:
[{xd%e tAPZOHLq < Cy(/p=1/9) /2||<x>320||L1’ +Ct (l/r—l/q)/2+s/2||20HU(H)
1<x>* Ve ™ Pzo| Loy < Ct=" NP7 VD2 (e 20]| Loy

Loy /r=1/a) 2+ (s 1/2HZO||U(H
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We shall estimate z, in (5.4). To this end, we assume that 1 < p;,r; < p,r < o
with py,r; <min(p,n), n(1/p—1/q) <2 and n(l/r—1/q) <2+s. By Lemma
5.1 we have

t
Laa) S CJ (t = 1) "V G PL(T) | T

t—1

[|<x>"z2

t
+C| (=) TVORRRYPL()|, de
t—1

t—1
+C| (=Y PL ()|
0

L dt

~1
+C ' (t_T)*n(l/rlfl/fl)/2+é'/2||PL(T)|
Jo

n dt

=h+L+L5+1L.

By using (5.5), we can estimate I; and I, as follows:

t
I < CJ (1 = 1) " WP=YDI2(1 g o)==V go sy,
t—1

< GRS

and

t
b < CJ (1 — 2y P VD2072(1 =@V gy < D12 g,
-1

We next consider the estimate of I.

t/2
O R R (E T R L IV 1
0

/2
4¢ (14 7) W= VOR = o)™ C72 e Gy
0

1

Taking (1+17) ' > (1+7—17)"" for 0 <7 <1¢/2 into accont, we obtain

t/2

L<c +,)—n<1/p71/q>/zj (142)CP=12 4o 57|
0

<Cc(1+ t)*n(l/lrl/P)/ZH<X>SfHLP.
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In a similar way to estimate of I3, we can get the estimate of Iy as follows:
I4 S C(l + t)_n(l/r_l/q)/2+S/2||f||Lr

Summing up, we obtain (5.1) for n(1/p—1/q) <2 and n(l/r—1/q) <2 +s.

Finally we remove the restriction n(1/p —1/q) <2 and n(1/r—1/q) <2+
by using the property of semigroup. We choose pi,..., p, in such a way that
p=p1<py<---<pr=¢qand n(l/pj_1 —1/p;) <2 for j=2,...,/ and ry,...,
Fp in such a way that r=r <r <---<r,=gq and n(1/r,_1 — 1/r;) <2+ s for
j=2,...,m. By (5.1), we have

1 e~ A ||y < CommUpear 12| ey se= =D/ Ndp
+ thn(l/r/,l7l/r/)/2+‘\'/2||e*(/*z)/wfl)tAfHLr/il

< CoMUPVORY Cysf |, 4+ Coo Ve

which implies (5.1). Similarly, we can obtain (5.2). Therefore we obtain the
weighted L? — L7 estimate of Stokes semigroup. O

LEmMMA 5.3. Letn=2, 1< p<q< oo and Q be a perturbed half-space with
C? boundary. Let s be a positive number such that 0 < s < (n — 1)(1 — 1/p) and let
w=<x)>¥. Then for ae LL(Q), we have

||<x>se—tAPa||Lq<Q> < Ct—n(l/ﬁ—l/‘i)/ZH<x>saHLF<Q)’ (56)
[<x)*Ve ™ Pal| pyq) < Cl_n(l/p_l/q)/z_l/zn<x>sa||u(g) (5.7)
for 0 <t <2

ProoF. In view of the weighted resolvent estimate (2.2), we have

IVe™ | oy < 21 fll ey

for 1 < p< oo and 0 < ¢ < 2. Therefore it is sufficient to prove (5.6). We set
o=n(1/p—1/q). By Sobolev’s embedding theorem, we have

1<x>* e S || Loy < CID e S Nl yonir

for l<p<g< oo and 0<o <2 By real interpolation for o€ (0,2), we
have

WP (Q) = (LY (Q), W>P(Q)), 2.,
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Moreover by using the weighted resolvent estimate (2.3), we have

Ve s

Loy < Ct 2 £

L2(Q) (5-8)

for k=0,1,2 and 0 < ¢ < 2. Therefore we see

S A, —tA 1 1-0/2 —tA p110/2
1Y e f lyany < 1< F 172 [y e 172,

for 1 < p< oo and 0 <t < 2. Here taking the fact

SX

< C<x>"Ve S || s
0+ ) I I

Lr

[V<x)* Ve 1|, = (x) Ve Ay

into account, by using (5.8) we can estimate the second term ||[{x)’e~"f |}, as
follows:

