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Abstract. Extreme value analysis in the presence of censoring is receiving much
attention as it has applications in many disciplines such as survival and reliability
studies. The estimation of extreme value index (EVI) is of primary importance as it
is a critical parameter needed in estimating extreme events such as quantiles and
exceedance probabilities. In this paper, we review several estimators of the EVI
when data is subject to random censoring.In addition, we propose a reduced-bias
estimator based on the exponential regression approximation of log spacings. All
the estimators’ performances are compared in a simulation study. The results
show that no estimator is universally the best across all scenarios. However, the
proposed reduced-bias estimator is found to perform well across most scenarios.
Also, we present a bootstrap procedure for obtaining samples for extreme value
analysis under censoring. The estimators are illustrated using a practical dataset
from medical research.
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Résumé (French) L’analyse de valeurs extrêmes en présence de censure fait l’objet
de beaucoup d’attention car elle a des applications dans de nombreuses disci-
plines telles que les études de survie et de fiabilité. L’estimation de l’indice de valeur
extrême (IVE) revêt une importance primordiale, car il s’agit d’un paramètre essen-
tiel et nécessaire à l’estimation des événements extrêmes tels que les quantiles et
les probabilités de dépassement. Dans cet article, nous passons en revue plusieurs
estimateurs de l’IVE lorsque les données sont soumises à une censure aléatoire. En
outre, nous proposons un estimateur à biais réduit basé sur l’approximation par
régression exponentielle des log-espacements. Toutes les performances des esti-
mateurs sont comparées dans une étude de simulation. Les résultats montrent
qu’aucun estimateur n’est universellement le meilleur dans tous les scénarios.
Cependant, l’estimateur proposé à biais réduit s’avère efficace dans la plupart des
scénarios. De plus, nous présentons une procédure bootstrap pour obtenir des
échantillons pour une analyse de valeur extrême sous censure. Les estimateurs
sont illustrés à l’aide d’un ensemble de données pratiques issues de la recherche
médicale.

1. Introduction

Statistics of extremes under random censoring is a relatively new area in extreme
value analysis that has received considerable attention in the literature during the
last few years. Examples of applications include estimating survival time (Einmahl
et al., , 2008; Ndao et al., , 2014) and large insurance claims (Beirlant et al., ,
2017), among others.

In order to obtain estimates of parameters of extreme events, the extreme value
index (EVI) is the primary parameter needed. The estimation of the EVI in the case
of complete samples has been studied extensively (see e.g. Csörgó and Viharos, ,
1998; Beirlant et al., , 2004; Dekkers et al., , 1989; Diop and Lo , 2009; Ngom
and Lo, , 2016; Lo et al., , 2018).

However, the same cannot be said of the estimation of the EVI when data is subject
to random censoring. In this paper, we review existing estimators and propose
two estimators that are aimed at reducing the bias and variance. In addition, we
provide a simulation comparison of the various estimators of the Extreme Value
Index (EVI).

The first work on the subject can be attributed to Beirlant and Guillou, (2001).
The authors proposed an adaptation of the Hill estimator under random right
censoring. The motivation for this adapted Hill estimator to censoring was the
same as that of the Hill estimator obtained from the slope of the Pareto quantile
plot.

However, since the censored observations have the same values (i.e the maximum),
the Pareto quantile plot will be horizontal in those observations. As a result, the
adaptation of the Hill estimator to censoring was based on the slope of the Pareto
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quantile plot for the noncensored observations only.

In addition, by using the second order properties of the representation of log-
spacings in the exponential regression model, a bias-corrected version of the
adapted Hill estimator was obtained. The finite sample properties of the estimator
were studied through a simulation study and the estimator was found to give
credible estimates for a percentage of censoring of 5% at most. Consistency and
asymptotic normality of the estimator were obtained under some restrictive con-
ditions on the number of non-censored observations and the sample tail fraction.
Delafosse and Guillou (2002) proved the almost sure convergence of the adapted
Hill estimator in Beirlant and Guillou (2001) under very general conditions on the
number of non-censored observations.

Delafosse and Guillou (2002) proved the almost sure convergence of the adapted
Hill estimator in Beirlant and Guillou (2001) under very general conditions on the
number of non-censored observations.

Also, in Reiss and Thomas, (2007, Section 6.1), the authors introduced an
estimator of the EVI when data is randomly-or fixed censored. In the case of
random right censoring, the Pareto or generalised Pareto distribution was fitted
to the excesses over a given threshold. The likelihood function of the chosen
distribution was adapted to censoring and maximised to obtain an estimator of
the EVI. However, the authors made no attempt to study the asymptotic properties
of the their proposed estimators of the EVI.

