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HOCHSCHILD COHOMOLOGY RING
OF THE GENERALIZED QUATERNION ALGEBRAS

By

Takao Hayamr®

Abstract. We will give an efficient bimodule projective resolution of
the generalized quaternion Z algebra I'. As a main result, we will
determine the ring structure of the Hochschild cohomology HH *(I)
by calculating the Yoneda products using this resolution.

Introduction

Let R be a commutative ring and A an R-algebra which is a finitely
generated projective R-module. If M is a A-bimodule (ie., a A°=A ®zAP-
module), then the nth Hochschild cohomology of A with coefficients in M is
defined by H"(A, M) := Extj(A,M). If M =A, we set HH"(A) = H"(A,A).
The Yoneda product gives HH*(A) := (P),_,HH"(A) a graded ring structure
with 1 € ZA ~ HH°(A) where ZA denotes the center of A. HH*(A) is called the
Hochschild cohomology ring of A (see [4], [1], [5]). The Hochschild cohomology
ring HH*(A) is a graded-commutative algebra, that is, of = (—1)??Ba holds for
o€ HH?(A) and e HH?(A). The Hochschild cohomology is an important
invariant of algebras, however the Hochschild cohomology ring is difficult to
compute in general.

Suppose that ¢ and b are any nonzero rational integers. We consider the
generalized quaternion Z algebra I':=Z @ Zi® Zj ® Zij with the relations
i>=a, j>=0b, ij = —ji. In the case a = —1 and b = —1, the ring structure of the
Hochschild cohomology of the ordinary quaternion algebra I' is already known
by Sanada [6, Section 3.4].
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THEOREM (Sanada [6]). Let ' be the ordinary quaternion algebra over Z.
Then the Hochschild cohomology ring of T is as follows:

HH(T) = Z[ 0]/ (24, 200,20, 1% 4 2 +12),

where deg A =deg u=degv=1.

In [2], the author reproves and generalizes this result. Thus it is natural
question to investigate the ring structure of the Hochschild cohomology of the
generalized quaternion algebra. In this article, we will give an efficient bimodule
projective resolution of the generalized quaternion algebra I'. Moreover by using
this resolution, we determine the ring structure of the Hochschild cohomology
ring of the generalized quaternion algebra I'. This is a method similar to [2] or
(3]

In Section 1, we state an efficient bimodule projective resolution of I’
(Theorem 1.1). In Section 2, we use the resolution to describe the module
structure of HH*(T'), giving explicit generators (Theorem 2.1). In Section 3, we
compute the Yoneda products of the generators. Then, as a main result of
this article, we give a complete description of the Hochschild cohomology ring
HH*(T') (Theorem 3.8). The result is more complicated than the known result for
the ordinary quaternion algebra.

1 Bimodule Projective Resolution for the Generalized Quaternion Algebras
Suppose that ¢ and » are any nonzero rational integers. Let

Fr=207Zi®LoLij

2:61’ j2:b9

be the generalized quaternion algebra over Z with the relations i
ij = .

In the following, we give an efficient bimodule projective resolution of I'. For
each integer g > 0, let Y, be the direct sum of ¢ + 1 copies of I' ® I'. We define

elements of Y, by

Q:{m“”ﬁJ®lﬁ,“ﬂ)(ﬁlgs£q+n,
0 (otherwise).

Then we have that ¥, = @/ CefT.

THEOREM 1.1. There exists the following bimodule projective resolution of T:

Y0 : -2 n2rnirniroo,
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where 6o : Yo — I is the multiplication map, and for integer ¢ >0, 5, : Yy — Y,

is a T'°-homomorphism given by

5o(c) = icy | — cgfli—i—jc;:} — c;:}j for q odd,
e icy |+ c;71i+jc;:11 + cljjllj for q even.
Proor. By direct computations, we have that J,-d441 =0 for ¢ > 0. For
example, if ¢g(> 1) is odd, then we have

Jq '5q+1(62+1) = (Sq(icg + C;i + jc;_l + C;_lj)

s—1

_ K s— e U
=dac g1 qu71]

g—1 — icy_yi+ijc

+ic) yi— ) a+ jesli— i
+jiesT) — jelli+ byt — jesTij
+icsT\j = eyl + jey i — ey 3b
=0.
Thus we have Im J,,; < Kerd, for ¢ > 0.
Next we prove the reverse inclusion. We give a contracting homotopy.

