ASYMPTOTIC DIMENSION AND BOUNDARY DIMENSION OF PROPER CAT(0) SPACES

By

Naotsugu Chinen and Tetsuya Hosaka

Abstract. In this paper, we investigate asymptotic dimension of proper CAT(0) spaces and we show that for a proper cocompact CAT(0) space (X,d), the asymptotic dimension $\operatorname{asdim}(X,d)$ is greater than the covering dimension $\operatorname{dim} \partial X$ of the boundary of X.

1. Introduction and Preliminaries

In this paper, we study asymptotic dimension $\operatorname{asdim}(X,d)$ of a proper CAT(0) space (X,d) and the covering dimension $\dim \partial X$ of the boundary ∂X of X. Details of proper CAT(0) spaces and their boundaries are found in [2].

Asymptotic dimension was introduced by Gromov as an invariant of a finitely generated group [9]. Asymptotic dimension of groups relates to the Novikov conjecture and there are some interesting recent research on asymptotic dimension (cf. [3], [6], [9], [13]). Asymptotic dimension of CAT(0) groups and CAT(0) spaces are unknown in general. A group G is called a CAT(0) group if G acts geometrically (i.e. properly and cocompactly by isometries) on some proper CAT(0) space (X, d).

Let \overline{X}^d be the Higson compactification of a proper metric space (X,d) and $v_dX = \overline{X}^d \setminus X$ the Higson corona of (X,d). Details of the Higson compactification and the Higson corona are found in [10]. We note that $\operatorname{asdim}(X,d) \geq \dim v_dX$ [6] and also that if $\operatorname{asdim}(X,d) < \infty$ then $\operatorname{asdim}(X,d) = \dim v_dX$ [5].

The purpose of this paper is to prove the following theorem.

THEOREM 1.1. Let (X,d) be a proper CAT(0) space. Suppose that there exists an isometry $\psi:(X,d)\to (X,d)$ such that some orbit $\{\psi^i(x):i\in \mathbf{Z}\}$ is unbounded.

²⁰⁰⁰ Mathematics Subject Classification: Primary 20F69; Secondary 20F65, 54F45. Key words and phrases: asymptotic dimension, CAT(0) space, CAT(0) group, boundary. Received August 24, 2011. Revised March 5, 2012.

Then

$$\operatorname{asdim}(X, d) \ge \dim v_d X \ge \sup\{n : \check{H}^n(\partial X) \ne 0\} + 1,$$

where $\check{H}^n(\partial X)$ is the reduced Čech cohomology of the boundary ∂X of X.

It is known that if (X, d) is a proper *cocompact* CAT(0) space, then the boundary ∂X has finite covering dimension [12] and dim $\partial X = \max\{n : \check{H}^n(\partial X) \neq 0\}$ [8]. Thus we obtain the following corollary.

COROLLARY 1.2. If
$$(X,d)$$
 is a proper cocompact CAT(0) space then $\operatorname{asdim}(X,d) \geq \dim v_d X \geq \dim \partial X + 1$.

For a CAT(0) group G which acts geometrically on a proper CAT(0) space (X,d), Corollary 1.2 implies that asdim $G \ge \dim \partial X + 1$, i.e., asdim $G \ge \dim \partial G + 1$.

If the unbounded condition of some orbit of some isometry in Theorem 1.1 is dropped, we can prove the following theorem.

THEOREM 1.3. If
$$(X,d)$$
 is a noncompact proper CAT(0) space, then $\operatorname{asdim}(X,d) \geq \dim v_d X \geq \dim \partial X$.

2. Proper CAT(0) Spaces and Their Boundaries

We first give notation used in this paper.

NOTATION 2.1. Let the set of all natural number and real number denote by **N** and **R**, respectively. Set $\mathbf{B}^n = \{x \in \mathbf{R}^n : \sum_{i=1}^n x_i^2 \le 1\}$ and $\mathbf{S}^n = \{x \in \mathbf{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1\}$. Let (X, d) be a metric space. Also set $B(x, r) = \{y \in X : d(x, y) \le r\}$ and $S(x, r) = \{y \in X : d(x, y) = r\}$.

