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CONVERGENCE RATES OF APPROXIMATE SUMS
OF THE AREAS OF SURFACES OF REVOLUTION

By

Yuriko Goral, Hiroyuki Tasaki, and Mio YAMAKAWA

Abstract. We represent the convergence rates of approximate sums
of the areas of surfaces of revolution as limits of their expanded error
terms and estimate them. In the case of convex surfaces of revolution
we represent the convergence rates of them by the integral of certain
functions.

1. Introduction

Let [a,b] be a bounded closed interval and f be a function of class C!
defined on [, b]. We assume f > 0 and consider the surface of revolution defined

by f:
{(x, f(x)cos 0, f(x)sinh) |a<x<b0<6<2n}.

The area S of this surface of revolution is given by

S =2n be(x){f'(x)z + 1312 dx.

a

We take an n-division A, of [a,b] defined by
Aia=so<s1 < <851 <s,=0b.

We join (si—1, f(si—1)) and (s;, f(s;)) by segment and revolve the obtained
polygon around the x-axis. At this point we obtain a union of frustums, whose
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area S(A,) is given by

S8 =203 LOVETOD sy s )? 4+ (5 )2
=1

We regard S(A,) as an approximate sum of the area S.
In the present paper we consider the limits of the expanded error terms

() n*S—S(A,)| and n*(S—S(A,)),

which represent the convergence rates of the approximate sums S(A,) of S.
Our purpose is to estimate the limits of (%), stated in Theorems 1.2, 1.3, and
1.4.

In the case of the lengths of curves Gleason [2] has treated convergence rates
of some approximate sums of the lengths of curves and obtained the following
theorem.

TueoreM 1.1 (Gleason). Let A be a curve in euclidean space of class C* and
length L. For each positive integer n, let P, be the longest polygon of n edges
properly inscribed in A. Then

: 1 ’
lim n*(L — L(P,)) = — <J K23 ds) ,
n—aoo 24 A

where K is the curvature of A.

In this case for any polygon P inscribed in A we have L > L(P), however in
our case we do not know which of § and S(A) is greater for a division A of [a, b].
So we cannot use Theorem 1.1 directly to the case of the arecas of surfaces of
revolution, but some of arguments and a lemma in Gleason [2] are still useful in
our case.

Schwarz showed an example of polyhedra inscribed in a cylinder whose areas
did not converge to the area of the cylinder in [3], which is now called the lantern
of Schwarz. So we have to be careful in treating approximate sums of the areas
of surfaces.

Approximate sums of Riemann integrals are the most fundamental ap-
proximate sums. Chui [1] and the second named author [4] obtained some results
on the approximate sums of Riemann integrals. It is possible to apply their results
to the function f(x){f’(x)*+ 1}1/ * of our case, however with the approximate
sums consisting the derivatives of f(x). Since our approximate sums can be ob-
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tained directly from the surface of f without the derivatives, our approximation
is useful.
For an n-division A, of [a,b], we define d(A,) by

d(A,) = max{s; —s;-1|1 <i<n}.
For a sequence {A,},-, of n-divisions of [a,b], we define e({A,},-,) by

e({Ax},2,) = limsup nd(A,).
n— oo
This is useful for estimate of convergence rate of approximate sums.
From now on we assume that the function f is of class C*, because we use
the fourth derivative of f in the proofs of Theorems 1.2, 1.3, and 1.4. In order to
state the theorems we define a function ¢ by

05) = =3 /O G+ 1+ 3 7 0+ 1)

This function ¢ is the coefficient of the third term of the local error term, which
we show in Corollary 2.3.

THEOREM 1.2. For a sequence {A,},., of n-divisions of [a,b], we have

limsup 1|3 ~ S(A,)] < Je({AnhL)" maxgl.

n— o0

The left hand side of the inequality in the above theorem is a limit of the
expanded error terms mentioned in the abstract. In the case where ¢ is positive
we can get a sharper estimate of expanded error terms for some divisions defined
as follows: The set of all n-divisions of [a,b] is compact and

A~ S(A)

is continuous, so there exists an n-division A? at which |S — S(A)| attains its
minimum. This n-division A? is optimal for the approximate sum S(A). It may
not be unique, but the error term |S — S(A?)| is unique. Thus we can consider
S — S

THeOREM 1.3. If ¢ > 0 holds, then we have

b 3
limsup n?|S — S(A?)| < g(J o(x)'? dx) .
a

n—oo
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If the surface of revolution is convex, that is, if f” <0, then ¢ >0 and
S — S(A) = 0 for any division A of [a,b]. In this case we can represent the limit
of expanded error terms by the same integral in the above theorem.

