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ON WEAKLY s5s-QUASINORMALLY EMBEDDED AND
ss-QUASINORMAL SUBGROUPS OF FINITE GROUPS*

By

Changwen Li1

Abstract. Suppose G is a finite group and H is a subgroup of G.
H is called weakly s-quasinormally embedded in G if there are
a subnormal subgroup 7 of G and an s-quasinormally embedded
subgroup Hy, of G contained in H such that G= HT and
HNT < Hy,; H is called ss-quasinormal in G if there is a subgroup
B of G such that G = HB and H permutes with every Sylow sub-
group of B. We investigate the influence of weakly s-quasinormally
embedded and ss-quasinormal subgroups on the structure of finite
groups. Some recent results are generalized.

1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G is
said to be s-quasinormal in G if H permutes with every Sylow subgroups of G.
This concept was introduced by Kegel in [1]. Morerecently, Ballester-Bolinches
and Pedraza-Aguilera [2] generalized s-quasinormal subgroups to s-quasinormally
embedded subgroups. H is said to be s-quasinormally embedded in a group G
if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-
subgroup of some s-quasinormal subgroup of G. In recent years, it has been of
interest to use supplementation properties of subgroups to characterize properties
of a group. For example, Yanming Wang [3] introduced the concept of ¢-normal
subgroup (a subgroup H of a group G is said to be c-normal in G if there exists
a normal subgroup K of G such that G = HK and H N K < Hg, where Hg is the
maximal normal subgroup of G contained in H). In 2009, Yangming Li [4]
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introduced the concept of weakly s-quasinormally embedded subgroup (a sub-
group H of a group G is called weakly s-quasinormally embedded in G if there
are a subnormal subgroup 7 of G and an s-quasinormally embedded subgroup
H,, of G contained in H such that G = HT and HNT < Hy). In 2008, Shirong
Li [5] introduced the concept of ss-quasinormal subgroup (a subgroup H of a
group G is said to be an ss-quasinormal subgroup of G if there is a subgroup B
such that G = HB and H permutes with every Sylow subgroup of B). There are
examples to show that weakly s-quasinormally embedded subgroups are not ss-
quasinormal subgroups and in general the converse is also false. The aim of this
article is to unify and improve some earlier results using weakly s-quasinormally
embedded and ss-quasinormal subgroups.

2. Preliminaries

LemMa 2.1 ([4], Lemma 2.5). Let H be a weakly s-quasinormally embedded
subgroup of a group G.

(1) If H<L <G, then H is weakly s-quasinormally embedded in L.

(2) f NG and N < H < G, then H/N is weakly s-quasinormally embedded
in G/N.

(3) If H is a n-subgroup and N is a normal ©’-subgroup of G, then HN/N is
weakly s-quasinormally embedded in G/N.

(4) Suppose H is a p-group for some prime p and H is not s-quasinormally
embedded in G. Then G has a normal subgroup M such that |G : M| = p and
G=HM.

Lemma 2.2 ([5], Lemma 2.1). Let H be an ss-quasinormal subgroup of a
group G.

() If H<L <G, then H is ss-quasinormal in L.

(2) If N=2G, then HN/N is ss-quasinormal in G/N.

LemMa 2.3 ([5], Lemma 2.2). Let H be a nilpotent subgroup of G. Then the
following statements are equivalent:

(1) H is s-quasinormal in G.

(2) H < F(G) and H is ss-quasinormal in G.

(3) H < F(G) and H is s-quasinormally embedded in G.

LemmA 2.4 ([15], Lemma 2.7). Let G be a group and p a prime dividing |G|
with (|G, p—1)=1.
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(1) If N is normal in G of order p, then N < Z(G).
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
B)If M<G and |G: M|=p, then M =2G.

LemMA 2.5 ([4], Theorem 4.7). Let P be a Sylow p-subgroup of a group G,
where p is a prime divisor of |G| with (|G|, p — 1) = 1. If every maximal subgroup
of P is weakly s-quasinormally embedded in G, then G is p-nilpotent.

LemMa 2.6 ([8], Lemma 2.3). Let G be a group and N < G.
(1) If NG, then F*(N) < F*(G).
2) If G#1, then F*(G) # 1. In fact, F*(G)/F(G) = Soc(F(G)Cs(F(G))/

(
F(G))

(3) F*(F*(G)) = F*(G) = F(G). If F*(G) is Solvable, then F*(G)= F(G).