In addition, Beirlant et al., (2007) proposed an entirely different approach by
adapting the estimator of the EVI from the Peaks-Over Threshold (POT) method
(Smith, , 1987) and the moment estimator (Dekkers et al., , 1989) to random right
censoring. The former estimator involved adapting the likelihood function to the
context of censoring whereas the latter estimator was obtained by dividing the
classical EVI estimator by the proportion of non-censored observations in the top
order statistics selected from the sample.

Due to the difficulties in establishing the asymptotic properties of the maximum
likelihood estimator of the POT method, Beirlant et al., (2010) proposed a one-step
approximation based on the Newton-Raphson algorithm. The reported simulation
study showed the closeness of the approximation of the one-step estimators to the
maximum likelihood estimators. The added advantage was that the asymptotic
normality of the one-step estimators has been established, unlike that for the
maximum likelihood estimators.

Based on the ideas of Beirlant et al., (2007), Einmahl et al., (2008) provided
a second methodological paper which considered estimators based on the top
order statistics. In addition, the authors proposed a unified method to prove the
asymptotic normality of the EVI estimators.
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A small scale simulation showed the superiority of the adapted Hill estimator for
the Pareto domain of attraction and a slight advantage of the adapted generalised
Hill for the Weibull and the Gumbel domains of attraction. Einmahl et al., (2008)
used restrictive conditions to prove the asymptotic normality of the EVI estimators.
However, these conditions were relaxed by Brahimi et al., (2013) to prove the
asymptotic normality of the adapted Hill estimator of the EVI under random right
censoring.

The estimation of the EVI has also received attention from Gomes et al., (2010) and
Gomes and Neves, (2011). These papers form an overview of the EVI estimators in
the context of random censoring. To the best of our knowledge, Gomes and Neves,
(2011) made the first attempt at introducing a reduced-bias estimator of the

EVI, in the form of the minimum-variance reduced-bias (MVRB) estimator (Caeiro
et al., , 2005). The reported simulation study showed an overall best performance
for the adapted MVRB estimator for samples generated from distributions from
the Pareto domain of attraction. As in Einmahl et al., (2008), the generalised
Hill performed better than the other adapted EVI estimators for samples whose
underlying distribution functions are in the Weibull and Gumbel domains of
attraction.

The Hill estimator for estimating the EVI under random censoring performs well,
although in the classical case it is known to be biased, not location invariant
and unstable. Efforts have been made to provide reduced-bias and minimum
variance Hill-type estimators to improve on the Hill estimator for the heavy-tailed
distributions (i.e. distributions in the Pareto domain of attraction).

In this regard, Worms and Worms, (2014) provided another methodological paper
for the estimation of the EVI in the case of censoring. They provided two sets of
Hill-type estimators based on the Kaplan-Meier estimation of the survival function
(see Kaplan and Meier, , 1958) and the synthetic data approach of Leurgans,
(1987).

In addition, the authors presented a small scale simulation that compared the
performance of the two proposed estimators to the adapted Hill and MVRB
estimators. The results showed that the two proposed estimators are superior to
the Hill estimator, in particular, the estimator based on the ideas of Leurgans,
(1987).

On the other hand, MVRB performed better than the authors’ proposed estimators.
However, the EVI estimator based on the synthetic data approach of Leurgans,
(1987) compared favourably in the strong censoring framework with the MVRB
estimator. The consistency of these estimators was proved under mild censoring.
However, the asymptotic normality of these two estimators remains an open
problem.
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Furthermore, the estimation of the EVI for the Pareto domain of attraction has
also been obtained from the Bayesian perspective by Ameraoui et al., (2016). They
constructed a maximum aposteriori and mean posterior estimators for various
prior distributions of the EVI, namely Jeffrey’s, Maximal Data Information (MDI)
and a conjugate Gamma. The asymptotic properties, namely consistency and
normality of the estimators, were established. A small simulation study was used
to examine the finite sample properties and the performance of the estimators.
The reported simulation result showed the superiority of the maximum aposteriori
estimator under maximal data information prior.

We aim to achieve two objectives in this paper. Firstly, we propose some estimators
of the EVI including a reduced-bias estimator based on the exponential regression
model of Beirlant et al., (1999).

Secondly, the above researchers compared their proposed estimators under
different simulation conditions. In addition, some of the estimators’ asymptotic
distributions remain an open problem, and hence, theoretical comparison is not
possible. Therefore, the second objective of this paper is to compare several of the
existing estimators with the proposed ones in a simulation study under identical
conditions.

The rest of the paper is organised as follows. In Section 2, we present the frame-
work of extreme value analysis when data is censored. In Section 3, a simulation
comparison of the various estimators is presented. In Section 4, we present a prac-
tical application of the estimators to estimate the extreme value index for a medical
data set on the survival of AIDS patients. Lastly, concluding remarks are presented
in Section 5.