THEOREM 1.4. If the surface of revolution is convex, that is, f" <0, then we

have
3

lim n’(S = S(AF) =% (jb p(x)"? dx) :

The authors are grateful to Kazuyuki Enomoto for directing their attention
to the paper [2] and explaining about it. This was the starting point of this
research. The authors also thank the referee, whose many useful comments
improved the manuscript.

2. Local Error Terms

For a subinterval [p,q] = [a,b] we define the local error term F(p,q) by

Flp.q) = rf(X){f’(x)z IRTLEON

p

IDETGD ((rig) - 1)) + - Y
The first term of the right hand side of the definition of F(p,q) multiplied by
27 is equal to the local area of the surface of revolution and the second term
multiplied by 27 is equal to the area of the corresponding frustum. We ex-
press F(p,q) by the linear combination of (¢— p)' (0<i<4) in Corollary
2.4. Using the expression we will prove our main theorems in Sections 3, 4,
and 5.

In order to make the calculation simpler we change variables and functions
by

u=q—p, gu)=rf(g) —rf(p)

The new function g satisfies
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I is the range of the variable u. Using & we can write F(p,q) as follows:

o) =[ 700040 dr =5 01 (p) + gla)he)

p

By the definition of /4, we note that if g is of class C”, then / is also of class C”.
We need the following lemma to calculate the higher derivatives of F.

LemMa 2.1. If g is of class C*, then we obtain the following equalities.

H0) = S1(0) 9" (0)% + 1(0) g/ (0)g” (0),
W ) = h(u) ™ 39" () + 49’ ()g"" (1) + g(u)g™ ()
— 30" (u)* — 4h'(u)h" (1)) (u>0),

H(0) = ~ 2 1(0) 9/ (0)g"(0)* + 37(0) 9" (0)g"(0) + 1(0) ¢/ (0)g¥ (0).

Proor. By the definition of /& we obtain the following equalities.

h(uw)h' (u) = g(u)g'(u) +u  (uel),
' (u) = h(u)" (g(u)g' () +u)  (u>0),

1'(0) = lim h'(u) = (¢'(0)* + 1)/,

u—0
Differentiating the first equality of the above we obtain

(2.1) I (u)® + h(u)h" (u) = g'(u)* + g(u)g" (u) + 1

and
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Using this we consider the limit

1"(0) = lim A" (u) = 34'(0) "¢’ (0)g" (0) — 24" (0)

and get
h'(0) = 1'(0)"'g'(0)g"(0) = (¢'(0)* +1)"2¢’(0)g"(0).
Differentiating (2.1) we obtain
(22) 30 (w)h" (u) + h(u)h" (u) = 3¢’ (u)g” (u) + g(u)g" (u)
and
" (u) = h(u) ™" (3¢ (u)g" (1) + g(u)g" (u) — 3K’ (W)h" () (4> 0).
Using this we consider the limit

" (0) = lim A" (x)

x—0
= 30/(0)'g"(0)" + 41'(0) ¢’ (0)g"'(0) — 3'(0)”"(0)* — 34" (0)

and get

2 1(0) 34" (0)% + '(0) ¢/ (0)g"(0).

hl//(o) — 4

Differentiating (2.2) we obtain

3h’(u)h’/(u) + h(u)h///(u) = 3g/(u)g//(u) + g(u)g///(u)

9 ) = h(u) ™ Bg" () + 49’ (1)g" (1) + g(u)g™ (u) — 3" (u)* — 4R’ (W)h" (u)).
Using this we consider the limit

H9(0) = lim A¥ (u)

u—0
= 101'(0)"'¢"(0)g™(0) + 51'(0)"'4'(0)¢"“)(0)

— 104"(0)"A" (0)R"(0) — 41 (0).

h9(0) = —=1'(0)¢'(0)g"(0)* + %h’(o)ﬁg”(o)g”’(o) +1(0)7'g'(0)g¥(0). O
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LemMA 2.2. If f is of class C*, then we obtain the following equalities.

2
F(p,p) =0, L(ap’q) —o, ¢ F;];’q) =0,
4 lg=p q q=p
53F(p,q) 1 li -1 _n 1 I -3 n 2
sl GONACRS YO UNAUE
4
%ﬁ,q) = (') +1)"2g" () +3(g' ) + 1) g’ (w)g" (u)?