Lemma 2.7 ([13], Lemma 2.3). Suppose that H is s-quasinormal in G, P a
Sylow p-subgroup of H, where p is a prime. If Hg =1, then P is s-quasinormal
in G.

LemMma 2.8 ([13], Lemma 2.2). If P is an s-quasinormal p-subgroup of G for
some prime p, then Ng(P) > OF(G).

3. p-nilpotentcy

THEOREM 3.1. Let P be a Sylow p-subgroup of a group G, where p is a prime
divisor of |G| with (|G|,p—1)=1. If every maximal subgroup of P is either
weakly s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

Proor. Let H be a maximal subgroup of P. We will prove H is weakly
s-quasinormally embedded in G.

If H is ss-quasinormal in G, then there is a subgroup B < G such that
G = HB and HX = XH for all X e Syl(B). From G = HB, we obtain [B: HNB|,
=|G:H |p = p, and hence HNB is of index p in B, a Sylow p-subgroup of
B containing N B. Thus S & H for all SeSyl,(B) and HS = SH is a Sylow
p-subgroup of G. In view of |P: H| = p and by comparison of orders, SN H =

BNH, for all SeSyl,(B). So BNH = ()(S"NH)=< () S"=0,(B).
beB beB
We claim that B has a Hall p’-subgroup. Because |0,(B) : BNH| = p or 1,

it follows that [B/O,(B)|,=p or 1. As (|G|,p—1)=1, then B/O,(B) is
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p-nilpotent by Lemma 2.4, and hence B is p-solvable. So B has a Hall
p’-subgroup. Thus the claim holds.

Now, let K be a p’-subgroup of B, n(K) = {pa,...,ps} and P; € Syl, (K). By
the condition, H permutes with every P; and so H permutes with the subgroup
{Py,...,P;> =K. Thus HK < G. Obviously, K is a Hall p’-subgroup of G and
HK is a subgroup of index p in G. Let M = HK and so M <G by Lemma 2.4.
It follows that H is s-quasinormally embedded, and so weakly s-quasinormally
embedded in G.

Since every maximal subgroup of P is weakly s-quasinormally embedded in G,
we have G is p-nilpotent by Lemma 2.5.

COROLLARY 3.2. Let p be a prime dividing the order of a group G with
(|IGl,p—1)=1 and H a normal subgroup of G such that G/H is p-nilpotent.
If there exists a Sylow p-subgroup P of H such that every maximal subgroup
of P is either weakly s-quasinormally embedded or ss-quasinormal in G, then G is
p-nilpotent.

Proor. By Lemmas 2.1 and 2.2, every maximal subgroup of P is either
weakly s-quasinormally embedded or ss-quasinormal in H. By Theorem 3.1, H
is p-nilpotent. Now, let H, be the normal p-complement of H. Then H, < G. If
H, # 1, then we consider G/H, . It is easy to see that G/H, satisfies all the
hypotheses of our Corollary for the normal subgroup H/H, of G/H, by
Lemmas 2.1 and 2.2. Now by induction, we see that G/H, is p-nilpotent and so
G is p-nilpotent. Hence we assume H, =1 and therefore H = P is a p-group.
Since G/H is p-nilpotent, let K/H be the normal p-complement of G/H. By
Schur-Zassenhaus’s theorem, there exists a Hall p’-subgroup K, of K such that
K = HK,'. By Theorem 3.1, K is p-nilpotent and so K = H x K,. Hence K, is
a normal p-complement of G. This completes the proof.

COROLLARY 3.3. Let P be a Sylow p-subgroup of a group G, where p is
the smallest prime divisor of |G|. If every maximal subgroup of P is either weakly
s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

Proor. It is clear that (|G|, p — 1) = 1 if p is the smallest prime dividing the
order of G and therefore Corollary 3.3 follows immediately from Theorem 3.1.

COROLLARY 3.4. Suppose that every maximal subgroup of any Sylow sub-
group of a group G is either weakly s-quasinormally embedded or ss-quasinormal
in G, then G is a Sylow tower group of supersolvable type.
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Proor. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup
of G. By Corollary 3.3, G is p-nilpotent. Let U be the normal p-complement of G.
By Lemmas 2.1 and 2.2, U satisfies the hypothesis of the Corollary. It follows by
induction that U, and hence G is a Sylow tower group of supersolvable type.

