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GEOMETRIC CLASSIFICATION OF QUADRATIC
ALGEBRAS IN TWO VARIABLES

By

Kenta Uryama

Abstract. In this paper, we classify quadratic algebras in two
variables at two levels: (1) up to isomorphism of graded algebras, (2)
up to graded Morita equivalence. In general, it is difficult to classify
algebras by looking at generators and relations, so we take a ge-
ometric approach, namely, using point schemes defined by Artin,
Tate and Van den Bergh, to complete the classification.

1. Introduction

Thoughout this paper, we fix an algebraically closed field k£, and denote
by k{(X)> = k<{x1,...,x,, the free algebra in n variables x; of degree 1 over k.
Let R < k(X ), be a subvector space and we denote by (R) the ideal in A<(X)
generated by R. Then the algebra k<(X)/(R) is called a quadratic algebra. The
main purpose of this paper is to classify quadratic algebras in two variables, that
is, k{x,y>/(fi,-.., fr) where fi,..., f, are linearly independent and deg f; = 2 for
all i, at two levels:

(1) up to isomorphism of graded algebras, and
(2) up to equivalence of graded module categories (graded Morita equiva-
lence).

Classification of quadratic algebras in two variables is divided into five cases
by the number of relations, namely, r = 0,1,2,3,4. Clearly, k{x, y> is the only
quadratic algebra in the case r =0, and k<{x, y>/(x?, xp, yx, y?) is the only
quadratic algebra in the case r = 4. In the case r = 1, the classification is well-
known. Furthermore algebras in the case r = 3 are classified using quadratic dual
of the case r = 1. In this paper, we mainly describe methods and results in the
case r = 2.

2000 Mathematics Subject Classification. Primary 16S37; Secondary 16W50, 16D90, 16S38.
Key words and phrases. quadratic algebra, graded Morita equivalence, point scheme.
Received November 18, 2009.



80 Kenta Uryama

Let A be a graded k-algebra. Then we denote by GrMod A4 the category of
graded right A-modules and graded right 4-module homomorphisms of degree 0.

Now, given two quadratic algebras in n variables 4 and B, we have questions
to ask: 4 = B as graded algebras? GrMod 4 = GrMod B? It is difficult to answer
these questions by looking at generators and relations of 4 and B. Therefore
we take a geometric approach to these questions, using point schemes defined by
Artin, Tate and Van den Bergh [2]. If T, T3 < P! x P""! are the point
schemes of A4, B, then the following holds (Theorem 2.2, Theorem 2.7):

Ax~B —— 3JoeAut P"! such that [, 25Ty

! !

GrMod 4 =~ GrMod B —— 30,7 € Aut;y P"~! such that I, ”TXT> I'p

Thus we can classify quadratic algebras by making use of the point schemes. In
the case of two variables, this geometric approrch is quite effective. In fact, we
complete the classification in the case r =2 mainly using geometric method.
2. Point Schemes and Twsisting Systems
First we study the notion of the point scheme.

DeriNiTION 2.1 [2]. Let A = k<{X)»/I be a graded k-algebra generated in
degree 1. Then we define

o= (L) ={(p1,...,p:) € P f(p1,...,p) =0 for all fel}

where i>1. For j>i, if pr{:l"_,%l"i is the restriction of the projection
(P — (P" 1) to first i coordinates, then {T;, pr/} is an inverse system of
schemes. The point scheme of A is defined by the inverse limit

I .= 1{51’1 r,'.
However for the purpose of this paper, we define the point scheme of 4 by
FA = F2

by abuse of language, because we consider quadratic algebras only.

THEOREM 2.2 (cf. [5]). Let A =k<{X>/(R), B=k{(X)/(S) be quadratic alge-
bras, and T 4,Tg = P"~1 x P"! the point schemes. Then graded k-algebra homo-
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morphism ¢ : B — A induces a morphism ‘o x ' : Ty — T'p. In particular if A =~ B
as graded k-algebras, then T 4 =~ Tp.