+3(g' () + 1) g (w)g" ()* + 3(g' () + 1) 2" ()9 (u)
+(f(p) + g@){=3(g")> + 1)"°¢'()g" (u)’
+3(g' () + 1) 79" (w)g" () + (g'(w)” + 1) g () g™ (u)}

_ %{g(‘*)(u)h(u) + 49" (u)h' (1) + 6" (u)h" (u) + 4g’ ()" (u)

+ (2 (p) + g(u))h® (w)}.
Proor. The definition of F implies F(p, p) =0. We calculate the higher

derivatives of F.
First we get

Lg’; D ((p) + 9(@)g' @) + )" ~ 34/ (0h(w) — 5 (2 (p) + g ) )
and
Fall - — pp)( 07 + 1)~ o)W (0) =0
g  lg=p

Secondly we get

0°F(p,q)

o g' () (g @)+ 1)+ (f(p) + g(w)(g'(w)* + 1) 2g" (u)g" (u)

- %{g”(u)h(u) +29'(h'(u) + (21 (p) + g(w))h"(u)}

and
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) =¢'(0)(¢'(0)* + )"+ f(p)(g(0)* + 1)"/2¢"(0)g"(0)
q=p

—9'(0)h'(0) = f(p)h"(0)
=0.
Using the equality
{(g' >+ 1)} = (g' @)+ 1) g" (W) + (¢’ () + 1) (u)g" (u)

and the Leibniz rule we obtain

PHBD g 1) 4200 + 1) 60 )
FU) 95 @+ 1) @3 + (5w + 1) g (g )
10000 + 39" ) ) + 39 R0 + F (9) + 9" ()}
and
TR L) g0+ b0 g0

q=p

Using the equality
{(¢')* + 1)} = =3(g'(w)* + 1) (w)g" ()’ +3(¢'(w)* + 1) 7" (w)g" ()
+(g'()* + 1) (g™ (w)
and the Leibniz rule we obtain

2*F(p,q)
oq*

= (g'(w)* + 1) 29" (u) + 3(g' (w)* + 1) g (u)g" (u)?
+3(g' () + 1) g (w)g" ()* + 3(g" () + 1) 2" ()" (u)
+(f(p) + 9@ {=3(g'w)* + 1) g" (u)g" (u)’
+3(g"(u)* + 1) 79" (w)g" () + (¢'(u)” + 1) 2g () g™ (u) }

- %{g(‘”(u)h(u) +dg" (u)h' (u) + 69" ()" () + 49" (u)h" (u)

+(2f (p) + g()h® (w)}. O

Lemmas 2.1 and 2.2 imply the following corollary.
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COROLLARY 2.3.

PR _ 1

GBS ) ) g 0 1))

q=p

The right hand side of the above equality is nothing but the definition of ¢ in
Section 1. This is the reason why we consider the function ¢.

Using Taylor’s theorem, Lemma 2.2, and Corollary 2.3 we obtain an ex-
pression of F as follows:

COROLLARY 2.4. For a subinterval [p,q] < [a,b] there exists p <r < q with
property that

1 1 o*F(p,
F(p,q) ?’,(/’(P)(CIP)3+4U6(6]€ 7 (¢—p)*.
! ! r

The explicit expression of the fourth derivative of F is given in Lemma 2.2.

3. Proof of Theorem 1.2
Before the proof of Theorem 1.2 we mention several fundamental properties
of e({A,},-,) defined in Section 1.
PROPOSITION 3.1.  For a sequence {A,},”, of n-divisions of |a,b], we have
b—a<e({A}, ) < .
Moreover for any o satisfying b —a < o < oo there exists a sequence {D,}" | of

n-divisions of [a,b] with property that e({D,},”,) = o

Proor. For any positive integer n we have (b —a)/n < d(A,), so we get
b—a<e{A}),) < 0.

We take o satisfying b —a < o < o0. If o < o0, then we define n-divisions D,
for n > a/(b—a) by
i—1
n—1

slza+%, s,-:a+%+ (b—s1) 2<i<n-1).

We can see e({D,},—,) =a. If o= o0, then we define n-divisions D, by

_a+b '_a—i—b_*_i—l
Ty ST T Ty

s b-—s1) 2<i<n-1).

We can see e({D,},_,) = . O
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Roughly speaking e({A,},-,) measures the difference between {A,} <, and
the sequence of regular n-divisions defined by

si:a+i(bfa) (1<i<n).