2. Framework

Let X1, X2, ..., Xn be a sequence of independent and identically distributed (i.i.d)
random variables with distribution function F, and X1,n ≤ X2,n ≤ ... ≤ Xn,n the
associated order statistics. Therefore, the sample maximum is denoted by Xn,n.
Extreme value theory attempts to solve the problem of the possible limit distribu-
tions of Xn,n. It is well-known that the distribution of the sample maximum can be
obtained from the underlying distribution of X as

FXn,n(x) = Fn(x). (1)

However, F is usually unknown and, hence, EVT focuses on the search for an
approximate family of models for Fn as n→∞.

Limiting results for Fn in EVT have been addressed in the papers by Fisher and
Tippett, (1928) and Gnedenko, (1943). Specifically, the results can be stated as
follows: if there exist sequences of constants bn and an > 0 (n = 1, 2, ...), such that
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lim
x→∞

P

(
Xn,n − bn

an
≤ x

)
→ Ψ(x), (2)

where Ψ is a nondegenerate distribution function, then Ψ belongs to the family of
distributions,

Ψγ(x) =

{
exp

(
−
(
1 + γ x−µσ

)−1/γ
)
, 1 + γ x−µσ > 0, γ 6= 0,

exp
(
− exp

(
x−µ
σ

))
, x ∈ R, γ = 0,

(3)

where µ ∈ R and σ > 0. The quantity γ ∈ R, is the Extreme Value Index (EVI) or
the tail index : it determines the tail heaviness of the extreme value distributions.
The EVI is classified into three groups, each representing one of the three families
of distributions, Gumbel (exponential tails), Pareto (heavy-tailed) and Weibull
(light-tailed). The group of families have γ = 0, γ > 0 and γ < 0 corresponding to
the Gumbel, Pareto and Weibull families respectively. A distribution function F
satisfying (3) is said to be in the maximum domain of attraction of Ψγ written as
F ∈ D (Ψγ) .

In addition to (3), Balkema and de Haan, (1974) and Pickands III, (1975) showed
the generalised Pareto distribution (GPD) as the limit distribution of scaled ex-
cesses over a sufficiently large threshold. The GPD can be written as

Λγ(x) = 1 + ln Ψγ(x) =

{
1−

(
1 + γ x−µσ

)−1/γ
, 1 + γ x−µσ > 0, γ 6= 0,

1− exp
(
x−µ
σ

)
, x ∈ R, γ = 0,

(4)

where Ψγ is given in (3).

In this paper, our interest is in the Pareto domain of attraction i.e. the case γ > 0.
This family consists of distribution functions F whose tails are regularly varying
with a negative index of variation. That is

1− F (x) = x−1/γ`F (x), x→∞, (5)

where `F is the slowly varying function associated with F. A slowly varying function,
`, is of the form `(xt)/`(x)→ 1 for x→∞. Relation (5) can be stated equivalently in
terms of the associated upper tail quantile function U as

U(x) = F−1(1− 1

x
) = xγ`U (x), x→∞, (6)

where `U is the slowly varying function associated with U .

2.1. EVT Conditions

The conditions underlying domain of attraction are presented in this section.
These conditions are needed in defining estimators of tail parameters and to study
their asymptotic properties.
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de Haan, (1984) gave the following well-known necessary and sufficient condition
for F ∈ D(Ψγ), known as the first-order condition or extended regular variation:

lim
u→∞

U(ux)− U(u)

a(u)
= hγ(x) :=

{
xγ−1
γ if γ 6= 0

log x if γ = 0,
(7)

where a is a positive measurable function, x > 0.

In addition, to study the asymptotic properties of the estimators of tail parameters,
the first-order condition is generally not sufficient; a second-order condition
specifying the rate of convergence of (7) is also required.

In the literature, the second-order condition can be stated in terms of U (see e.g.
de Haan and Ferreira, , 2006; Gomes et al., , 2008), or, equivalently, also in terms
of the rate of convergence of the slowly varying function, `, in (6). Beirlant et al.,
(1999, page 602) state it as follows:

there exists a real constant ρ < 0 and a rate function b satisfying b(x)→ 0 as x→∞,
such that for all λ ≥ 1,

lim
x→∞

log `(λx)− log `(x)

b(x)
= κρ(λ), (8)

where κρ(λ) =
∫ λ

1
uρ−1du.

2.2. General Estimation under Censored Data

Let the random variable of interest be X with distribution function, F. Since sam-
ples onX may not be fully observed, we introduce another positive random variable
C, which is independent of X, with distribution function G. In this setting, we then
observe (Zi, δi) , i = 1, . . . , n with

Zi = min (Xi, Ci) (9)

and

δi =

{
1 if Xi ≤ Ci;
0 if Xi > Ci.