PrROOF. Let g|p be the restriction map of ¢ to By, and ¢ : k<{X) — k{X)
the natural extended map of o[y . Since G(f) is in R for any f €S, we get

J((al)(p), "(ol5)(q) = 6(f)(p.q) = 0

for any (p,q)eT4. It follows that (‘(alg )(p), (clp )(¢q)) € [p. Thus we can
define ‘o x ‘c:Ty—Tp by (p,q) ("(alg)(p), (clp)(q)). The assignments
A—T,, o ‘g x 'c define a contravariant functor from the category of qua-
dratic algebras in n variables to the category of schemes, so I'y = I'p is induced
by 4~ B. L]

By using this theorem, we can check whether two quadratic algebras are not
isomorphic.

Zhang [8] found the necessary and sufficient condition for graded Morita
equivalence, introducing the notion of a twisting sysyem.

DrrFINITION 2.3 [8]. Let A be a graded k-algebra. Let 0 = {0;|ie Z} be a
set of graded k-linear automorphisms of 4. Then 6 is called a twisting system of
A if

01(aby(b)) = 0,(a)0,1,(b)

for all p,q,leZ and all ae A,, b € A,. Given a twisting system of A, say 0, the
twist of 4 by 6, denoted by A’ is defined to be 4 as a graded k-vector space
with a new multiplication * by

axb=ual0,b) (acd,beA,).

If M is a graded right 4-module, then the twist of M by 0, denoted by MY, is
defined to be M as a graded k-vector space with a new action * defined by

mxa=mb,(a) (meM,acA,).

REMARK 2.4. If 4 is a graded k-algebra, and ¢ € Auty A is a graded k-
algebra automorphism, then the set {0; := ¢’} is a twisting system.

THEOREM 2.5 [8, Theorem 3.5]. If A and B are graded k-algebras generated
in degree 1, then GrMod A =~ GrMod B if and only if B is isomorphic to a twist of
A by a twisting system.
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LEMMA 2.6 [8, Proposition 2.8]. Let A, B be graded k-algebras generated in
degree 1. Then B is isomorphic to a twist of A if and only if there exists a set of
graded k-linear isomorphisms {¢;} from B to A which satisfies

¢1(ab) = ¢1(a)y,(b) (2-1)

for all p,q,leZ and all ae B,, be B,.

THEOREM 2.7 (cf. [5]). Let A =k<{X)/(R), B=k<{X)/(S) be quadratic alge-
bras, and T 4,Tg = P"~' x P""! the point schemes. If GrMod A ~ GrMod B, then
there exist o,7 € Auty P! which restrict to an isomorhism o x t: T4 — .

PrROOF. Suppose GrMod A4 =~ GrMod B. Then A4’ ~ B for some twisting
system 6 by Theorem 2.5. Moreover there exists a set of k-linear isomorphisms
{¢;: B— A} which satisfies (2-1) by Lemma 2.6. Let o;:= ¢z : B — 4, for
any i. Since for any f := Zl,m U X1Xm € S, fi = Z,ym om0 (X)Gi41(Xp) 18 in R,
so we get

f('ai(p), 'oi11(q)) = filp,q) =0

for any (p,q) € T4. It follows that (‘ci(p), ‘ci11(q)) € Tp. Thus we can define
'6; x 'g;41 : T4 — Tp by (p,q) — ("oi(p), '6ir1(g)). Since ‘o; X ';y; is an auto-
morphism of P! x P"~!, ‘g, x 'g;4, |r, is injective. Similarly, for any (p’,¢') € I's,
we can check that ((‘a;) ('), (‘eis1) '(¢')) e T4 and

,O'i X tO'ijl((IO'[)il(p/), (Iai+l)71(q/)) = (p/aq/)a

0 ‘o; X 'giy1|p, 1s surjective. I

By using this theorem, we can check whether two quadratic algebras are not
graded Morita equivalent. Now we define the Hilbert series.