We define right I'-homomorphisms 7 : I" — Yy and T, : Y, — Y, (¢ >0) as
follows:

T.1(y) =cyy (Wyel),

mc(}Jrl (qZO,s:l,mzo,l,n:O),
T (imjncs) — (_l)qmcé+1j+ imCéJrl (q = 07 §= 1; m = 07 17 n= 1);
! ! (qZO,s22,m:0,l,n: )7
imc;ﬂ (g=0,s=22,m=0,1,n=1)

We may see that T, : ¥, — Y,41 (¢ = —1) is a contracting homotopy. Thus we
must check that the equation

(Og1 Ty + Ty109)(i"j"¢y) = i"j"¢,

holds for ¢ >0; 1 <s<qg+1;, m=0,1; n=0,1.
If ¢ =0, we have

Tfléo(i’njn(!é) — T,I(l'mjn) _ Cél'mjn,
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where m =0,1 and n=0,1. On the other hand, if » =0, we have
01 To(i"c}) = 01(mel) = m(icy — cli),
where m=0,1. If n =1, we have

o1 To(l"’]co) o1 (mclj + zmclz)

= m(icy — cyi)j +i"(jej — ¢y j)
= l’"]c céimj,
where m = 0,1. Thus we have 6,7y + T_16p = idy,.
If g(>1) is odd, then for s=1 and n=0, we have

Ogi1 Ty (i" cl) 6q+1(mc;+1) = m(ic; +c;i) (m=0,1),

1
¢ (m=0)
m 1y _ 1 1 1o~ _ )% )
Tq,léq(zmcq) =T, (" gt 1’”cq ) = {—ct}i (m=1).
If g(>1) is odd, then for s=1 and n=1, we have
Ogr1 Ty (" ]c ) =0gs1(— mcq+1]+l cqﬂ)
]c —l—cq]—l—zc -|—Ll (m=0),
B yc —c l]+ac +lcz (m=1),
T,, 1( ch | jcéfli) (m=0),
q 15q i’ ]C = 1
Tyi(~ajcl y —iiel i) (m=1)
_ —cq]—lc —cé (m=0),
cyij —acy —icji  (m=1).
If g(>=1) is odd, then for s >2, m=0,1, and n =0, we have
Og+1 Ty (i"cy) = 0,
Ty 104(i"¢) = Tyr (i el —i"c) i+ i"je)"} —i"c)7 1))
=i"c,.

If g(=1) is odd, then for s >2 and n=1, we have
Ogr1 Ty (1" ]C) Og+1 (1" C;ﬂ)

:lm+1 S+1+lm s+1l_|_l ]L +l}11cs] (m=0,1)7



Hochschild cohomology ring of quaternion algebras 17
Ty1(=ijcy_y — jeg_yi+ bc‘qu - J'C;;jj) (m=0),

s—1

Ty-104(i"jcy) = s e S
E 4 T(I,l(fa]c;71 —djey i+ blc;j — ljcqjlj) (m=1)

B {—icl}'+1 —c;}'“i—cgj (m=0),

—acst! — ic;“i

p —icyj (m=1).
Thus we have 6,17, + T,-1, = idy, for g(> 1) odd. In the case ¢(> 2) even, the

computations are similar. Hence Im d 41 > Kerd, is proved for g > 0. O

REMARK 1.2. If a = —1 and b = —1, an efficient bimodule projective resolu-
tion of the ordinary quaternion algebra I' is given in [2]. Even in that special
situation, the differential of the resolution in Theorem 1.1 is different from that of
(2, Theorem 1.1].

2 Module Structure

We keep the notations in Section 1. In this section, we calculate the
Hochschild cohomology group HH*(T).

Let M7 denote the direct sum of ¢ copies of a module M for any integer
g > 0. As elements of T we set

l.y:{(o,...,o,i,o,...,O) (if 1<s<q+1),
! 0 (otherwise).

Then we have T = (D7 Tk,

Applying the functor Hompe(—,T) to the resolution (Y,0), we have the
following complex, where we identify Hompr<(Y,,I') with r“*! using an isomor-
phism Hompe(¥,,T) — T £ S0 S(ckyk:

# o 0 3 40 s
(Hompe(Y,1),0"):0 - T —T°" =>T° —>T"—TI°>— .-

)

#
544—1 s+1

(1) = (iy = pi)isy + (y — 2t} for ¢ odd,
1 (iy +pi)ig g + (y + )ity for g even.

In the above, note that

e = 0,...,0,7,0,...,0) (if I<s<q+]1),
otherwise
oo (otherwise),

for ye I, and so on.
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In the following we set

d =gcd(a,b), a zg, b :g.
Then we have the following theorem.

THEOREM 2.1. The Hochschild cohomology group of T is as follows:

zZ (n=0),
HH"(T) ={(2/)22)""" & (Z/24Z)" (n odd),
2/2aZ @ (2/2dZ)" " @ Z)2bZ & (Z/2Z)" (n(# 0) even).

