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Kim Hyo GYEONG

Abstract. For a one-parameter exponential family of distributions, a
method to find the uniformly minimum variance unbiased (UMVU)
estimator based on the complete sufficient statistic is given in Jani
and Dave [1] by change of the expression of the unbiasedness
condition. But, it heavily depends on the concrete form of the
distribution of the statistic in obtaining indeed the UMVU estimator.
In this paper, from the different point of view, the construction of
the UMVU estimator for a one-parameter exponential families of
distributions and certain two-parameter family of distributions is
discussed. Some examples are also given.

1. Introduction

In the problem of estimating a function of parameter, there are some ways
to obtain the uniformly minimum variance unbiased (UMVU) estimator (see, e.g.
Lehmann and Casella [4], Zacks [7]). One of them is to use the information
inequality like Cramér-Rao one which gives the lower bound for the variance of
unbiased estimators. Another way is to obtain an unbiased estimator which is a
function of the complete sufficient statistic if it exists (see, e.g. Voinov and
Nikulin [6], Jani and Dave [1], Kim and Akahira [3]). To do so, it is important to
consider how to construct the UMVU estimator. Jani and Dave [1] proposed a
way to find the UMVU estimator based on the complete sufficient statistic for
a one-parameter exponential family of distributions by change of the expression
of the unbiasedness condition. But, in order to obtain indeed the UMVU es-
timator, we need the concrete form of the distribution of the statistic. It is not, in
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general, so easy to obtain the distribution, but, in special cases, it is given (see,
e.g. [6]).

In this paper, from the different viewpoint based on the complete sufficient
statistic from [1], we consider the construction of the UMVU estimator of a
function of parameter for a one-parameter exponential families of distributions
and certain two-parameter family of distributions. Some examples also are given.

2. A Construction of the UMVU Estimator in a One-Parameter
Exponential Family of Distributions

Suppose that Xj,..., X, are independent and identically distributed (i.i.d.)
random variables with a probability density function (p.d.f.) (with respect to the
Lebesgue measure)

p(x,0) = a(x)(0)e DY) xe X <R'; 0c® cR! (2.1)

where o(x) > 0 for all xe Z, ¢(-) is a real-valued function and ¢(6) # 0 for some
0 e ® and

B(O) = {L a(x) e D) dx}_l.

Denote (Xi,...,X,) by X. Here, we assume that the range of ¢(-) involves an
open interval in R'. Then it is well known that the statistic Z(X) := Y1, d(X;) is
a complete sufficient statistic for # and has the p.d.f.

f2(2,0) = B,(2){y,(0)} e zex =R': 00 =R,

where
and B,(-) satisfies

(see, e.g. Jani and Dave [1]).

Let T = T(X) = k,Z(X) with a constant k, # 0, and suppose that its range
is an interval (a,b), where ¢ and b are independent of ¢ and may include —oo
and oo, respectively. Then the p.d.f. of T' (with respect to the Lebesgue measure)
is given by the form of

fT(l, 0) = Bn(t){l//n<0)}7lehn(0)t){(a,b)(t)7 te Rl; 0e® (22)
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Here, for a natural number k, let B,() be k-times differentiable in 7 and assume
the following condition.
(Cl) For j=0,1,...,k—1
lim BY (e =0, lim B (r)e"?" =0

t—a+0 (—b—0 ’

where B\ (1) = (d//dt/)B,(i) for j=1,....k —1, and B (1) = B,(1).
Then, we have the following.

THEOREM 2.1.  Assume that the condition (Cl) holds. Then

« BY(T)

hien(T) == (—1) BAT)

Xap)(T)

is an unbiased estimator of {h,(0)}*.

Proor. Using integration by parts and the condition (C1), we obtain for
each n and each 0 e ®

BT
02 (T)

Eglhi o(T)] = Ey

Here,

= —hy(0)J -1 (0)

= (=) {ha(0)}7.0(0)
b

- <—1>k{hn<e>}kj Ba(0)e 0"

a

Then it follows from (2.2) and (2.3) that for each 0 ®

b
Eglhin(T)] = {1, ( )}*l{hnw)}"J B,(t)e" " dt = {h,(0)}".