DrerFINITION 2.8. Let V' be a locally finite graded k-vector space. Then we
define the Hilbert series of V' by

o0

Hy(t)= > (dim V)" e Z[[1,17]].

i=—o0

THEOREM 2.9 (cf. [8]). Let A, B be graded k-algebras generated in degree 1,
and H,(t), Hp(t) the Hilbert series. If GrMod A = GrMod B, then H4(t) = Hp(t).
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Proor. Suppose GrMod 4 ~ GrMod B. Then 4’ ~ B for some twisting
system 6 by Theorem 2.5. It means that 4 =~ B as graded k-vector spaces, so
HA(I) :HB(I). |

It follows that if H4(¢) # Hp(t), then GrMod 4 2 GrMod B, in particular,
A%B.

3. The Case r=1

In this section, we recall the classification in the case r = 1. We define an
equivalence relation on My(k) by M~ M' if M equals M’ up to non-zero
scalar multiplication. If we associate to f = ax? + fxy + yyx +Jdy?> the matrix
M = (j g), then it is well-known k<x, ¥>/(f) = k<x, y>/(g) if and only if there
exists P e GLy(k) such that My = PM,'P. This method is used in classifying
(commutative) quadratic forms. However, in noncommutative case, this method is
not effective. Since we can not assume M, is symmetric, so instead, we associated
to f = ox?+ pxy + yyx +Jy? the matrix

(3 %)

in this paper. Then the following holds.

LemmA 3.1. Let A=kx,y)/(fiy--u [r), B=k<x,vy/(gh,--.,9r) be qua-
dratic algebras. If there exists P e GLy(k) such that My, ~ PM; P! for all 1 <
i <r, then A= B. In particular, if A =k{x,y)/(f), B=k{x,y)>/(g), then there
exists P e GLy(k) such that My~ PM;P~" if and only if A= B.

Proor. This follows from the definition of M, and calculations. O

For any f = ax? + fxy + yyx +0y2,

o) =X

(o
((1) ) e —x?+xy—px

1
(0 %) = =dvx (2#0)

2

(3-1)

for some invertible matrix P e GL,(k), where

10 10y, r_ g4l
3P € GLy(k) such that (0 /1,>~P(0 i)P S A =1
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by the classification of the “Jordan” canonical form for M,(k) up to non-zero
scalar multiplication. We get the classification of k{x, y>/(f) by Lemma 3.1.

THEOREM 3.2.  Every quadratic algebra of the form k{x,y>/(f) is isomorphic
to exactly one of the following:

k<x, vy /(),

k<x, >/ (xp),

ke, /(=X + xy = yx) = kylx, yl,
k<x, y>/(xy = dyx) =t k;lx, y] (4 #0)

where

kilx, v = kyifx, y] & A = 2F

Let A =k{x,p)/(x?), B=k{x,p>/(xy), C=kylx,y], D=kx,y]. If we
define ¢ € Auty k[x,y] by ¢(x)=x, ¢(y) =x+y, then 0= {p'} is the twist-
ing system such that C = k[x, y]a. If we define y € Auty k[x, y] by ¥(x) = x,
W (y) = Ay, then y = {y'} is the twisting system such that D = k[x, y]". It follows
that GrMod C =~ GrMod k|x, y] = GrMod D. The point scheme of each algebra
is

I,=(0,1)xP'UP! x(0,1), Tp=(0,1)xP'UP!x(1,0),
Fe=(p,q) x(p,p+q) Ip=(p,q) x (p,29),

so GrMod 4 2 GrMod C and GrMod B % GrMod C by Theorem 2.7. More-
over, the Hilbert series of each algebra is

Hy) =14+2t4+32 453 +8* + 1385 = (1 +0)/(1 —t — 1?),
Hp(t) = He(t) = Hp(t) = 1+ 2+ 32 + 48 + 564 + 617 = 1/(1 — 1)?,

so GrMod 4 % GrMod B by Theorem 2.9. Hence we get the following classi-
fication.