CoroLLARY 3.5 ([6], Theorem 3.1). Let P be a Sylow p-subgroup of a
group G, where p is a prime divisor of |G| with (|G|, p — 1) = 1. If every maximal
subgroup of P is either c-normal or s-quasinormally embedded in G, then G is
p-nilpotent.

CoroLLARY 3.6 ([9], Theorem 3.1). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every maximal subgroup
of P is either c-normal or ss-quasinormal in G, then G is p-nilpotent.

THEOREM 3.7. Let P be a Sylow p-subgroup of a group G, where p is a prime
divisor of |G|. If Ng(P) is p-nilpotent and every maximal subgroup of P is either
weakly s-quasinormally embedded or ss-quasinormal in G, then G is p-nilpotent.

ProOOF. It is ecasy to see that the theorem holds when p =2 by Corollary
3.3, so it suffices to prove the theorem for the case when p is odd. Suppose that
the theorem is false and let G be a counterexample of minimal order. We will
derive a contradiction in several steps.

(1) 0,(G) =1.

If 0,/(G) # 1, we consider G/O,/(G). By Lemmas 2.1 and 2.2, it is easy to see
that every maximal subgroup of PO,/ (G)/0,/(G) is either weakly s-quasinormally
embedded or ss-quasinormal in G/O, (G). Since

Ng/0,(6)(POy(G)/0y(G)) = Ng(P) Oy (G)/ Oy (G)

is p-nilpotent, G/O,/(G) satisfies all the hypotheses of our theorem. The min-
imality of G yields that G/0,/(G) is p-nilpotent, and so G is p-nilpotent, a
contradiction.

(2) If M is a proper subgroup of G with P < M < G, then M is p-nilpotent.

It is clear to see Ny (P) < Ng(P) and hence Ny (P) is p-nilpotent. Applying
Lemmas 2.1 and 2.2, we immediately see that M satisfies the hypotheses of our
theorem. Now, by the minimality of G, M is p-nilpotent.

(3) G = PQ is solvable, where Q is a Sylow g-subgroup of G with p # q.
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Since G is not p-nilpotent, by a result of Thompson [11, Corollary], there
exists a non-trivial characteristic subgroup 7 of P such that Ng(7T) is not
p-nilpotent. Choose T such that the order of 7' is as large as possible. Since
Ng(P) is p-nilpotent, we have Ng(K) is p-nilpotent for any characteristic
subgroup K of P satisfying 7' < K < P. Now, T char P <1 Ng(P), which gives
T =2 Ng(P). So Ng(P) < Ng(T). By (2), we get Ng(T) =G and T = Op(G).
Now, applying the result of Thompson again, we have that G/0,(G) is
p-nilpotent and therefore G is p-solvable. Then for any ¢ € z(G) with ¢ # p, there
exists a Sylow g-subgroup of Q such that PQ is a subgroup of G [12, Theorem
6.3.5]. If PO < G, then PQ is p-nilpotent by (2), contrary to the choice of G.
Consequently, PQ = G, as desired.

(4) G has a unique minimal normal subgroup N such that G/N is p-nilpotent.
Moreover ®(G) = 1.

By (3), G is solvable. Let N be a minimal subgroup of G. Then N < 0,(G)
by (1). Consider G/N. It is easy to see that every maximal subgroup of P/N
is either weakly s-quasinormally embedded or ss-quasinormal in G/N. Since
Ng/n(P/N) = Ng(P)/N is p-nilpotent, we have G/N satisfies the hypothesis of
the theorem. The choice of G yields that G/N is p-nilpotent. Consequently the
uniqueness of N and the fact that ®(G) =1 are obvious.

(5) The final contradiction.