1y el < CUTAY e 0+ IV Ve 41 1y + x5 V2|
< O e T+ <Y Ve ™ | + [0V )
< Cllf gy + 2 azy + 1 Nuzia)

< Gt f e

L)

for 0 <t<2 and 1 < p < c0. Summing up, we obtain

[<x> e~ f |

Lo < ClIXY e | yopqy < Co"VP=VOR|IG |,

for l<p<g<oo and 0<n(l/p—1/g) <2. We can remove the restriction
n(l/p —1/q) < 2 by using the property of semigroup. This completes the proof of
the weighted L? — L7 estimate for 0 < ¢ < 2. O

6 Navier-Stokes Equations

In this section, we shall consider the application of the weighted L? — L4
estimates to Navier-Stokes equations. As we mentioned in Introduction (section
1), we know the unique existence results for Navier-Stokes equations in the half-
space and a perturbed half-space (see Kozono [28] for half-space case and Kubo
and Shibata [30] for a perturbed half-space case for detail). We consider the case
where the initial data a belongs to L"(Q) N L" (). Since a € L"(Q), we know that
there exists the unique strong solution u to (NS) and the solution u satisfies the
following assymptotic behavior:



Weighted L? — L4 estimates of the Stokes semigroup 199

[[u(2)]
[[Vu(1)]

< Cit for n <r < o, (6.1)

L < Gt g, for n<r< 0. (6.2)

In order to prove Theorem 2.8, we begin to prove that there is a constant M
independent of 7 >4 such that

sup ("2 u(D) o) + sup (11PN u(1)]| ) < M (6.3)
0<r<2 2<t<T

for ¢ > n. To this end, we set

m= sup ('O u(D) ), M= sup (' COSRIC U (D)) ,).

0<t<2 2<t<T

We first consider the case for 0 < ¢t < 7 < 2. By using the weighted L? — L4
estimate (5.6) and the relation (6.2), we have

1< u(D)]] Lo

t
< ||<x>se’tAa||M +J [1<x>! e’(”S)AP(u “Vu(z)||, d
0

t
< CrVPCD| | (xyal| +j (t — ) "WYY oy su(2) || || V()| o do
0

1 — n
an3<2 . )), 1240 20)

where B(-,-) denotes the beta function. Choosing ||a||;. smaller if necessary, we
obtain m < C|[<x>’a|| ..

Next we consider the case for 2<r<T <4. To this end, we set
I (j=1,...,4) as follows:

< c(||<x> dl

Ln + C2||a

-2
L = [[Kx)’e |, 12=J0 [<x> e P - VYu()|| ., d,

2
13=j 1<% e (- V(o) |, d, 14—j||<x>f 94 P(u - V)u(1)|| dr.

—

By the argument for # < 2, we see that there exists the positive constant C such
that

sup (¢'/27CD ||y u(1)|| o) < ClI<xY al| s (6.4)

0<t<2
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with the constant C indenpendent of z. I} is easily estimated as follows:
I < Ct71/2+n/(24)||<x>sa||Ln + Ct—1/2+n/(2q)+s/2||a||Ln (65)

Since 7 < 2 and t — v > 2, I, is estimated by the weighted L? — L4 estimates (5.1)
as follows:

=2
b< jo C(t = 7))y u(@) | o [Vu(D) | o d

-2
+ J C(t — o) COE u()| L | Vu() | o dr
0

t—2
< CCZHaHL"J (1 =) 1 2em 220 df( sup 71/2"’/<2">II<X>Su(f)|Lq>
0

0<7<2

+ CCG|a

-2
E"JI (1 — 1) /@O 12 g
0

< CC2||a||L”||<x>saHLnlfl/2+n/(2q) +CC C2Ha”int71/2+n/(2(1)+s/2.