Hence, /4 ,(T) is an unbiased estimator of {A,(6)}*.

d
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REMARK 2.1. For k =1, Suzuki [5] also discussed the above, and extended
to the multiparameter case.

COROLLARY 2.1. If the condition (C1) holds, then ilkvn(T) is a UMVU es-
timator of {h,(0)}*.

The proof is straightforward from Theorem 2.1, since 7T is a complete
sufficient statistic for 6.

COROLLARY 2.2. Assume that, for each k=1,...,K, the condition (Cl)
holds. Let gg(6) := Z,{il ce{ha(0)} with constants ¢, #0 (k=1,...,K). Then
Z,{il ekl n(T) is a UMVU estimator of gk (0).

The proof is straightforward from Corollary 2.1.

REMARK 2.2. Let infinite series 37 ex{ha(0)}*, S22, cilun(T) and
> iz lck| be convergent. Put hg ,(T) := Z,{il cklAzhn(T), and assume that there is
a measurable function /2 such that | ,(¢)| < h(¢) for all K =1,2,... and all
teR" and E[h}(T)] < . If the condition (C1) holds for all k=1,2,..., then
the result of Corollary 2.2 is extended to the case when K — co.

ExampLE 2.1. Let Xi,...,X, be iid. random variables from the normal
distribution N(0,a3), with 63 known. Since the statistic 7= X := (1/n) 3.1, X;
has the normal distribution N(6,03/n), the p.d.f. of T is given by

N no? ( nt2> (n@ )
t,0) = exp| —— | exp| —=— ) exp| —1¢ ).
fT( ) \/EO'O p 20_3 p 20_5 p 0_3

Now, letting

nf nt?
hn 0 = "5 B,(1) = PSR E
0 =23 80 =exn(~15)

in the form (2.2), we have
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and so on. Hence, for j=0,1,...,k—1

. ; . > nOt
hm B}S])([)ehn(g)f — hm Pjn(t) exp (_n + n> — 0’

t—+o t—~+oo 205 0'(%

where P;,(t) is certain j-polynomial of ¢ for each j=0,1,...,k—1, which
implies that the condition (C1) is satisfied. Also, since T is a complete sufficient
statistic, it follows from Corollary 2.1 that it;m,(T ) is a UMVU estimator of
{h,(0)}* = (n0/a2)*. For example, in the case when k = 3,

T3—313T
n

is seen to be a UMVU estimator of 6°.
ExampLE 2.2. Let Xj,...,X, be iid. random variables from the normal

distribution N(0,6) for 6 > 0, where n > 3. Since the p.d.f. of the statistic T :=
S, X7 is given by

(0/2)-1 =t/(20)
Fr(t,0) = { 7Pra o fort>0,
0 for 1t <0,
letting
1

hn(0) = =55, Balt) =271,

in the form (2.2), we have

Then, for a natural number k& with k < n/2,

lim B (1)@ = lim (2 1) (2= j)im2=0+De=1/20) — g
—0+0 " —0+0\2 2 ’

lim B,(l-/)(t)eh”<9)’ — lim <E — 1) (g —j) t1/2)=(+1) p=1/(20) —

— 0 1—0o0

for 0 < j <k — 1, hence, the condition (C1) is satisfied. Also, since T is a com-
plete sufficient statistic, it follows from Corollary 2.1 that

(n—=2)-(n=2k)T "y ,\(T)

is a UMVU estimator of 1/6.
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3. A Construction of the UMVU Estimator in a Two-Parameter
Exponential Family of Distributions

Let 7y = T1(X) and T, = T»(X) be statistics based on a random vector X :=
(X1,...,Xy), and T = (a1(0),b1(0)) x (a2(0),b2(6)) be the range of T := (T, T>),
where a;(0) and a,(f) may include —co, and b(6) and b,(f) may include oo.
Now, define the p.d.f. of T as

fr(1,0) = By(t){,(0)} ' lexplen (0)6] + cra(0) 12 + ex2(0)53
+ c10(0) 11 + cor(0) 12 + coo(0) Hx 7 (1)
for t:= (t,t,) € R* 0 := (0,,0,) € ® c R?, (3.1)

where B, (1) is twice differentiable with respect to 7, and B,(z) > 0in 7, y,(0) > 0
in ©, and ¢1(0), c12(0), cn(0), c10(0), co1(0), coo(0) are functions of 0. Let

Ag(t) = c11(0)17 + c12(0) 112 + c22(0) 85 + c10(0) 11 + co1(0)t2 + coo(0),

and, further, assume the following condition.
(C2) For 0 €O and 1 € (a1(0),b:(0))

li B,(t Ag(t)} =0, li B, (t Ag(t)} = 0.
Jlim Ba(r) exp{do(0} =0, lim By(0) exp{Ao(n)}

Then, we have the following.