By step (4), there exists a maximal subgroup M of G such that G = MN and
MNN =1. Since N is elementary abelian p-group, N < Cg(N) and Cg(N)N
M = G. By the uniqueness of N, we have Cg(N)NM =1 and N = Cg(N).
But N < 0,(G) < F(G) < Cg(N), hence N = 0,(G) = Cg(N). If |[N| = p, then
Aut(N) is a cyclic group of order p — 1. If ¢ > p, then NQ is p-nilpotent and
therefore Q < C¢(N) = N, a contradiction. On the other hand, if ¢ < p, then,
since N = Cg(N), we see that M = G/N = Ng(N)/Cg(N) is isomorphic to a
subgroup of Aut(N) and therefore M, and in particular Q, is cyclic. Since Q is a
cyclic group and ¢ < p, we know that G is g-nilpotent and therefore P is normal
in G. Hence Ng(P) = G is p-nilpotent, a contradiction. So we may assume N
is not a cyclic subgroup of order p. Obviously P=PNNM = N(PN M). Since
PN M < P, we take a maximal subgroup P; of P such that PN M < P;. By our
hypotheses, P; is either weakly s-quasinormally embedded or ss-quasinormal in G.
If P, is weakly s-quasinormally embedded, then there are a subnormal subgroup
T of G and an s-quasinormally embedded subgroup (P;)se of G contained in
Py such that G=P,T and Py NT < (P;)se. So there is an s-quasinormal sub-
group K of G such that (P;)se is a Sylow p-subgroup of K. If K # 1, then
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N < Kg < K. It follows that N < (Py)
Py, a contradiction. If Kg =1, by Lemma 2.7, (P),, is s-quasinormal in G.
From Lemma 2.8 we have O”(G) < Ng((P1),,)- Since (Pi),, is subnormal in G,
PINT < (P)),, < 0,(G)=N. Thus, (P)), <P NN and (P)), <((P)),)" =
((P)),) " " = ((P)),,)" < (PINN)" = P,NN < N. It follows that ((P;),,)¢ = 1
or (P1),)°=PINN=N. If (P)),)°=PINN=N, then N<P; and so
P = P, a contradiction. So we may assume ((Pl)_\,e)G =1. Then P\NT =1.
Since |G : T| is a number of p-power and T << G, O’(G) < T. From the fact
that N is the unique minimal normal subgroup of G, we have N < O?(G) < T.
Hence NNPy <TNP; =1.Since |[N: PLNN|=|NP,: P||=|P:Pi|=p, PANN
is a maximal of N. Therefore |N| = p, a contradiction. Now we assume P; is

<Py, and so P=N(PNM)= NP, =

se —

ss-quasinormal in G. By [5, Lemma 2.5], P;Q is a subgroup of G. As N <= G, we
have PINN=NNP Q=2 P;Q, and it follows that PINN=2{(PQ,N)=G.
Moreover, since N is a minimal normal subgroup of G, we have PiNN =1
and N is a cyclic subgroup of order p, a contradiction.

COROLLARY 3.8. Let p be a prime dividing the order of a group G and H a
normal subgroup of G such that G/H is p-nilpotent. If Ng(P) is p-nilpotent and
there exists a Sylow p-subgroup P of H such that every maximal subgroup of P
is either weakly s-quasinormally embedded or ss-quasinormal in G, then G is
p-nilpotent.

Proor. By Theorem 3.7, H is p-nilpotent. If N is a normal Hall p’-subgroup
of H, then N is normal in G. By the using the arguments as in the proof of
Corollary 3.2, we may assume N = 1 and H = P. In the case, by our hypotheses,
Ng(P) = G is p-nilpotent.

CoOROLLARY 3.9 ([13], Theorem 3.2). Let P be a Sylow p-subgroup of a group
G, where p is a prime divisor of |G|. If Ng(P) is p-nilpotent and every maximal
subgroup of P is s-quasinormally embedded in G, then G is p-nilpotent.

CorOLLARY 3.10 ([14], Theorem 3.1). Let P be a Sylow p-subgroup of a
group G, where p is an odd prime divisor of |G|. If Ng(P) is p-nilpotent and every
maximal subgroup of P is c-normal in G, then G is p-nilpotent.

4. Supersolvability

THEOREM 4.1. Let & be a saturated formation containing U, the class of all
supersoluble groups. A group G € F if and only if there is a normal subgroup H
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of G such that G/H € & and every maximal subgroup of any Sylow subgroup of H
is either weakly s-quasinormally embedded or ss-quasinormal in G.