Similarly, we can estimate /3 and Iy as follows:

2
h= J Clt =) Py u(@)l| o |Vu(@) o de
-2

-2
SCC2||a||LnJ (1 — 1) V2= 1n/0) df( sup Tl/z_”/(z")|<x>5u(r)||Lq>
0

0<t<2
< CCallal] | < al =219

and

fo= L C(t =) 1O u@) |l IVu(D) | o d

< CCsz

t
I Jz(t _ T)—l/2T71+n/(2q)+s/2 dT( sup T1/2n/(2q)s/2||<x>su(,[)||Lq)

2<t<T
< CCy|\al| ., Mt~V /2Hn/Ca)+s/2

Summing up, we obtain

M= sup (27O u(D)]) )

2<t<T

< Cl[<xy’alln + Cllall o+ ClI<> all pallal o + CM |l
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If necessary, choose |la||,, small, we obtain

M = sup (¢'27MCOSRIN U] 0)
2<1<4

< Gl allpn + [lall s + [[<x)°l
B 1= Clla|

Ln

i) (6.6)

By (6.4) and (6.6), we conclude that there exists a positive constant M indepen-
dent of T satisfied (6.3).
In order to consider the case for 4 <t < T, set I; (j=1,...,4) as follows:

2
I = [Gy%e Hally, I = jo 1<y e O P(u- Vyu(a) ., d,

=2
L= j [<xy%e I Pl V(o) d,
2

t
Iy = J [<x>5e= P - Vyu(e)||,, dr.
2

—

We notice that from the argument above, (6.4) and (6.5) hold. We next estimate
I, by using Theorem 2.7. Noticing that 7 <2 and ¢t — 7 > 2, we have
? 1/2
< C| (1= 07 G U@ ()

2
+ cj (t — ) OOy | L[ Va(o) | e de
0

2
< CCy|al LnJ (1 — 1) V21020 o
0

{x)%al

Ln

2
+ CC, C2||a||in J (1— T)fl+n/(261)+.v/2_[71/2 dt
0

< COall o (<Y all 1ot ™2 + Cilal| go)e~ 124002,

Similarly, we can estimate /3 and Iy as follows:
-2 /2 ]
b= L (t =) P u(@) || o | Vu(a)]| 0 d

-2
n J (t— 1) OO ()| V(o) |0 de
2
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< CGa|

-2
I [MJ (1 — 7)1/ QD452 g
2

t—2
+ Cl ||CZHL,, J (l _ T)—l+n/(2q)+x/2l_,1/2 de
2

< CCy\a|| o (M + Cy|\a]| )t/ Co+s/2

)
and

t
L=c J (=) I ()l Vu() . i < CCaM ™24,
.

Summing up, we obtain

M < C|<xY%d|| . + Cllal . + CCallall . (J[<x>%all . + Cillall . + M).

Choose ||al|;,» small if necessaly, we have
sup (11727 GOy u(z) | )
2<u<T

s 2 ]
< C([<x>allp + llallp» + C1Caollal . + CZH“||L»I||<X>SG||U)'
- 1 — CGllal|

(6.7)

By (6.4) and (6.7), we conclude that there exists a positive constant M inde-
pendent of T satisfied (6.3). Since we obatin a positive constant M independent
of T, we can conclude

sup (1122 | Cxysu(n)| ) + sup (11202 oy u(o)] ) < M,
0<r<2 2<t<o0
which implies the weighted asymptotic behavior (2.3).

Finally we shall prove the asymptotic behavior for |<{x)>*Vu(¢)|;, for
n<r<o and 0 <s< (n—1)(1 —1/n). To this end, fix s as the number sat-
isfying 0 <s < (n—1)(1 —1/n). Then we remark that there exists the positive
number ¢ such that s < (n—1)(1 —1/n—1/§) holds. We have

t

1< V()| < [[<x)° Ve al|, + JO [<xy e P(u - V)u(r)]

Ldr=T+1I.

Since we can prove the asymptotic behavior for I easily by using Theorem 2.7,
we shall estimate only the second term /7. Since we see s< (n—1)(1—
(n+ q)/nq) for ¢ > max(q,r), we obtain
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t
ii < C (l _ T) —n(l/q+1/n—l/r)/2—l/2||<x>sP(u . V)U(T)l
0

L an/(g+n) dT

t
<C| (- o) VDR oy (- V(@) | i dT
0

t

o Al o) YR oy u(e) | | Vu() | e

<c| (0= o)1 2 2512 g

0

< Cl—l+n/2r+s/2'

Therefore we obtain the asymptotic behavior (2.4).
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