Furthermore, module generators of HH"(T") are given as follows:

() If n(=1) is odd, the (Z/2Z)""" summands are generated by iji*
(k=1,2,....n+1) and the (Z/2dZ)" summands are generated by
ajik = b'i* " (k=1,2,...,n).

(i) If n(=2) is even, the Z./2aZ summand is generated by 1!, the (Z./2dZ)"""
summands are generated by 1* (k=2,3,...,n), the Z/2bZ summand

is generated by 1"*', and the (Z/2Z)" summands are generated by

ik + ke (k=1,2,...,n).

n

Proor. For any element y = x+ yi +zj + wij (x,y,z,we Z) in I', we have
iy=xi+ay+zij+awj, yi=xi+ay—zij—awj,
Jy=Xxj — yij + bz — bwi, yj = Xxj+ yij + bz + bwi.

We prove the case n(>0) even only. Let (y;,7,,...,7,.;) be any element in
"1 where we set y, = xx 4+ yii + 2/ + wiij (X, Yk, 2k, Wik € Z,). Since

(yla yZa ey ynJrl) € Ker 5;#4»1
2z1ij + 2aw, j = 0,
S 2pkif — 2bwii 4 2z + 2aw 1 j =0 (k=1,2,....n),
=2Yni1l] — 2bwyi1i =0

21 = Yup1 =0,
Sw =0 (k=1,2,...,n+1),
Yk = Zk+1 (k=1,2,...,n)

n+1 n
& 0102 Tnet) = DXty + Y yilig + jiy ),
k=1 k=1
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we have

n+l1 n

Ker o/, = @ Zyy & P Z(ir) + jiy ).
k=1 k=1
Next we show
n n
Im o7 =2aZ1} ® @ 2dZiF ® 2072 ® P 2Z(irk + jik ™).
k=2 =1

Let (y,75,.-.,7,) be any element in I'" where we set y, = xi + yii + zxj + wiij
(X, Yy Zk, Wi € Z). Then we have

6#(?17?25"'77)0

n n
= 2ayyi} +2 Z(ayk + bzg g )1k 4 2bz, 12 Z g (itk 4 i
k=2 k=1

n n
= 2ay1) +2d Z(a'yk + bz 1K 4 2bz " 42 Zxk(ilé‘ + jikr.
k=2 k=1

Note that a’yy + b’z is to be any element of Z by choosing y; and z;_,
properly. Hence we have

HH"(T) = (Z/2aZ)1} ® P(Z/2dZ)i* ® (2.)2bZ)" ® D(Z/2Z) (it + jiF ).
k=2 k=1
The other cases are similar. O

REMARK 2.2. In particular if @ =41, b = 41, then we have that

z (n=0),
{<Z/zzf"“ (n>1).

HH™T) =

3 Ring Structure

We maintain the notations in Sections 1 and 2. In this section, we determine
the ring structure of the Hochschild cohomology ring HH*(T').

Recall the Yoneda product in HH*(I'). Let a«e HH"(I') and fe
HH"(T"), where o and f are represented by cocycles f,: Y, — I' and f3: Y, —
I', respectively. We have the commutative diagram of I'°-modules with exact
rows:
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§n+m+l 6n+m 5m—2 ‘Sm+l fﬁ
—— Yuim T Y Y r
u’lJ« " J/ ul)J« H
Y, o Y, Yo r 0
Ont1 8 On ) oy o ’

where u; (0 </ <n) are liftings of f;. We define the product o - e HH""(T')
by the cohomology class of f,u,. This product is independent of the choice of
representatives f, and fp, and liftings u; (0 </ <n).

By Theorem 2.1, we take generators of HH'(I') as follows:

.. ] ) /-1 1.2
A =0y, W =iy, vi=aj —>biyj.

Then we have 24y =2y =2dv; =0, and Ay, y;, vi are represented by the
following I'°-homomorphisms, respectively:

}11 Y — T clln—>ij, clzr—>0,
A Y1 —=T; ¢l =0, cf—ij,
Y, =T odedj, - —bli
We state an initial part of liftings of these cocycles.
Lemma 3.1. (i) An initial part of a lifting u,: Y,.1 — Y, of Ji s as
follows:
uo(ey) = ijcg, - up(ct) = 0;
ui(ey) = —ijel, wi(e3) = —ije, () = 0.
(i) An initial part of a lifting v, : Y11 — Y, of gy is as follows:
volet) =0, wvolef) = ijey;
vi(e) =0, vi(e3) = —ijer,  vi(e3) = —ijey.
(iil) An initial part of a lifting wy, : Y,11 — Y, of V1 is as follows:
WO(Cll) = a'jCé7 Wo(C12) = —b'icy;

wi(ey) = —d'jel,  wi(c3) = blicl —a'jet, wi(e3) = blic}.
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ProoFk. (i) Clearly 4, = douo holds. Since

ued2(cy) = ajey + ijeyi = —ij(icy — cyi) = drui(cy),
upda(3) = —bicy + ijey j = —ij(jey — ¢4j) = drur(c3),
uoéz(cg) = 0 = 51111(()3),

we have ugd, = djuy. (ii) and (iii) are similar. O

PROPOSITION 3.2.  The following equations hold in HH?(T):
2 =abl, gy =abi, u} = abi,
avi = d'b(id + ji2), v =d'b(i? + ji3), a2} + by} +dv? =0.
In particular, in the case a = +1 and b = +1, HH?(T) is generated by the products

of A1, uy, and vy.

Proor. We calculate A,v; as an example. Since
wi(ed) = Ay (—d'jel) = a'bi,
wi(c2) = Ay (bic! —a'jc}) = ab'j = a'bj,
i (c3) = A (bic?) =0,
it follows that A;v; = a’b(itd + ji3) holds. Other computations are similar. [J

In the following we take generators of HH?(T') as follows:
Ty = 121, V) = l%, &= lg’,
d=in + ji3, Wy =i+ ji3.
Then 15, vy, &, 42, and u, are represented by the following I'°-homomorphisms,
respectively:
y: Y, = T (:21»—>17 c%»—>0, cho;

Y, =T =0, 31, 0

&Y, T 021»—>(), c§|—>0, c§’+—>1;

A Y, — T c21|—>i, c%»—>j, cho;

Y, —=T; 0, =i
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REMARK 3.3. By Theorem 2.1 and Proposition 3.2, we have the following:
261‘[2 = 2béz = 2/12 = 2/,(2 = 2dV2 — 0,
A =abty, Ay =abvy, u}=abéy, vy =da'bly, v =abu,.

Note that, since HH*(I') is graded-commutative and 2abv, = 0, it follows that
WAL = =iy = —abvy = abvy; = Ay hold. Similarly we have vi4; = Z;v; and
VIR = Ve

Next we state liftings of 12, &, v2, 42, and w,.

LemMA 3.4. (i) A4 lifting f,: Yoo — Yy of % is given by fu(ck.,) = ck for
nx=0.

(i) 4 lifting g, : Yn+2 — Y, of & is given by gy(c k) =ck2 for n>0.

(iii) A4 lifting h, : Yo — Y, of vy is given by h,(c n+2) =kt for n>0.

(iv) A lifting r, : Yn+z — Y, of Jy is given by r,(c n+2) = ]ck‘l + ick for n>0.

(v) A lifting ty: Yo — Yy of [y is given by t,(ck,) = jek=2 +ick=1 for

0

Proor. (i) Clearly %, =dofo holds. If n(>1) is odd, then
JuOni3(c n+3) fn(l‘n+2 + Cn+2’ + ]‘n+2 + (’n+2 )
= Z.Cr]lC +C,]fi+jC,lf_1 + C ] = Onfuri(c n+3)

If n(=2) is even, then

. k .k koo s k=1 k=1
fn5n+3 (cn+3) = fn(lcn+2 — Gyl + JCii2 — Cpui2 J)
Sk ke k=1
=ic, —c,i+ jc, ]— ,,f,,+1(n+3)
Thus (i) is proved. Other computations are similar. ]

REMARK 3.5. Let o= Z,':Ll 7% (7, €T) be any element in HH"(A) for
n>1. Then by Lemma 3.4 we have

n+1 n+1 n+1

_ k _ k+2 _ k+1
Ty = E Vicluy2s aéy = § Vilyyos V2 = E Vit -
k=1 k=1 k=1

By using this remark, it is shown that HH?*(T) is generated by products of

/113 lula Vi, T2, V2, and 52:
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.1 .. 2 .. 3 .. 4
Mty =y, (=) =iy, (=) =i, wés =i,
vty =djis — b3, wiva=djii — b3, & =aji3 —bis.

We state the relations in degree 3, which are given by using Lemma 3.4.

PROPOSITION 3.6. The following relations hold in HH?3(T):
Wt = Ay, MG = vy, Ay = Ay = dvivy, Jady = dnit,

ity =dné, v =dlita+b' &, iy =dwt +b'wé,.