(10)

Here, δi is a variable indicating whether Zi is censored or not. Let H be the
distribution function of Z defined in (9). Thus, by the independent assumption of
the random variables Y and C, we have 1−H = (1− F )(1−G).

In addition, let ϑF = sup {F (x) < 1} be the corresponding right endpoint of the
underlying distribution function, F. Similarly, let ϑG and ϑH be the right endpoints
of the underlying distribution functions of C and Z respectively. If we assume
F ∈ D(Ψγ1) and G ∈ D(Ψγ2) for some real numbers, γ1 and γ2, then H ∈ D(Ψγ)
where γ ∈ R. Einmahl et al., (2008) considered these three combinations of γ1 and
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γ2 :

Case 1.

(1) F and G are Pareto types: γ1 > 0, γ2 > 0 → γ = γ1γ2
γ1+γ2

(2) F and G are Gumbel types: γ1 = 0, γ2 = 0, ϑF = ϑG → γ = 0

(3)F and G are Weibull types: γ1 < 0, γ2 < 0, ϑF = ϑG =∞ → γ = γ1γ2
γ1+γ2

.

The other two possibilities, {γ1 > 0, γ2 < 0} and {γ1 < 0, γ2 > 0}, correspond
closely to the completely noncensored case which has been studied widely whereas
the latter corresponds closely to the completely censored case where estimation is
impossible.

2.3. Extreme Value Index Estimation Methods

The estimation of the extreme value index (EVI) when observations are censored
needs some modification from that of the complete sample. This is because the
observed sample is (Zi, δi), i = 1, . . . , n, and hence, the application of the classical
EVI estimation methods will yield estimators that converge to γ, the EVI of the
underlying distribution of the random variable Z. However, our interest is in γ1,
the EVI of the underlying distribution of the random variable X. Therefore, some
modification is needed to adapt the estimation of γ from the Z sample to estimate γ1.

The existing methodologies for estimating the EVI under right censoring can be
grouped into four categories:

Case 2.

(1) adapting a classical EVI by dividing it by the proportion of noncensored ob-
servations (Beirlant et al., , 2007; Einmahl et al., , 2008; Gomes and Neves, , 2011);

(2) adapting the likelihood function of an extreme value distribution (Beirlant
et al., , 2010);

(3) Censored regression (Worms and Worms, , 2014).

(4) Bayesian estimation (Ameraoui et al., , 2016; Beirlant et al., , 2017)

In this paper, we consider the frequentist methods only i.e. the first three cases.
These methods and the resulting estimators are grouped into three categories
and presented in the three sub-sections that follow. Following that, we propose a
reduce-bias estimator based on exponential regression model and adapted to the
censored case.
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2.3.1. First Method

The first method was introduced in Beirlant et al., (2007) and further developed by
Einmahl et al., (2008). In this method a classical estimator of the EVI is obtained
from the Z sample and then adapted to censoring. Among these estimators are:
the maximum likelihood estimator from the Peaks-Over Threshold (POT) method
and the moment estimator (Beirlant et al., , 2007); Hill, Moment, Generalised Hill
and the maximum likelihood estimator from the POT method (Einmahl et al., ,
2008); and Hill, moment, mixed moment and generalised Hill (Gomes and Neves, ,
2011).

In addition, Einmahl et al., (2008) provides a uniform way to establish the
asymptotic normality of the proposed estimators of the EVI (i.e. Hill, Moment,
Generalised Hill and the maximum likelihood estimators). These estimators are
reviewed below in terms of the random variable Z, and thus estimates γ the EVI of Z.

The Hill Estimator: The Hill estimator (Hill, , 1975) is arguably the most common
estimator of γ in the Pareto case i.e. γ > 0. The Hill estimator is defined for the
(k + 1)-largest order statistics as

γ̂
(Hill)
Z,k,n =

1

k

k∑
j=1

logZn−j+1,n − logZn−k,n. (11)

The properties of the Hill estimator have been studied widely and its attractive
properties include consistency (Mason, , 1982) and asymptotic normality (Hall, ,
1982; de Haan and Peng, , 1998).

The Generalised Hill Estimator: Beirlant et al., (1996) proposed the generalised
Hill (UH) estimator in a bid to extend the Hill estimator to the case where γ ∈ R. The
UH estimator is obtained as the slope of the ultimately linear part of the generalised
Pareto quantile plot,(

− log

(
j + 1

n+ 1

)
, log (Zn−j,nHZ,j,n)

)
, j = 1, 2, ..., n− 1. (12)

It is given by

γ̂
(UH)
Z,k,n =

1

k

k∑
j=1

logUHZ,j,n − logUHZ,k+1,n, (13)

where UHZ,j,n = Zn−j,n

(
1
j

∑j
i=1 logZn−i+1,n − logZn−j,n

)
.