REMARK 3.2. There exists a sequence {A,},~, of n-divisions of [a,b] which
satisfies e({A,},~;) = o and lim d(A,) =0. We define n-divisions A, for n > 2
by J

b—a b—a i-1

Si:a+logn+n—1

b—s1) 2<i<n—-1).

st =a+ )
log n

We can see e({A,},~,) = co and lim d(A,) =0.
n— oo
Proor oF THEOREM 1.2. If e({A,}~,) = oo, then there is nothing to prove.
So we assume that e({A,},—;) < co. In this case lim d(A,) =0 holds. According
n— o0
to the expression of the fourth derivative of F described in Lemma 2.2 there
exists a positive constant M with property that

3*F(p,q)

o <M

(3.1)

q=r

for any a < p <r < ¢ <b. This inequality and Corollary 2.4 imply

n
> F(sio1,s)
i

n*|S — S(A,)| = 2mn®

"1 1 o'F
<2m* <’§¢(si_1)(si — i)’ |+ |5 T(Si—lari)(si - Si—l)4D
i=1 !

<2 max pln” - nd(A)’ + 15 M - nd(A)*

=3 maxlpl{nd(An)} + 15 M{nd(A)} - d(A)

where 5,1 < r; < s;. Considering the limits of the above inequality we obtain

limsup 7%|S — S(A,)| < %e({An}ff;l)3 max |¢|,

n—oo la,b]

which completes the proof of Theorem 1.2. O
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COROLLARY 3.3. If {A,},2, is a sequence of n-divisions of |a,b] with property
that e({A,},-,) < oo, then we have

lim S(A,) = S.

n— o0

4. Proof of Theorem 1.3

Theorem 1.2 holds for any sequence of n-divisions. On the other hand,
Theorem 1.3 holds for a sequence of optimal n-divisions and the estimate in it
is sharper than that in Theorem 1.2. In order to consider approximate sums of
optimal divisions we need the following lemma obtained by Gleason [2].

LemMA 4.1 (Gleason). Let ®(t) be a nonnegative continuous function defined
on [a,b). For any positive integer n there exists a division of [a,b]:
a=s5) <85 <+ -<Sp_1 <8, =b
such that all of

(s; —s;—1) max ®(r) (l<i<n)

[SH ~,Si]

are equal to each other. We denote by J, the equal value. Then we obtain

b
lim nJ, :J ®(1) dt.

PrOOF OF THEOREM 1.3. According to the mean value theorem there exists
p < rp < g which satisfies

h(u) = (¢ — p){f'(n)* + 1312,
This implies
[h(w)] < (b —a) max{(/")* + ' (0<u<qg-p).
Y20

Using Lemma 2.1 we can see that there exist positive constants M; (1 <i < 4)
which satisfy

WG] < M; max{(f)” + 1} (0<u<q-p).

From these estimates and the expression of the fourth derivative of F in Lemma
2.2 there exits a positive constant M which satisfies

0*F(p,q)
oq*

< M max{(f")"+ 1}
21

q=r
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for any p <r < g. We define by

D) =~ LA )4 1) 4 g F )+ 1)
By the definitions of ¢ and y we have
p(x) = {(/"(x))* + 1} (x).
The assumption that ¢ > 0 implies ¥ > 0. We set

m = min > 0.

[a, ]
We multiply m < y(x) by {(f'(x))>+1}"/? and obtain

m{(f'(x))* + 1} < p(x).

We apply Lemma 4.1 to the function ¢'/? and get an n-division AnG of [a, b] which
satisfies all of

(si—s8i1) max '3 (1<i<n)

are equal to each other. We denote by J, the equal value. Then we have

n—oo

b
lim nJ, = J o(n)' dr.
Corollary 2.4 implies

n?|S — S(A))|

1 *F 4
+ ’4!6q4<5i;ri)(si_si—l) D

" (1 o
< 27n? (5 ([max (ﬂ1/3(s,-—si1)) + [maX{(f/)2+1}1/2M(Si_Si1)4>

Yo lsicnsi
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where s; | < r; <s;. Considering the limits of the above inequality we obtain
3

b
limsup #%|S — S(AY)| < Z(J PORS dt) .

n—oo

Since |S — S(A7)] < |S — S(AY)|, we complete the proof of Theorem 1.3. [

5. Proof of Theorem 1.4

The assumption that f” < 0 implies that F(p,q) >0 for any subinterval
[p,q] < [a,b], because the orthogonal projection of the surface determined by
[p,q] to the corresponding frustum is area-decreasing. The condition f” <0
implies ¢ > 0, so we have already obtained the estimate of n*(S — S(A,)) from
above. In this section we estimate n*(S — S(A,)) from bellow.

In order to prove Theorem 1.4 it is sufficient to prove the following lemmas.