Proor. The necessity is obvious. We only need to prove the sufficiency.
Suppose that the assertion is false and let G be a counterexample of minimal
order.

By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup
of H is either weakly s-quasinormally embedded or ss-quasinormal in H. By
Corollary 3.4, H is a Sylow tower group of supersolvable type. Let p be the
largest prime divisor of |H| and let P be a Sylow p-subgroup of H. Then P is
normal in G. We consider G/P. It is easy to see that (G/P,H/P) satisfies the
hypothesis of the Theorem. By the minimality of G, we have G/P e . If the
maximal P; of P is ss-quasinormal in G, then P; is s-quasinormal in G by
Lemma 2.3. Thus every maximal subgroup of P is weakly s-quasinormally
embedded in G. By [4, Theorem 3.4], G e %, a contradiction.

CoroLLARY 4.2 ([7], Theorem 3.2). Let # be a saturated formation con-
taining U, the class of all supersoluble groups. A group G e F if and only if
there is a normal subgroup H of G such that G/H € & and every maximal
subgroup of any Sylow subgroup of H is either s-quasinormally embedded or
c-normal in G.

CoroLLARY 4.3 ([9], Theorem 3.2). Let F be a saturated formation con-
taining U, the class of all supersoluble groups. A group G € F if and only if there
is a normal subgroup H of G such that G/H € F and every maximal subgroup of
any Sylow subgroup of H is either ss-quasinormal or c-normal in G.

COROLLARY 4.4 ([5], Theorem 1.5). Let # be a saturated formation con-
taining U, the class of all supersoluble groups. A group G € F if and only if there
is a normal subgroup H of G such that G/H € & and every maximal subgroup of
any Sylow subgroup of H is ss-quasinormal in G.

CoOROLLARY 4.5. Let H be a normal subgroup of a group G such that G/H is
supersolvable. If every maximal subgroup of any Sylow subgroup of H is either
weakly s-quasinormally embedded or ss-quasinormal in G, then G is supersolvable.

THEOREM 4.6. Let F be a saturated formation containing %. Suppose that G
is a group with a normal subgroup H such that G/H € #. If every maximal
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subgroup of any Sylow subgroup of F*(H) is either weakly s-quasinormally
embedded or ss-quasinormal in G, then Ge .

Proor. By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow
subgroup of F*(H) is either weakly s-quasinormally embedded or ss-quasinormal
in F*(H). Thus F*(H) is supersolvable by Corollary 4.4. In particular, F*(H) is
solvable. By Lemma 2.6, F*(H) = F(H). It follows that every maximal subgroup
of any Sylow subgroup of F*(H) is weakly s-quasinormally embedded in G by
Lemma 2.3. Thus the result is a corollary of Theorem 3.5 in [4].

CoroOLLARY 4.7 ([6], Theorem 3.9). Let F be a saturated formation con-
taining U. Suppose that G is a group with a normal subgroup H such that
G/H e #. If every maximal subgroup of any Sylow subgroup of F*(H) is either
s-quasinormally embedded or c-normal in G, then Ge F.

COROLLARY 4.8. Let F be a saturated formation containing U, the class
of all supersoluble groups. Suppose that G is a group with a solvable normal
subgroup H such that G/H e Z. If every maximal subgroup of any Sylow
subgroup of F(H) are either weakly s-quasinormally embedded or ss-quasinormal
in G, then Ge .

CoORrOLLARY 4.9 ([6], Theorem 3.7). Let F be a saturated formation con-
taining U, the class of all supersoluble groups. Suppose that G is a group with a
solvable normal subgroup H such that G/H € &. If every maximal subgroup of
any Sylow subgroup of F(H) is either s-quasinormally embedded or c-normal in G,
then Ge #.

CorOLLARY 4.10 ([9], Theorem 3.3). Let % be a saturated formation
containing U, the class of all supersoluble groups. Suppose that G is a group with
a solvable normal subgroup H such that G/H € . If every maximal subgroup
of any Sylow subgroup of F(H) is either ss-quasinormal or c-normal in G, then
GeZ.

CoroLLARY 4.11 ([16], Theorem 3.3). Let & be a saturated formation
containing U, the class of all supersoluble groups. Suppose that G is a group with a
normal subgroup H such that G/H € F. If every maximal subgroup of any Sylow
subgroup of F*(H) is ss-quasinormal in G, then G e F.
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THEOREM 4.12. If every cyclic subgroup of any Sylow subgroup of a group
G of prime order or order 4 is either weakly s-quasinormally embedded or ss-
quasinormal in G, then G is supersolvable.