The Minimum-Variance Reduced Bias Estimator: Caeiro et al., (2005) proposed
the Minimum-Variance Reduced Bias (MVRB) estimator for heavy-tailed distribu-
tions belonging to the Hall class (Hall, , 1982) of models. The estimator is a direct
modification of the Hill estimator using the second order parameters to reduce bias.
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It has the added advantage of having the same asymptotic variance as the Hill es-
timator. The MVRB estimator is obtained by using the second-order condition (8)
with b(u) = γβuρ. It is given by

γ̂
(MVRB)
Z,k,n = γ̂

(Hill)
Z,k,n

(
1− β̂

1− ρ̂

(
k

n

)−ρ̂)
, (14)

where, γ̂(Hill)
Z,k,n is the Hill estimator in (11) and the pair (β̂, ρ̂) is the estimator for the

pair of parameters (β, ρ) of the second-order auxiliary function b.

The Moment Estimator: Dekkers et al., (1989) introduced another estimator
known as the moment estimator as an adaptation of the Hill estimator valid for
all domains of attraction. The moment estimator is defined for k ∈ {2, ..., n− 1} and
it is given by

γ̂
(MOM)
Z,k,n = M

(1)
Z,k,n + 1− 1

2

(
1−

(M
(1)
Z,k,n)2

M
(2)
Z,k,n

)−1

, (15)

where

M
(j)
Z,k,n =

1

k

k∑
i=1

(logZn−i+1,n − logZn−k,n)j , j = 1, 2.

Adapting EVI Estimators

Beirlant et al., (2007) and Einmahl et al., (2008) proposed that the EVIs for the
complete sample, γ(.)

Z,k,n, (i.e. (11) - (15)) can be adapted to censoring by dividing
each estimator by the proportion of noncensored observations, ℘̂, in the k largest
Z observations. Thus, the estimator of γ1 is given by

γ̂1 = γ̂
(c,.)
Z,k,n =

γ̂Z,k,n
℘̂

. (16)

Here, ℘̂ is given by

℘̂ =
1

k

k∑
i=1

δn−i+1,n, (17)

where δi,n, i = 1, ..., n are the δ-values corresponding to Zi,n, i = 1, ..., n respec-
tively. In the literature, (16) has primarily been used to adapt the EVI estimators
to censoring.

2.3.2. Second Method

The second method introduced by Beirlant et al., (2010) involves using the
POT method and adapting the log-likelihood function for censoring. We know
from (4) that given a high threshold, u, the limit distribution of excesses
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Vj = Zi − u, j = 1, . . . , k given Zi > u, i = 1, . . . , n can be approximated by the
generalised Pareto (GP) distribution. In Beirlant et al., (2007) and Einmahl et al.,
(2008), the maximum likelihood estimator, γ̂(c,POT )Z,k,n , is obtained from the GP

approximation of the distribution of the Vj ’s and is adapted to censoring using (16).

An alternative approach in Beirlant et al., (2010) involves adapting the likelihood
function of the random variable Vj , j = 1, . . . , k,

L(γ1, σ1,k) = Πk
j=1[λ(Vj)]

δj [1− Λ(Vj)]
1−δj (18)

where Λ is the GP distribution and λ the corresponding density function of the
GP distribution. However, there are difficulties with obtaining explicit expressions
for the maximum likelihood estimators of γ1 and σ1,k. In addition, their asymptotic
properties remain an open problem. As a result, Beirlant et al., (2010) proposed
solving the maximum likelihood equations using one-step approximations based
on the Newton-Raphson algorithm. The resulting estimator of the parameters is
given by  γ̂

(c,POT.L)
Z,k,n

σ̂
(c,POT.L)
Z,k

σ1,k

 =

 γ̂
(c,I)
Z,k,n

σ̂
(c,I)
Z,k

σ1,k

−
 L

′′

11 σ1,kL
′′

12

σ1,kL
′′

12 σ2
1,kL

′

22

 L
′

1

σ1,kL
′

2

 (19)

where L′

i and L′′

ij , i = 1, 2, j = 1, 2 are the first and second derivatives of logL(γ1, σ1,k),

evaluated at
(
γ̂

(c,I)
Z,k,n, σ̂

(c,I)
Z,k

)
. The estimators, γ̂(c,I)

Z,k,n and σ̂
(c,I)
Z,k , are the initial esti-

mators and must be asymptotically normal. The authors state that the moment
estimator provides a good example of the initial estimators. The performance of
the estimators, γ̂(c,POT.L)

Z,k,n and σ̂
(c,POT.L)
Z,k , were found to be close to the maximum

likelihood estimators obtained from (18). In addition, the asymptotic normality of
the one-step Newton-Raphson estimators obtained in (19) has been established in
that paper.