THEOREM 3.3.  Every quadratic algebra of the form k<{x,y>/(f) is graded
Morita equivalent to exactly one of the following:

k<x, py/(x%),
k{x, >/ (xy),

klx, yy/(xy — yx) = k[x, y].
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Let A be a graded k-algebra and M, N graded right A-modules. Then 4 is
said to be connected if 4; =0 for all i < 0, and Ay = k. For each d € Z, the shift
of M, denoted by M(d), is a graded A-module for which M(d), = M;.,. We
define Ext!,(M,N) =P, _, Ext/(M,N(d)).

We can see that k;[x, y] and k;[x, y] have good homological properties
analogous to the polynomial algebras.

DeriNITION 3.4 [1]. Let 4 be a connected graded k-algebra. Then A4 is called
a d-dimensional Artin-Schelter regular (AS-regular, for short) algebra if

+ gldim 4 =d < oo,

+ GKdim A4 := limsup,_, ., log(dimy Y/, A4;)/logn < oo, and

+ A satisfies Gorenstein condition, that is,

A 0 ifi#d
Ext’,(k,A) = . ’
Ext)y (k. 4) {k(l) for some /eZ ifi=d.

A commutative algebra A4 is AS-regular if and only if 4 is a polynomial
algebra. A 2-dimensional AS-regular algebra generated in degree 1 is either of the
form

kJ[xay] or kl[xvy]'

Classification of 3-dimensional AS-regular algebras generated in degree 1 was
attacked by Artin and Schelter in their paper [1]. Later Artin, Tate and Van den
Bergh [2] completed the classification of 3-dimensional AS-regular algebras gen-
erated in degree 1 by using geometric approach.

4. The Case r=2

In this section, we see methods and results of the classification in the case
r=2.

LemMA 4.1. If f = ax? + Bxy + yyx +6y? is a quadratic relation, then f is
reducible if and only if ad — iy = 0.

Proor. The last two matrices in (3-1) are the canonical form of invertible
matrices up to scalar multiplication. Hence we have
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£ is reducible < k{x, p>/(f) = kx, y>/(x?) or k{x, y>/(xp)

< there exists P € GLy(k) such that

PMP*1~01 or 0
T\ o o 0 0

& det My (=det PMyP') = a0 — By =0. O

PrOPOSITION 4.2.  Let k<{x, y>/(f1, f2) be a quadratic algebra. Then there exist
at least one and at most two linearly independent redusible relations in (f1, f2), =

kfy + kf>.

Proor. For each quadratic relation f = ax? 4 fxy + yyx +0y%, we define
the point p; := (2,5,7,9) € P°. If we define

X = {pyis | (5,0) eP'} < P?, ¥V =7 (xox3 — x1x2) = P?,

then dim X =1, deg X =1, dim Y = 2 and deg Y = 2, so the total number of in-
tersection points of X and Y counted with their multiplicities is 2(= deg X deg Y)
by Bezout’s Theorem [3, Theorem 18.3]. Since pr € Y if and only if ad — fy =0,
the result now follows by Lemma 4.1. O

COROLLARY 4.3.  Every quadratic algebra k{x, y>/(f1, f2) can be made either
of the form

k<x, p>/ (X%, 0x® + Bxy 4+ yyx +0y%)  or  k<x, p>/(xp,0x> + fxy + pyx + 5?).

PrOOF. Proposition 4.2 says that there exists at least one redusible relation
in (f1, f2),, so this corollary is proved. ]

PROPOSITION 4.4. A quadratic algebra of the form k{x, y>/(x* ax*+ fxy +
yyx +0y?) is isomorphic to one of the following:

k<x7 y>/(x2aXy)7 k<x,y>/(x2ayx)7 k<x7y>/(x27xy_)tyx)a
kx, >/ (x, 97, klx, py/ (X%, p* = xp)
where A # 0.