THEOREM 3.1. Assume that the condition (C2) holds. Then for any 0 € ®

B (1)

ol =g, 1)

= —Clz(e)Eg(Tl) — 2622(9)E@(T2) — 001(0),

provided that all the expectations on both sides exist.

Proor. By the condition (C2), we obtain for any 6 € ®

B"(T) L (O ) (g
BBy | W (6)} Jal(e) Jaz(@) {5723”(0} exp{do(0)} dizdty
ne) =by(0
= {0} [B,(1) exp{AO(z)}],’;azz((g)) dt,
ai(0)

bi(0) b2(0)
_J J Bn(t){;;zAg(t)}exp{Ag(Z)}dtzdn)

a) (9) a2<9>
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o 4 bi(0) b2(0)
=ty
X {C12(0)11 + 2022(0)12 + Co1 (0)} exp{Ao(t)} dtrdt

= —C12((9)E9(T1) — 2022(9)E3(T2) — COI(H). OJ

B, (1)
a(0)

Next we assume the following condition.
(C3) For 0 €® and t; € (a1(0),51(0))
lim  B%V(7) exp{4y(r)} =0, 11m B%V(7) exp{4y(1)} = 0.

t—a+0 —by—0

Here we put

Then we have the following.

THEOREM 3.2. Assume that the condition (C3) holds. Then for any 0 € ©®

- B"Y(T)
B,(T)

(0,2)
By 7(T) — en(0)E T

Bl |~

T1 — 26‘22(9)E9

+ co1(0){c12(0)Eg(T1) + 2¢22(0)Eg(T>) + ¢01(0) },

provided that all the expectations on both sides exist.

Proor. By the condition (C3), we obtain for any 6 € ®

B 2>(T) b0
Ey Bn(T) = {0} IJ J {6%2 o ( )} exp{Aq(t)} dtrdt
tr=b,(0)
= {¥,(0)} 1( )} exp{Ay(t )}} o dn,

- Ll((o) Lz(a) {5(323 (t)}{ﬁier(l)} A} dtzdll)

B O ) [
=~y [ ] )

X {012(0)11 + 2e0(0)t; + Co](@)} exp{Ag(t)} dtydty.
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From Theorem 3.1 we have

(0,2) (0,1)
Bn (T) B’l (T)
On \2J) _ E T 2\
"\ BT c2(0)Ey | Th Bi(T)
(0,1) (0,1)
Bn (T) Bn (T)
2C22(0)Ef) TZW COI(H)EH W
(0,1) (0,1)
Bn (T) B'l (T)
= ElT 2| -2 E| T2
c2(0)Eyg | Th By(T) cn(0)Ey | T, Bi(T)
+ cot(O){c12(0)Ep(T1) + 2¢n(0)Eg(T2) + cor(0)}. O
ExampLE 3.1. Let Xi,...,X, be iid. random variables from the normal

distribution N(u,o?), where n > 6. Assume that x and ¢? are unknown. Now,
let

n

n
X, T,=58 :%Z(Xi - X%
i=1

i=1

T,=X=

S|

Then, the p.d.f. of T = (T),7>) is given by
n/24 =32
: n/2 ¢
Val((n—1)/2)(20°)
for t = (t1,65) e R' x Ry; 0:= (u,06*) e® :=R' x R,

frle,0)= 9| gos -0+ 1},

where R, = (0,c0). In the form (3.1),

n

6’01(9):*?‘2,

012(0) = 622((9) = O, (32)
and also

1
Eo(Th) =u, Ey(T2) = (1 - —>02-
On the other hand, since

Ap(0) = =55 {0 — ) + 1},
(3.3)