2.3.3. Third Method

The third method introduced by Worms and Worms, (2014) is based on censored
regression method of Koul et al., (1981). The estimators are valid for estimating
the EVI for distributions in the Pareto domain of attraction. From the well known
result of deriving the Hill estimator from the mean excess function, they define an
adaptation of the classical Hill estimator valid for case 1 as,

γ̂
(c,WW.KM)
Z,k,n :=

1

n(1− F̂ (Zn−k,n))

k∑
j=1

δn−j+1,n

1− Ĝ(Z−n−j+1,n)
log

(
Zn−j+1,n

Zn−k,n

)
, (20)

where F̂ and Ĝ are the Kaplan-Meier estimators for F and G respectively. Here, the
Kaplan-Meier estimators of the survival functions are defined for b < Zn,n as
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1− F̂ (b) = ΠZj,n≤b

(
n− j

n− j + 1

)δj,n
(21)

and

1− Ĝ(b) = ΠZj,n≤b

(
n− j

n− j + 1

)1−δj,n
. (22)

In practice, the estimator 1− Ĝ(Z−n−j+1,n) can be equal to zero, making (20) unde-
fined. Therefore, Worms and Worms, (2014) defined Ĝ(Z−n−j+1,n) as a function of
the form g(z−) = lim

ν→z
g(ν).

As an alternative to the Kaplan-Meier estimators of F and G, Worms and Worms,
(2014) provides a variant of (20) based on the ideas of “synthetic data” introduced
by Leurgans, (1987). The estimator turns out to be a weighted version of the Hill
estimator, (20), and is given by

γ̂
(c,WW.L)
Z,k,n :=

1

n(1− F̂ (Zn−k,n))

k∑
j=1

1

1− Ĝ(Z−n−j+1,n)
j log

(
Zn−j+1,n

Zn−k,n

)
. (23)

The consistency of the estimators (20) and (23) were proven under some restric-
tive conditions. However, the asymptotic normality of the estimators (20) and (23)
remains an open-problem.

2.3.4. The Proposed Estimator

We propose adapting the exponential regression method of Beirlant et al., (1999)
to censoring. This method yields a maximum likelihood (ML) estimator for γ > 0,
and hence, for γ1 > 0.

Beirlant et al., (1999) provide an approximate representation for the log-spacings
of successive order statistics:

Rj = j(logZn−j+1,n − logZn−j,n) ∼

(
γ + bn,k

(
j

k + 1

)−ρ)
Ej , j = 1, . . . , k, (24)

where Ej , j = 1, ..., k are standard exponential random variables, bn,k =
b ((n+ 1)/(k + 1)) ∈ R (also bn,k → 0, as k, n → ∞) and ρ are second-order
parameters from (8). From the approximate distribution of log-spacings (24), a
likelihood function can be formed. Maximisation of the likelihood function leads to
the maximum likelihood estimators γ̂(ERM)

Z,k,n , b̂n,k and ρ̂ of γ, bn,k and ρ respectively.
We note that (24) simplifies to Rj ∼ γEj , j = 1, ..., k if bn,k = 0. In addition, the
resulting maximum likelihood estimator is the usual Hill estimator.
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The maximum likelihood estimator, γ̂(ERM)
Z,k,n , of γ is adapted to censoring to ob-

tain an estimator of γ1 using (16). Moreover, the estimation of γ leads to concur-
rent estimates of the second order parameters, b̂n,k and ρ̂. These estimators can be
adapted to censoring and used to obtain reduced-bias estimators for quantiles and
exceedance probabilities.

3. Simulation Study

To investigate and compare the performance of different EVI estimators, we shall
make use of simulation. The simulation study is grouped into two categories: point
and confidence interval estimation. The former involves assessing the performance
of the estimators in terms of Median Absolute Deviation (MAD) and median bias.
The latter case consists of diagnostic checks on 95% confidence intervals based
on the coverage probabilities and interval lengths.

We consider the following combination of factors in the simulation: distributions,
sample sizes, threshold levels, proportions of censoring. Several samples sizes,
n = 500, 1000, 2000 and 5000, and number of top order statistics, taken as 10%,
20% and 30% of the sample size. However, the result did not differ so much and
hence, for brevity and ease of presentation, we consider samples of size, n = 1000
and the number of top order statistics taken as 10% of the sample size.

Data were generated from the three distributions presented in Table 1.