ProoF. Since x? is contained in the relations, we first make the second

relation f so that M, = (f By). If we define P := (| ¥) € GLy(k), then P() ;)P
~ () §), so conjugating by P fixes the relation x?, hence we can replace f by f’
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so that My = PM;P~! :(ﬁ”"5 ’I’(ﬁ”*’”s)) by Lemma 3.1. Moreover, since x>

J =(7+pd)
is contained in the relations, we again replace the relation f’ so that My =
(ﬂ+1}(5 0
o —=(rtpd) )"

(1) The case 6 =0: If y=0, then My ~(} J), so f' =xy. If f=0, then
My~ () ), so /= yx. Otherwise, My ~ (é y/;)*' ), so f'=xy+pf yx.
(2) The case 6 #0: We take p=—p0'. If f=1y, then My ~(} ), so
f'=y% If B+#y, then My z(ﬂ;/ 8), so f'= y? — xy by multiplying

—5(fp—7)" to x O

PROPOSITION 4.5. A quadratic algebra of the form k{x,y)/(xy,ax*+ fxy+
YYX +0y?) is isomorphic to one of the following:

k<x, py/ (xp, ¥7), k<x, yy/(xp, yx), k<x, py/(xp,x%),
kx, ) (xy,x? = »2),  k<x, v/ (xp, x2 = px),  k<x, py/(xp, X2 = yx + pwp?)

where p # 0.

ProOF. We may assume o #0, y#0 or 0 #0. The result follows by
appropriately multiplying to x and/or y by scalars, and the fact that k(x, y)/
(4 x),x) = k<x, y) /(o (x = p)). O

Now k<{x, y>/(xy,x?) appears both in Proposition 4.4 and Proposition 4.5.
Moreover k{x, y>/(x?, yx) in Proposition 4.4 is isomorphic to k<{x, y>/(xp, y?)
in Proposition 4.5. There might be other isomorphisms between algebras in
Proposition 4.4 and Proposition 4.5. Therefore we check whether two algebras in
Proposition 4.4 and Proposition 4.5 are not isomorphic by using Theorem 2.2 and
Hilbert series.

Except the following two cases

A=k, p /(3 37 = xp) S ke, py (o, X2 — x4 2 = A" (u=1),  (41)

B = kx, >/ (¥, xy — 2yx) < k<x, >/ (%, xp — 2'yx) =: B' (4-2)

where . # A’, we can check that all algebras in Table 1 are non-isomorphic to
one another by Theorem 2.2 and Theorem 2.9. In the case (4-1), I'4 ”—i”> Iy
given by o = (_01 {), and ‘o induces an isomorphism 4’ =~ A. In the case (4-2),
whatever we take o € Aut, P! such that T'g %{ ', ‘o does not induce an iso-
morphism B’ — B, hence B’ % B. Hence we complete the classification up to

isomorphism in the case r =2 as follows.
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Table 1. Point schemes and Hilbert series

A Iy H, (1)
kx, 3/ (5%, x) (0,1) x P! (I+9/0—-1
kx, 3/ (x?, yx) P! x (0,1) (I+0/(1 -1
k<x, y>/ (6%, xp = 2px) (0,1) x (0,1) (I+9/(0 -1
kx, 3/ (x2, ) (0,1) x (1,0)U(1,0) x (0, 1) (1+9/0 -1
k{x, yy/(x%, 2 = xp) (0,1) x (1,0)U(1,1) x (0,1) 1+26+207 + 13
k<x, 3>/ (xy, yx) (0,1) x (0,1)U(1,0) x (1,0) (I+9/(0 -1
k<x, >/ (xy, x2 = y2) (0,1) x (1,0) 1421+ 21
k{x, py/(xp,x* — yx) (0,1) x (0, 1)U (1,1) x (1,0) (I+t-0)/(1-1)
kx, v/ (xp, x2 — yx + p?) (0,1) x (1,1)U(1,1) x (1,0) 1+2t428 4¢3
k{x, p>/(xp, X% — yx + w?) (0,1) x (1, 1)U (1,1) x (1,0) 1+21+ 212

where 41 #0, ©#0,1.