Proor. Assume the theorem is false and let G be a counterexample of
minimal order. It is obvious that the hypotheses of the Lemma are inherited for
subgroups of G. Our minimal choice yields that G is not supersolvable but every
proper subgroup of G is supersolvable. A well-known result of Doerk implies that
there exists a normal Sylow p-subgroup of G such that G = PM, where M is
supersolvable and if p > 2 then the exponent of P is p, if p = 2, the exponent of
P is 2 or 4. Let x be an arbitrary element of P. If {x) is ss-quasinormal in G,
then <{x) is s-quasinormally embedded in G by Lemma 2.3. If {x) is weakly
s-quasinormally embedded in G, there are a subnormal subgroup 7' of G and
an s-quasinormally embedded subgroup {(x),, of G contained in {x)» such that
G=HT and HNT <<{x),. Hence P=PNG =PN{x)T =<x)(PNT). Since
P/®(P) is abelian, we have (PNT)®(P)/P(P)a G/DP(P). Since P/D(P) is a
minimal normal subgroup of G/®(P), PNT < ®(P)or P= (PNT)D(P)=PNT.
If PNT < ®(P), then {x) =P=2G and so {x) is s-quasinormally embedded
in G. If P=PNT, then T =G and so {x) is also s-quasinormally embedded
in G. We have proved that every cyclic subgroup of any Sylow subgroup of G of
prime order or order 4 is s-quasinormally embedded in G. Applying Theorem 3.3
in [10], we have G is supersolvable, a contradiction.

THEOREM 4.13. Let F be a saturated formation containing U, the class of all
supersoluble groups. Suppose that G is a group with a normal subgroup H such that
G/H e F. If every cyclic subgroup of any Sylow subgroup of F*(H) of prime
order or order 4 is either weakly s-quasinormally embedded or ss-quasinormal in G,
then Ge .

ProoF. By Lemmas 2.1 and 2.2, every cyclic subgroup of any Sylow sub-
group of F*(H) of prime order or order 4 is weakly s-quasinormally embedded
or ss-quasinormal in F*(H). Thus F*(H) is supersolvable by Theorem 4.12. In
particular, F*(H) is solvable. By Lemma 2.6, F*(H) = F(H). Since G/H € F,
we have that G7, the % -residual subgroup of G, is contained in H. Hence, for
any cyclic subgroup (x> of F*(G”) < F*(H) of prime order or order 4, {x) is
weakly s-quasinormally embedded or ss-quasinormal in G. If {x) is weakly
s-quasinormally embedded in G, then there are a subnormal subgroup 7 of G
and an s-quasinormally embedded subgroup <{x)»,, of G contained in {x) such
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that G =<x)>T and <x>NT < <{x),,. If {x) is not s-quasinormally embedded in
G, then G has a normal subgroup K such that |G: K| = p and G = {x)K by
Lemma 2.1(4). Since G/K is cyclic, it follows that G/K € # by the hypotheses.
Therefore G” < K. This implies that {x) < K, so G = K, a contradiction. If {x)
is ss-quasinormal in G, then {(x) is also s-quasinormally embedded in G by
lemma 2.3. Hence we have proved that every cyclic subgroup of prime order or
order 4 of F*(G”) is s-quasinormally embedded in G. Applying Theorem 1.2 in
[10], we have Ge Z.

COROLLARY 4.14 ([6], Theorem 4.3). Let & be a saturated formation
containing U, the class of all supersoluble groups. Suppose that G is a group with a
normal subgroup H such that G/H € . If every cyclic subgroup of any Sylow
subgroup of F*(H) of prime order or order 4 is either c-normal or s-quasinormally
embedded in G, then Ge .

CoroLLARY 4.15 ([16], Theorem 3.7). Let # be a saturated formation
containing U, the class of all supersoluble groups. Suppose that G is a group with a
normal subgroup H such that G/H € F. If every cyclic subgroup of any Sylow
subgroup of F*(H) of prime order or order 4 is ss-quasinormal in G, then G € F.
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