Table 1. Distributions

Distribution 1 − F (z) γ

Burr (η, τ, λ) (η/(η + zτ ))λ , z > 0; η, λ, τ > 0 1
τλ

Pareto (α) z−α, z > 1;α > 0 1
α

Fréchet (α) 1 − exp
(
−z−α

)
, z > 1;α > 0 1

α

With regard to the proportion of censoring in the right tail, we consider three val-
ues: 0.10 (small), 0.35 (medium) and 0.65 (large). This allows us to study the per-
formance of the estimators as censoring increases or decreases.

3.1. Simulation Design

In this section, we examine the procedure for measuring the performance of point
and interval estimators of the EVI. In the case of point estimators, the median
of R (R = 1000) repetitions was used as the point estimate of γ1, and MAD and
median bias are obtained as the performance measures.
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On the other hand, the comparison of the confidence intervals are based on two
properties: interval length and coverage probability. Before, we introduce the simu-
lation algorithm to compute the diagnostics of the confidence interval, we present
a procedure known as the conditional block bootstrap for obtaining samples for
extreme value analysis in the case of censoring.

3.1.1. Conditional Block Bootstrap for Censored Data

In order to obtain the performance measures, coverage probability and average
interval length, the bootstrap samples are required. However, as stated in Section
2.2, two scenarios in EVT in the case of censoring are to be avoided in this study.
Firstly, if none of the observations are censored (i.e. as can happen in cases where
γ1 > 0 and γ2 < 0), then the classical EVT estimation techniques apply. This has
been widely studied in the literature and is not of interest in this paper. Secondly,
for a completely censored case (which can occur when γ1 < 0 and γ2 > 0) the
estimation of the EVI and the other extreme events are impossible.

Therefore, any bootstrap procedure implemented for the estimation of parameters
of extreme events for censored data must be constrained to exclude the above
scenarios, particularly where the estimation is impossible. However, the bootstrap
sampling Efron and Tibshirani, (1993) and bootstrap for censored data Efron,
(1981) do not guarantee the exclusion of these two scenarios.

We present here a bootstrap procedure, termed the “conditional block bootstrap”,
for selecting bootstrap samples that exclude the two scenarios in statistics of ex-
tremes when data is subject to random censoring. The conditional block bootstrap
is a combination of ideas from the moving block bootstrap (Efron and Tibshirani,
, 1993) and the bootstrap for censored data (Efron, , 1981).

In this procedure, the censored data is grouped into randomly chosen blocks
and it is crucial that each block must contain at least one censored observation.
This ensures that the second case is eliminated from each generated bootstrap
sample. The bootstrap observations are obtained by repeatedly sampling with
replacement from these blocks and placing them together to form the bootstrap
sample. Enough blocks must be sampled to obtain approximately the same sample
size as the original censored sample.

Given a sample of size, n, a proportion of censoring in the right tail, ℘, and assuming
℘ ≤ 0.5, the conditional block bootstrap procedure is as follows:
(1) Group the n observations into two groups namely, censored and noncensored
with sample sizes nc and nc̄ respectively. Thus, ℘ = nc̄/n.

(2) Let d (d ≥ 1) denote the number of censored observations to be included in
each block. The size of each block, s, is obtained as (n× d)/nc. If s is not an integer,
then let s = d(n× d)/nce.

Journal home page: www.jafristatap.net



R. Minkah, T. de Wet, K. Doku-Amponsah, African Journal of Applied Statistics, Vol. 12
(3), 2018, pages 419 – 445.
On Extreme Value Index Estimation under Random Censoring. 433

(3) The number of blocks, m, is chosen such that n u m× s. In the case, n = m× s,
the blocks will have the same number of observations. Otherwise, if n ≈ m × s,
then m is taken as dn/se, in which case the first m− 1 blocks are allocated s obser-
vations each and the remaining n−s(m−1) observations, allocated to themth block.

(4) Let bi, i = 1, . . . ,m denote the m blocks. Assign observations to each block by
randomly sampling, s− d observations without replacement from the noncensored
group. In addition, randomly sample d observations without replacement from the
censored-group and assign to each block bi, i = 1, . . . ,m. Thus, each block would
contain d and s− d observations that are censored and noncensored respectively.

(5)Sample m times with replacement from b1, b2, . . . , bm and place them together to
form the bootstrap sample. Note that, more than m blocks may be sampled, in the
case, n ≈ m× s, for the bootstrap sample to be approximately equal to the original
sample size, n.

(6) Repeat (5) a large number of times, B, to obtain B bootstrap samples.

In the case, ℘ < 0.5, the above procedure can be used to constitute the blocks.
However, the allocations should be done such that each block contains at least
one noncensored observation.