THEOREM 4.6.

Every quadratic algebra of the form k<{x,y>/(fi,f>) is iso-

morphic to exactly one of the following:

where

ke, py/ (3%, xp),

kex, /(5% yx),

kx, >/ (3%, 12,

kex, 3/ (5%, y* = x),

k<x, ) (x*, xy — dyx) =1 S;, (A #0)
k<x, y [ (xy, yx),

kex, [ (xp, x* = yx),

ke, p> [ (xp, x* = ¥2),

kx, p>/(xp,x? —yx +w?) = T, (u#0,1)

S=Syei=2 T, =Ty, =pn
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Next we classify quadratic algebras in Theorem 4.6 up to graded Morita
equivalence. We check whether two algebras are not graded Morita equivalent by
using Theorem 2.7 and Theorem 2.9.

Except the following three cases

A= ke, py /(63 xy = dpx) <5 ke, )/ (3% xy — 2'yx) =2 A, (4-3)
B = k(x, y> /(% 1%) & k<x, )/ (xp, yx) =: B/, (4-4)

"7 ! !
C = k{x, >/ (xy, x> — yx + uy?) — k{x, py/(xy, x> = yx + p'y?) = C'  (4-5)

where A # A', u# y', we can check that all algebras in Theorem 4.6 are non-
graded Morita equivalent to one another by Theorem 2.7 and Theorem 2.9. In
the case (4-3), if we define ¢ € Auty 4 by ¢(x) = x, p(y) = A'A7'y, then 6 = {¢p'}
is a twisting system such that 4’ ~ 4% so GrMod A =~ GrMod A’. In the case
(4-4), if we define € Aut; B by y(x) = y, ¥(y) = x, then = {i'} is a twisting
system such that B’ =~ B", so GrMod B =~ GrMod B'.

We now consider the case (4-5). Suppose that there is a twisting system
7= {7;} such that C’ = C*. We can present C and C’ as

C=k<x, p)/(xp, (x = p)(x —uy)), €' =k{x, yy/(xpy, (x = y)(x — ' y)).
Note that C and C’ have exactly two linealy independent reducible relations as
presented above by Proposition 4.2. Thus, since 7 is a twisting system, 7; satisfies

{Ii(x)ri+1(y) =Xy {Ti(x)7i+1(J’) =(x=y)(x—py)
/! or /!

Ti(x = )t (x —4'y) = (x = y)(x — uy) Ti(x = Yt (x — p'y) = xy

for any i. Then we can check that x4+ u’ = 1 is necessary condition for 7 to be a

twisting system by calculations. Moreover if u+ ' =1, then we construct a
twisting system 7 by

0i(x) = p'x D41 (X) = —x+
0i(y) = x — py Dir1(y) =y
wi(x?) =p'x* 7 )t (X)) = p'x? — plyx
Ti(yx) = x> — pyx Toip1 (px) = x2 — w'yx
for all i >0. (Since Hc(f) = Hei(f) = 1+ 2t + 2¢%, it is enough to check

t((ax + by)ri(ex + dy)) = 7y(ax + by) i (ex + dy)

for all j.)
Hence we complete classification up to graded Morita equivalence in the case
r=2 as follows.
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THEOREM 4.7. Every quadratic algebra of the form k<{x,y>/(f1, f2) is graded
Morita equivalent to exactly one of the following:

ke, p>/(x%, xp),

ke, p>/ (32, yx),

ke, py/ (3%, y? = xp),

ke, p>/ (3%, xp = yx),

k<x, y /(xy, yx),

keox, [ (xp, x* = yx),

ke, p>/ (e, x* = ¥2),

ke, p>/ (xp, x* = yx + ) = T (u#0,1)

where

GrMod 7, 2 GrtMod Ty < ¢/ = p or u+u' = 1.
5. The Case r =3

DeriNITION 5.1, Let A = k<{X)/(R) be a quadratic algebra. Let 7 be a
k-vector space having a basis X = {xj,...,x,}, and V* a k-dual space of V. If
the elements &; € V* are defined by &;(x;) =y, then X* = {&,,...,¢,} is a basis
of V* where ; is the Kronecker delta. The quadratic dual of A is defined by

A =kXY/(RY),  RT={iek(X"%|A(f)=0YfeR)

where if f=73", coyxix;, A=32; 0:8C;, then A(f) =32, oy

ExampLE 5.2. Example of quadratic duals.

cA=kix,py o A =k<E Y/ (E,Enné ).