DEFINITION 2.2. Let X be a normal space. A map $f: X \to \mathbf{B}^n$ is said to be *essential*, if there exists no map $\tilde{f}: X \to \mathbf{S}^{n-1}$ such that $\tilde{f}|_{f^{-1}(\mathbf{S}^{n-1})} = f|_{f^{-1}(\mathbf{S}^{n-1})}$. A map $f: X \to \mathbf{B}^n$ is said to be *inessential*, if there exists such a map above $\tilde{f}: X \to \mathbf{S}^{n-1}$. It is known that dim $X \ge n$ if and only if there exists an essential map $f: X \to \mathbf{B}^n$ (cf. [7]).

DEFINITION 2.3. Let (X,d) be a proper CAT(0) space, $x \in X$, and $s \in \mathbf{R}_+$. For every $z \in X$, let $\xi_{x,z} : [0,d(x,z)] \to X$ be the geodesic segment from x to z in

(X,d). Then we define a map $p_s^x: X \to X$ as follows:

$$p_s^x(z) = \begin{cases} z & \text{if } d(x, z) \le s \\ \xi_{x, z}(s) & \text{if } s \le d(x, z). \end{cases}$$

For simplicity of notation, we write p_s instead of p_s^x .

The following remark and proposition are known.

REMARK 2.4. Let (X, d) be a proper CAT(0) space, $x \in X$, and $k \in \mathbb{N}$.

- (1) $X \cup \partial X$ is a compactification of X which is homeomorphic to $\varprojlim \{B(x,k), p_k|_{B(x,k+1)}\}$ such that ∂X is homeomorphic to $\varprojlim \{S(x,k), p_k|_{S(x,k+1)}\}$ and $\check{H}^n(\partial X)$ is isomorphic to $\varinjlim \{H^n(S(x,k)), (p_k|_{S(x,k+1)})^*\}$.
- (2) For every compact subset D of $X \setminus B(x,k)$, we have

$$\operatorname{diam} \, p_1(D) < \frac{\operatorname{diam} \, D}{k}.$$

PROPOSITION 2.5 ([10, Proposition 1]). Let (X,d) be a noncompact proper metric space, let \overline{X}^d be the Higson compactification of (X,d), let (Y,σ) be a compact metric space, and let $f:(X,d)\to (Y,\sigma)$ be a map. Then, f has an extension to \overline{X}^d if and only if f has property $(*)_d$: for every r>0 and every $\varepsilon>0$, there exists a compact set K of X such that diam $f(B(x,r))<\varepsilon$ for all $x\in X\backslash K$.

3. Proofs

We prove the main theorems. We first show Theorem 1.1.

PROOF OF THEOREM 1.1. Let (X,d) be a proper CAT(0) space. Suppose that there exists an isometry $\psi:(X,d)\to(X,d)$ such that some orbit $\{\psi^i(x):i\in\mathbf{Z}\}$ is unbounded.

Let $n \in \mathbb{N}$ such that $\check{H}^n(\partial X) \neq 0$. Fix $x_0 \in X$.

Since $B(x_0,k)$ is contractible for each $k \in \mathbb{N}$, $\check{H}^n(\partial X) (\cong \check{H}^{n+1}(X \cup \partial X, \partial X))$ is isomorphic to $\varinjlim\{H^{n+1}(B(x_0,k),S(x_0,k)),(p_k|_{B(x_0,k+1)})^*\}$. Since $\check{H}^n(\partial X) \neq 0$, for every $k \in \mathbb{N}$ there exists a map $a_k : (B(x_0,k),S(x_0,k)) \to (\mathbf{B}^{n+1},\mathbf{S}^n)$ such that $0 \neq [a_k] \in H^{n+1}(B(x_0,k),S(x_0,k))$ and $[a_{k+1}] = [a_k \circ p_k]$.

Since $\{\psi^i(x): i \in \mathbf{Z}\}$ is unbounded, there exists a sequence i_1, i_2, \ldots of \mathbf{N} such that $\psi^{i_k}(B(x_0, k)) \cap \psi^{i_{k'}}(B(x_0, k')) = \emptyset$ whenever $k \neq k'$ and $\{\psi^{i_k}(B(x_0, k)): k \in \mathbf{Z}\}$ is unbounded.