B”([) _ l§l173)/2,
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we have for 0 € ® and ¢, € R,

lim B A = lim 372 M )2 _
Jim u (1) exp{do(r)} Jim exp|—55{(n — )" + 0} =0,

lim B, (1) exp{A4y(t)} =0,

h— o0

which implies that the condition (C2) is satisfied. By Theorem 3.1, we obtain

(0,1)
Ep B;T;)T) :%. (3.4)
Since
B = B0 =,
it is seen from (3.3) that
B (1) _n-3 59
B, (1) 20

Hence, it follows from (3.4) and (3.5) that for any 6 € ®

n—3 1
E -
o{nTz} g’

that is, (n—3)/(nT>) is an unbiased estimator of 1/g*. Also, since T is a
complete sufficient statistic for 6, (n —3)/(nT>) is a UMVU estimator of 1/a”.
Since, for € ® and ¢, € R!,

. ©,1) T n—=3 n-s) _n )2 _
Jim BV expldo) = fim "2 exp| -5 (1 - 0 + 3| =0,

lim BV () exp{dy(1)} =0,

Ih— 0 n
the condition (C3) is satisfied. From Theorem 3.2 and (3.2) we have

n2

- (3.6)

B,SO’Z)(T)

Eo B,(T)

Since, by (3.3),
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it follows from (3.3) that

BY(T) _(n=3)(n—5)
B.(T) 4T3 ' (3.7)

Hence it is seen from (3.6) and (3.7) that (n—3)(n—35)/(n*T3) is a UMVU
estimator of 1/g%.

ExampLE 3.2. Let Xi,..., X, be i.i.d. random variables from the exponential
distribution with the p.d.f.
Lo—(-mfo  f
e or x > U,
p(x;p,0) = {" ~
0 for x <y,
where n >4, and 0 := (u,0) € ® :== R' x R,. Assume that x and ¢ are unknown.
Then, the maximum likelihood estimator of 6 is given by

0:= (4,6) = (Xq), X — X))
where X(j) = min;<; <, X; and X =(1/n) >oiLy Xi. Here, the p.d.f. of Ty :=j is
given by

Bexp{—2(ti —p)} fort > pu,
h; =47 ’
fT]( 1’#76) {0 fOr tl S,uv

and the p.d.f. of T, :=¢6 is given by

L ()" yn=2p-(n/a)tr
fr(t; i, 0) = { T=1) &) e for , > 0,
0 for 1, <0.
Now, since 77 and T, are independent (see Johnson et al. [2], pp. 506, 507), the

p.d.f. of T =(T1,T») = (1,6) is given by

1 (ﬂ)ntg_z eXp(-%[l — 2[2 —|—%) fOr (ll, Z2) € 9-’

p I,H — ¢ I'(n—1)\o
fr(t,0) {0

otherwise,
where 7 = (u,0) x (0,00), 0. Let
n
co1(0) = = c12(0) = en(0) =0 (3.8)
in the form (3.1). Also, we have
o n—1
Eo(Th) =ut_ Ey(T) = o.
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On the other hand, since

for e ® and ¢ € (1, 00), we have

lim B,( Ag()} = lLim 12 PR RIS/l
im, By(0) exp{4a(0) = fim > exp (=20 =21+ ™) 0,

t,—0+ t,—0+0

tlim B, () exp{A4y(t)} =0,

— 00
hence, the condition (C2) is satisfied. By Theorem 3.1 and (3.8) we obtain for any
0e®

BOV(T)
B,(T)

n

Ey = (3.10)

Since,

0
BV = 5B = (n=2)157,

it follows from (3.9) that

B,(t)  n

Therefore, by (3.10), (n—2)/(nT,) is seen to be an unbiased estimator of 1/o.
Also, since T is a complete sufficient statistic for 8, (n —2)/(nT) is a UMVU
estimator of 1/o.

The above discussion may be extended to the equality on E(;[B,S[’j )(T) /B,(T)]
where B,(f’j)(t) = (6”761{815)3,,(1) (i,j=0,1,2,...). A similar one may be
done.

4. Conclusion

In the previous sections, we argue about the construction of the UMVU
estimator in one-paremeter and two-parameter exponential families of distribu-
tions. In the one-parameter exponential family case, the form of the UMVU
estimator is directly obtained from the factor of the p.d.f. independent of . In
the two-parameter family case, the UMVU estimator is similarly derived from the
equation based on the factor.
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