Likewise, we may show that HH*(T') is generated by products of 73, va, &,

A2, My

2 1 2 2 3 4 2 5
Ty =1y, TV2=ly, 7252(:"2):147 V2€2:l4» 522147

iz‘[z = l'li +jl£, /12‘[2(: /lez) = l'li + jli,
o .3 . 4 _ 4 =5
2a&o(= tpva) = ity + iy, oSy = iy + jig.

We state the relations in degree 4, which are given by using Lemma 3.4.

PROPOSITION 3.7.  The following relations hold in HH*(T'):
028 =V, T =dava,  Jaéy = pava,

13 =at? 4 bipés,  Jopy = atyvy + bnaéy, 13 = anyé, + bé3.

Similarly, by using Remark 3.5, it is not hard to see that HH"(T") for n > 5
is multiplicatively generated by products of A;, g, vi, 12, V2, &, 42, and u,.

Now suppose that o7 = Z[lel,XLz,le,X271,X2727X2,3,X274,X2"5] 1S a
graded algebra with deg X , =k for k=1,2. We consider the algebra homo-
morphism & : .o/ — HH*(I') induced by Xy i1~ Ak, Xio2— e, Xi3— v,
X241+ 12, and X 5+— & where k =1,2. Let .# denote the set of the relations
241 = 2uy = 2dv; = 0 and the relations given by Propositions 3.2, 3.6, and 3.7
and Remark 3.3. We rewrite .# by the correspondence 0 which is defined by
lk — X]Q], Ui — Xk72, Vi — Xkﬁ3, Ty — X2,4, and 62 — X2’5 where k = 1,2, and
denote it by 0(.#). The algebra homomorphism ® induces a surjective algebra
homomorphism @ : 8 = .«//0(F) — HH*(T'). Let %, ={ze #|degz=n} for
n>0.

If n=1, %, is additively generated by X i, X1, X1 3. Then X;; and X,
have order dividing 2, and X; 3 has order dividing 2d. Thus the order of % is at
most 22 -2d.
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If n =2, %, is additively generated by X> 1, X322, X523, X24, and X 5. Then
X521, X2,2, X2,3, X2.4, Xa,5 have order dividing 2, 2, 2d, 2a, 2b, respectively. Thus
the order of %, is at most 22 -2d - 2a - 2b.

If n=2k+1 (k#0), then %, is additively generated by

X X50X s ((=1,23,0<s<k), Xi3X:X0X%5 (1<s<k).

Thus X; X);°X;5 (/ =1,2,0 <s <k) have order dividing 2, and the other
generators have order dividing 2d. Thus the order of 4, is at most 2"*! . (2d)".
If n=2k (k>2), then 4, is additively generated by

X0X s (0<s<k), XX 0°X5 (/=123 1<s<k).

Then Xj, has order dividing 2a, XJ5 has order dividing 2b, X3 ,X)3*X;75'
(¢ = 1,2,'1 < s < k) have order dividing 2, and the other generators have order
dividing 2d. Note that for 1 <s <k — 1, XJ;°X; 5 has order dividing 2d, because
X§3 = X3,4X> 5 and X, 3 has order dividing’ 2d. Thus the order of %, 18 at most
2".2q-2b - (2d)"".

Hence the order of %, is at most the order of HH"(I') for n >0 (see
Theorem 2.1). Therefore ® : # — HH*(T) is also injective.

Finally, we state the ring structure of HH*(T).

THEOREM 3.8. The Hochschild cohomology ring HH*(T') is the commutative
graded ring which is generated by the elements

My, € HHYT),  12,&,v2, 70,10, € HH(T),

and is defined by the following relations:
(i) degree-1 relations

2/ =2 = 2dv; = 0.
(i) degree-2 relations
daty = 2b&; = 20y = 2py = 2dvy = 0, a'A} +b'u} +dvi =0,
A =abty, g =abvy, i} =abé, vy =a'bly, wvi=a'bu,.
(iii) degree-3 relations
T = A2, Ml = vy, Ay =y = dviva,  Aido = dnt,

ity =dn&y, v =d it +b'E, v =ad o+ b'wés.
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(iv) degree-4 relations
2 )
08 =y, T =lava, Al = i,

33 =at3 +b1dy,  opy = atovy +bnd, 1y = anaé; + bE.
REMARK 3.9. The result of Sanada [6, Section 3.4| follows from Theorem

If @ = +1 and b = +1, then 15, &, v, Ao, u, are generated by the products of

A1, U1, and v;. Hence HH*(T") is the commutative graded ring which is generated
by A1,1,v; € HH'(T), and is defined by the following relations:

200 =2u; =2v =0, A4 uP4+viI=0.
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