Here we consider $f_k = a_1 \circ p_1 \circ \psi^{-i_k} : \psi^{i_k}(B(x_0,k)) \to \mathbf{B}^{n+1}$ for each $k \in \mathbf{N}$, $Y = \bigcup_{k \in \mathbf{N}} \psi^{i_k}(B(x_0,k)), \ \rho = d|_Y$, and $f = \bigcup_{k \in \mathbf{N}} f_k : Y \to \mathbf{B}^{n+1}$. Since $[a_k] \neq 0$ in $H^{n+1}(B(x_0,k),S(x_0,k))$, we note that f_k is essential for each $k \in \mathbf{N}$. Then f satisfies $(*)_\rho$ by Remark 2.4 (2). Hence there exists an extension $\overline{f} : \overline{Y}^\rho \to \mathbf{B}^{n+1}$ of f.

Now we show that $g = \overline{f}|_{\nu_{\rho}Y} : \nu_{\rho}Y \to \mathbf{B}^{n+1}$ is essential. On the contrary, suppose that g is inessential, i.e., there exists an extension $\overline{g} : \nu_{\rho}Y \to \mathbf{S}^n$ of $g|_{g^{-1}(\mathbf{S}^n)} : g^{-1}(\mathbf{S}^n) \to \mathbf{S}^n$. Since \mathbf{S}^n is an ANR, there exist an open subset U of \overline{Y}^{ρ} containing $\nu_{\rho}Y \cup \overline{f}^{-1}(\mathbf{S}^n)$ and an extension $\widetilde{g} : U \to \mathbf{S}^n$ of $\overline{g} \cup \overline{f}|_{\overline{f}^{-1}(\mathbf{S}^n)} : \nu_{\rho}Y \cup \overline{f}^{-1}(\mathbf{S}^n) \to \mathbf{S}^n$. Here there exists $k \in \mathbf{N}$ such that $\psi^{i_k}(B(x_0,k)) \subset U$. Then $\widetilde{g}|_{\psi^{i_k}(B(x_0,k))} : \psi^{i_k}(B(x_0,k)) \to \mathbf{S}^n$ is an extension of $f_k|_{f_k^{-1}(\mathbf{S}^n)} : \psi^{i_k}(B(x_0,k)) \to \mathbf{S}^n$, which is a contradiction because f_k is essential.

Therefore dim $v_d X \ge n + 1$.

We can check the following lemma which is used in the proof of Theorem 1.3.

Lemma 3.1. Let X be a compact space and let Y and A be closed subsets of X. Suppose that $Z=(Y\cap A)\times [0,1]\cup A\times \{0\}\cup Y\times \{1\}$ and $H:Y\times [0,1]\cup X\times \{0\}\to \mathbf{B}^n$ satisfies that $H(Z)\subset \mathbf{S}^{n-1}$. Then, there exist a closed neighborhood V of $Y\times [0,1]$ in $X\times [0,1]$ and a map $\overline{H}:V\to \mathbf{B}^n$ such that $\overline{H}|_{V\cap (Y\times [0,1]\cup X\times \{0\})}=H|_{V\cap (Y\times [0,1]\cup X\times \{0\})}$ and $\overline{H}(((V\cap A)\times [0,1])\cup (V\cap (X\times \{1\})))\subset \mathbf{S}^{n-1}$.

We prove Theorem 1.3.

PROOF OF THEOREM 1.3. Let (X, d) be a noncompact proper CAT(0) space. Suppose that $\check{H}^n(\partial X, A) \neq 0$ for some $n \in \mathbb{N}$ and some closed subset A of ∂X .

Let $A_k = P_k(A)$ for each $k \in \mathbb{N}$, where $P_k : \partial X \to S(x_0, k)$ is the projection. Since $\check{H}^n(\partial X, A)$ is isomorphic to $\varinjlim \{H^n(S(x_0, k), A_k), (p_k|_{S(x_0, k+1)})^*\}$, there exists $[a_k] \in H^n(S(x_0, k), A_k) \setminus \{0\}$ such that $[a_{k+1}] = [a_k \circ p_k|_{S(x_0, k+1)}]$ for each $k \in \mathbb{N}$.