© A =kx, yy/(xy = Ayx) o AL =K<y /(% Aén + né,n?).

© A =kx, py /(3 y?) o A= kE )/ (En,nd).

The following result is well-known (cf. [4]). We will include the proof for the
reader’s convenience.

THEOREM 5.3. Let A = k<{X)/(R), B=k{(X)/(S) be quadratic algebras, and
A', B' the quadratic duals. Then a graded k-algebra homomorphism o : A — B
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induces a graded k-algebra homomorphism ' : B* — A'. In particular if ¢ is an
isomorphism, then so is 'c. Thus

A=B& A' =B,
PRrOOF. Set A' = k(X*)/(R*), B' = k(X*)/(S*). Let o], be the restriction
map of ¢ to 4y, and ¢ : k(X > — k<{X) the natural extended map of 0|A]. More-

over let ‘G : k(X*) — k(X *) be the natural extended map of (a|, ) : B — 4.
We will see that B' — A' is induced by ‘6.

k(XS —0 0 k(XS

For any feR, (f) is in S. For any e S+, it follows from ‘G(1)(f) =
A(6(f)) =0 that ‘(1) € R*. Thus we can define

‘c:B'— A, 7'(g)—n'dlg) (9ek(X"))

where 7 : k(X*> — A" and n’ : k(X*)> — B' are the natural maps. If we think
of ‘g as o', then we can easily check that (—)! is a contravariant functor from
the category of quadratic algebras in n variables to itself, so 4' ~ B' is induced
by A~B. It follows from the fact A4~ (4')' that 4~ B if and only if
A'= B'. O

COROLLARY 5.4. Every quadratic algebra of the form k<{x,y>/(fi, f2, f3) is
isomorphic to exactly one of the following:

k<x, p/ (x, yx, 1) = (k<x, >/ (x7)
k<x, p/ (6%, px, 97) = (k<x, p)/(xp)),
k<x, p/(x% + xp, xp + px, ¥?) = kylx, y]',

ke, v/ (32 dxy + yx, ) 2 holx, ] (2 #0)
where
kilx, y)' = kylx, y] & 4 =2
PRrOPOSITION 5.5. Let A = k{X)/(R) be a quadratic algebra, and ¢ € Aut; A.
Set 0={0;= ¢}, 07" ={(("0)") = ("9)™'}. Then
(4%) = (4"
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where g is the graded k-algebra automorphism of A' given by applying Theorem
5.3 to ¢.

Proor. Since ¢ € Aut; A, 0 is a twisting system on A. By Theorem 5.3,
(‘p)~" is in Auty 4!, so ‘07" is a twisting system on A'.

We set 4%, 4%, (4%)', (47" as follows:

A‘:k<X*>/(Rl) quadratic dual A:k<X>/(R) twist by 0 AH:k<X>/(R/)
thwist by 07! quadratic dualJr
(47" = kXY /(RM) ? (A7) =KX /(R™),

Let ¢:= go|A]. If 2'= D g PraCrq € eRY and f'= D s %siXsX € R, then
D g 07 (f‘,,)’Hi:_ll(fq) e R™ and ), ay0i(x,)0i11(x;) € R for any i, so

Z e (Z ocg,xyx,>

o, ('0) (&) (') V&) (Z 0" (x,)a " (x;))