LeEMMA 5.1.  We assume f" < 0. For a sequence A, of n-divisions of |a, b], we

have
3

liminf 7(S — S(A,)) = g (Jb o(x)"3 dx> .

n—oo

Proor. First we prove that there exists a positive constant J independent of
p, q which satisfies

(5.) Flpa) -~ gol©a )| < g )

for any interval [p,q] < [a,b] and any &€ [p,q|. Corollary 2.4, (3.1), and the
mean value theorem imply

1 1 10*F(p,q
F(p.q) ~ 20@)a— )'| = Ha— p)|(0(p) — p(&) + 5 TELD| (g p)
6 6 4  dq g
<J(g-p)*
Next we prove the following lemma, which implies Lemma 5.1. O

LEmMMA 5.2.  For any & > 0 there exists a positive integer N such that for any
n> N and any n-division A of [a,b] the following inequality holds.
3

n2(S — S(A)) = g (Jb o(x)"3 dx) e

a
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Proor. We have

L) —éw(é)

<J(g-—
- p) =/

by (5.1). Since the function x +— x!/3 is uniformly continuous on [0, o), for any

J > 0 there exists 6; > 0 such that |x — y| <6, implies |x!/? — p!/3| < 3. We take
n > 0 with property that ¢ — p < implies J(g — p) < J;. If we take p < g which
satisfy ¢ — p <#, then we have

1/3 1/3
PO () | <o
that is,
| 1 1/3
(52) Fip.a) = (g0®) (a- )| <ota-p)

We take a positive integer r with property that (b—a)/r <u. For any n-
division A of [a,b] we can add at most r points to A such that the width
of each subinterval is less than or equal to . We denote the new division
by

!
N:ssy=a<s<---<s;,=0b,

where ¢ < n + r. According to the first mean value theorem for integration we can
take s/ in [s;,_1,s;] satisfying

J ¢(x)l/3 dx = (p(si/)l/S(Si = 5i-1)-
Si—1
By the estimate (5.2) we get
1
m(p(slf)w(s[ —si1) < Fsiot, 50" +0(si — si21).

We add the above inequalities for i=1,...,7 and get

1 |
WJ q)(x)m dx = ZWW(S;)IB(S:' —8i-1)
4 i=1

< iF(s,_l,si)1/3 +o(b—a). (%)
i=1
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We apply the Holder inequality to the first term of (%) and get

i=1

i=1

t ' 1/3
(2n)1/3 ZF(S,;1,S,-)1/3 < 23 <Z 27zF(s,-1,s,-)>

_ 12/3(54 _ S(A/))1/3

From these we have

1/3 b
<’;> J o(x)" dx < 23S — S(A)'? +602r) P (b - a).

a

The inequality S — S(A") < S — S(A), the estimate obtained above and t <n+r
imply

1/3 b
@ J ()" dx < (n+ 1?3 (S = S(A) P +6021) (b - a).

Using the result obtained above, we prove Lemma 5.1. Since the function

X — x> is continuous, for any & > 0 there exists p > 0 such that if

A3
pz(g) [ o0 ax—x.

a

then we have
3

b
E.T 13 — 3
3 > 3 (L o(x) dx) x.

So we take 6 > 0 which satisfies 5(27r)1/ 3(b—a) < p. We can apply the result
obtained above and get a positive integer r with property that for any n-division
A of [a,b]

1/3 (b
p=00m)" (a2 (3) [ ot e (s - s~

which implies
3
v

g >3 (Jj p(x)"? dX> —(n+1)*(S = S(A)).

We can substitute the optimal division A” for A in the above inequality and get

(n+r)2(S — S(A%) > g (Jb o(x)'? dx>3 _g.
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Since

lim sup(2nr + r*)(S — S(A%)) =0,

n—oo

we can choose a positive integer N with property that for n > N

0 < (2nr 4+ 1) (S — S(A*)) <

N ™

holds. Thus for n > N we have

&

n*(S = S(A%)) = (n+1)*(S = S(A%) =5

Y

(ona) -

Therefore for any n-division A of [a,b] we have

\Y

n*(S — S(A)) = n*(S — S(A%)) = g (J: o(x)'? dx)3 — &,

which completes the proof of Lemma 5.1. O

ProOF OF THEOREM 1.4. Since the condition f” <0 implies ¢ >0, by
Theorem 1.3 and Lemma 5.1 we have

b 3
g <J o(x)13 dx> < liminf #*(S - S(A})) < limsup n*(S — S(A}))

A

n—oo

5[ woa),

which completes the proof of Theorem 1.4. O

IA
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