Let $b_k = a_1 \circ p_1|_{S(x_0,k)} : (S(x_0,k),A_k) \to (\mathbf{B}^n,\mathbf{S}^{n-1}), \ B = \bigcup_{k \in \mathbf{N}} A_k \text{ and } f = \bigcup_{k \in \mathbf{N}} b_k : \bigcup_{k \in \mathbf{N}} S(x_0,k) \to \mathbf{B}^n$. Here we note that $[b_k] \neq 0$ for each $k \in \mathbf{N}$.

Let $X' = \operatorname{Cl}_{\overline{X}^d} \bigcup_{k \in \mathbb{N}} S(x_0, k)$. Then f satisfies $(*)_d$ by Remark 2.4 (2) and there exists an extension $\overline{f}: (X', \operatorname{Cl}_{\overline{X}^d} B) \to (\mathbf{B}^n, \mathbf{S}^{n-1})$ of f. We note that $v_d X \subset X'$ and $\overline{f}(\operatorname{tr}_{\overline{X}^d} B) \subset \mathbf{S}^{n-1}$, where $\operatorname{tr}_{\overline{X}^d} B = \operatorname{Cl}_{\overline{X}^d} B \setminus B$.

Let $g = \overline{f}|_{v_dX} : (v_dX, \operatorname{tr}_{\overline{X}^d} B) \to (\mathbf{B}^n, \mathbf{S}^{n-1})$. Then we show that $[g] \neq 0$ in $H^n(v_dX, \operatorname{tr}_{\overline{X}^d} B)$. Suppose that $[g] = 0 \in H^n(v_dX, \operatorname{tr}_{\overline{X}^d} B)$. Then there exists

 $H: (v_d X \times [0,1], \operatorname{tr}_{\overline{X}^d} B \times [0,1]) \to (\mathbf{B}^n, \mathbf{S}^{n-1})$ such that $H_0 = g$ and $H_1(v_d X) \subset \mathbf{S}^{n-1}$. By Lemma 3.1, there exist a closed neighborhood V of $v_d X \times [0,1]$ in $X' \times [0,1]$, a map $\overline{H}: V \to \mathbf{B}^n$ and $N_0 \in \mathbf{N}$ such that $\overline{H}(x,0) = \overline{f}(x)$ for all $(x,0) \in V \cap (X' \times \{0\})$, $\overline{H}|_{v_d X \times [0,1]} = H$ and $\overline{H}((\bigcup_{k \geq N_0} A_k) \times [0,1]) \cup \overline{H}(V \cap (X' \times \{1\})) \subset \mathbf{S}^{n-1}$. Since there exists $N_1 \in \mathbf{N}$ with $N_1 \geq N_0$ such that $S(x_0,k) \times [0,1] \subset V$ for all $k \geq N_1$, we have that $[b_k] = 0$ for some k, which is a contradiction.

Therefore, we obtain that dim $v_d X \ge \dim_{\mathbb{Z}} v_d X \ge n$.

4. Applications

We introduce some applications. We first note that if (X, d) is a noncompact proper CAT(0) space, it follows easily that $\operatorname{asdim}(X, d) \ge 1$.

COROLLARY 4.1. If (X, d) is a noncompact cocompact proper CAT(0) space, then $\operatorname{asdim}(X, d) \geq \dim v_d X \geq \dim \partial X + 1$.

PROOF. If (X,d) is a proper *cocompact* CAT(0) space, then dim $\partial X = \max\{n : \check{H}^n(\partial X) \neq 0\}$ by [8]. Hence Theorem 1.1 implies the desired conclusion.

REMARK 4.2. If (X, d_X) and (Y, d_Y) are metric spaces, then it is known that

$$\operatorname{asdim}(X \times Y, d_{X \times Y}) \leq \operatorname{asdim}(X, d_X) + \operatorname{asdim}(Y, d_Y)$$

(cf. [3]).