=

g

S, 07(E) 054 (&) (Z 2 0,(x) i1 <x,>) = 0.
y2x s, t

Hence i"eR'*. On the other hand, let u=Y, o &¢ eR™* If f=
ES’ , O XsX, € R, then for any i,

Za* 071(E,) 054 (E) )
Z % ( TE) () 05D &) (Z; ocsta‘i(xs)a‘("+‘)(Xz)>
Z ol (Z o0 (x5)o (i+1)(x,)>
= u(z; o077 (x5) 07 (xz)> =0 ( Z o0 (x50 (x) € R’),

SO D2, 4 % 0; (f,,)’@fjl(éq) € R* for any i. Hence u = > g FraCra erRY. [
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COROLLARY 5.6. Let A, B be quadratic algebras, and 0= {0;=¢'|
pe Auty A} Then

B~ A’ = GrMod 4' ~ GrMod B'.

Proor. This follows from Theorem 5.3 and Proposition 5.5. O
Let
A = k<x, >/ (xy, yx, ¥%), B =k{x, >/ (%, yx, y?),

C =k, >/ (¥ +xy,xp + yx, %), D =k{x, y)/(x%, 2oy + yx, y2).
By Corollary 5.6,
GrMod C =~ GrMod k[x, y]; = GrMod k[x, y]' ~ GrMod k[x, y], =~ GrMod D.
The point scheme of each algebra is
Ci=(1,0)x (1,0), Tp=(1,0x(0,1), Te=g, Tp=g0,

so GrMod 4 # GrMod C and GrMod B 2 GrMod C by Theorem 2.7. The
Hilbert series of each algebra is

Hy(t) =142+ 2+ 2+ 4+ =1 +1—12)/(1 1),
Hp(t) = He(t) = Hp(t) = 14+ 2t + 12 = (1 +1)%,

so GrMod A4 % GrMod B by Theorem 2.9. Hence we complete the following
classification.

COROLLARY 5.7.  Every quadratic algebra of the form k<{x,y>/(fi, f», f3) is
graded Morita equivalent to exactly one of the following:

k<x, 2/ (xp, yx, ) = (k<x, p)/(x7)
kx, 3/ (32, px, p%) = (k<x, v/ (x0),

!

k<x, yy/(x*, xy + yx, ¥?) = kx, )]

6. Properties of the Classified Quadratic Algebras

At the end of this paper, we describe several algebraic properties of the
classified quadratic algebras. More specifically, we check properties like domain,
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noctherian property, global dimension, GK-dimension, Koszul property and
Hilbert series. It is easy to check left and right noetherian property, Hilbert series
and GK-dimension for the algebras in Table 2, so we give a few facts for
determining global dimension and Koszul property.

THEOREM 6.1 [6, Chapter 10, Theorem 4.2]. Let A be a connected graded left
(or right) noetherian k-algebra. If H,(1)"" ¢ Z[1], then gldim 4 = oo.

ExaMPLE 6.2. Every classified quadratic algebra A4 in the cases r = 2, 3,4 has
gldim 4 = oo. This follows immediately from Theorem 6.1 and the Hilbert series
in Table 2.

Next we recall the notion of Koszul. A connected graded k-algebra A is
called Koszul if the minimal free resolution of k4 is of the form

RN @A(—3) — @A(—Z) — @A(—l) — @A — k — 0.
If A4 is Koszul, then 4 is a quadratic algebra. Moreover Yoneda algebra
Eq(k) =@, Ext’,(k,k) of A is isomorphic to the quadratic dual 4" as graded
algebras. Further if 4 is Koszul, then A' is also Koszul and we have the follow-
ing equation

HA([)HA!(—Z) =1.

We refer to [7] for other basic properties of Koszul algebras.

ExampLE 6.3. If B =k{x,y>/(xy,x> — y?), then B' = B. It follows from
the Hilbert series Hp(t) = 1 +2¢+ 2¢> that Hp(t)Hp(—t) # 1. Hence B is not
Koszul. Similarly we can check Koszul property for the algebras in Table 2.
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