Let (X,d) be a noncompact proper geodesic space. If $\operatorname{asdim}(X,d)=1$, then by Remark 4.2, $\operatorname{asdim}(X\times \mathbf{R},d_{X\times \mathbf{R}})=2$, because $(X\times \mathbf{R},d_{X\times \mathbf{R}})$ contains $(\mathbf{R}_+^2,d_{\mathbf{R}_+^2}^2)$.

Corollary 4.3. Let (X,d) be a noncompact proper CAT(0) space. Then $\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) \ge \max\{n : \check{H}^n(\partial X) \ne 0\} + 2$. In particular, if X is a noncompact proper CAT(0) space that is homeomorphic to \mathbf{R}^2 , then $\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) = 3$.

PROOF. By Theorem 1.1, $\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) \ge \max\{n : \check{H}^n(\partial(X \times \mathbf{R})) \ne 0\} + 1$. Since $\partial(X \times \mathbf{R})$ is homeomorphic to the suspension of ∂X , we have

that

$$\max\{n: \check{H}^n(\partial(X\times\mathbf{R}))\neq 0\} = \max\{n: \check{H}^n(\partial X)\neq 0\} + 1,$$

which implies our assertion.

If X is homeomorphic to \mathbb{R}^2 , then by [4], ∂X is homeomorphic to the circle and $\operatorname{asdim}(X,d)=2$. Hence, by Remark 4.2,

$$3 = \max\{n : \check{H}^n(\partial X) \neq 0\} + 2 \leq \operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}})$$

$$\leq \operatorname{asdim}(X, d) + 1 = 3.$$

Thus $\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) = 3$.

COROLLARY 4.4. Let (X,d) be a noncompact proper cocompact CAT(0) space satisfying that $\operatorname{asdim}(X,d) = \dim \partial X + 1$. Then

$$\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) = \operatorname{asdim}(X, d) + 1.$$

PROOF. By [8], we have that

$$\operatorname{asdim}(X,d) + 1 = \dim \partial X + 2 = \max\{n : \check{H}^n(\partial X) \neq 0\} + 2.$$

Hence, by Corollary 4.3 and Remark 4.2, we obtain

$$\operatorname{asdim}(X \times \mathbf{R}, d_{X \times \mathbf{R}}) = \operatorname{asdim}(X, d) + 1.$$

References

- [1] M. Bestvina and G. Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), 469–481.
- M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [3] G. Bell and A. N. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008), 1265-1296.
- [4] N. Chinen and T. Hosaka, Asymptotic dimension of proper CAT(0) spaces which are homeomorphic to the plane, Canad. Math. Bull. 53 (2010), 629–638
- [5] A. N. Dranishnikov, Asymptotic topology, (Russian) Uspekhi Mat. Nauk 55 (2000), 71–116; translation in Russian Math. Surveys 55 (2000), 1085–1129.
- [6] A. N. Dranishnikov, J. Keesling and V. V. Uspenskij, On the Higson corona of uniformly contractible spaces, Topology 37 (1998), 791–803.
- [7] R. Engelking, Theory of Dimensions Finite and Infinite, Helderman Verlag, Berlin, 1995.
- [8] R. Geoghegan and P. Ontaneda, Boundaries of cocompact proper CAT(0) spaces, Topology 46 (2007), 129–137.
- [9] M. Gromov, Asymptotic invariants for infinite groups, Geometric Group Theory (G. A. Niblo and M. A. Roller, eds.), LMS Lecture Notes, vol. 182, Cambridge University Press, Cambridge, 1993, 1–295.

- [10] J. Keesling, The one-dimensional Čech cohomology of the Higson compactification and its corona, Topology Proc. 19 (1994), 129–148.
- [11] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966.
- [12] E. L. Swenson, A cut point theorem for CAT(0) groups, J. Differential Geom. 53 (1999), 327–358.
- [13] G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Annals of Math. 147 (1998), 325–355.

Department of Mathematics National Defense Academy of Japan Yokosuka 239-8686, Japan E-mail address: naochin@nda.ac.jp

Department of Mathematics Shizuoka University Suruga-ku, Shizuoka 422-8529, Japan E-mail address: sthosak@ipc.shizuoka.ac.jp