3.1.2. Simulation algorithm

The following algorithm is used to obtain performance measures of the estimators
of γ1 :

A1.]
(1) Generate n observations from Y and C respectively, and hence, obtain
Z(1) = {Z1, . . . , Zn} and δ(1) = {δ1, . . . , δn}. Repeat a large number of times
R− 1 (R = 1000) to obtain R pairs of (Z(i), δ(i)), i = 1, . . . , R samples.

(2)Select the pair of samples, (Z(1), δ(1)). Draw B (B = 1000) bootstrap samples
each of size n using the conditional block bootstrap procedure in Section 3.1.1.

(3) Compute the bootstrap replicates, γ̂∗(c,.)1,1 , . . . , γ̂
∗(c,.)
1,B , using the estimators of γ1.

(4) Compute the 100(1− α)%, bootstrap confidence interval.

(5) Repeat A3.1.2 through to A3.1.2 for the remainder of the pairs of samples,
(Z(j), δ(j)), j = 2, . . . , R to obtain R confidence intervals for γ1.

(6) Compute the properties of confidence intervals i.e. coverage probability and
average interval length using the R confidence intervals in A3.1.2.
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3.2. Results and Discussions

In this section, we discuss the results of the simulation study for each distribu-
tion. General comments across the various distribution are presented in the last
section. The simulation results for the Burr, Pareto and Fréchet distributions are
presented in Appendices A, B and C respectively. In most cases, estimators having
small values of MAD and median bias generally give better coverage probability
and interval length. Therefore, our performance measuring criterion focuses on
the coverage probability (CP) and interval lengths. Generally, we regard a good es-
timator as having a coverage probability of at least 0.90 and a reasonable interval
length among these estimators.

3.2.1. Burr Distribution

– For γ1 = 0.1 :
The ERM estimator is undoubtedly the best confidence interval estimator of
γ1 = 0.1 as it has small bias, MAD, CP approximately equal to the nominal level
and shorter average confidence interval length. For percentage of censoring in
the right tail, ℘ = 10% (or more generally ℘ ≤ 10%), other estimators of γ1 = 0.1
including MOM and occasionally POT.L, have good CP values. However, these
estimators have wider average interval lengths compared to the ERM estimator.

Moreover, in the case of ℘ > 10%, ERM is the only estimator that has cover-
age probability close to the nominal level and has a shorter confidence interval
length. Also, POT.L has good CP values but larger interval lengths, and hence,
not recommended for estimating γ1 = 0.1. The apparent poor performance of
most of the estimators of γ1 may be due to the second-order parameter ρ→ 0.

– For γ1 = 0.5 :
Hill, MVRB, WW.KM and WW.L are the best estimators of γ1 for a small
percentage of censoring less than or equal to 10%. These estimators have CP
values close to the nominal level and small average interval lengths. As the
percentage of censoring increases, the ERM and POT.L estimators have the best
CP values: the other estimators have poor coverage probabilities. Overall, ERM
and POT.L are the estimators which have good CP values and can be considered
for estimating γ1 = 0.5. In addition, ERM has shorter interval lengths, and
hence, can be considered as the most appropriate for estimating γ1 = 0.5.

– For γ1 = 0.9 :
Most of the confidence interval estimators perform very well for the estimation
of γ1 = 0.9 compared with γ1 ≤ 0.5. The Hill, MVRB, WW.L, ERM and POT.L
estimators generally give CP values close to the desired level of 0.95 regardless of
the percentage of censoring in the right tail. Among these estimators, POT.L has
the largest average interval length followed by ERM. Overall, the Hill, MVRB and
WW.L possesses the best attributes in terms of MAD, CP and interval lengths,
and hence, are the most appropriate estimators of γ1 = 0.9.
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3.2.2. Pareto Distribution

– For γ1 = 0.1 :
In this case, regardless of the percentage of censoring in the right tail, few
estimators of γ1 have CP values close to the nominal level and moderate interval
lengths. These include MOM and POT. The rest of the estimators have poor CP
values close to zero except ERM and POT.L. However, POT.L has larger interval
length, and hence, may not be appropriate an appropriate estimator of γ1.
Thus, MOM and POT are the most robust to censoring when estimating γ1 = 0.1.

– For γ1 = 0.5 :
In the case of the estimation of γ1 = 0.5, more estimators satisfy the CP-Interval
length criterion when compared to γ1 = 0.1. Estimators such as ERM, MOM,
POT and POT.L mostly have high CP values close to 0.95 regardless of the value
of ℘. Again, the POT.L estimator has the largest interval length. Overall, the
MOM and ERM are the preferred estimators as they have better CP values and
moderate interval lengths compared with the others.

– For γ1 = 0.9 :
For a small percentage of censoring in the right tail, ℘ = 10%, most of the esti-
mators have good CP values. The exceptions to this include WW.KM and WW.L.
Also, when ℘ = 0.35 and 0.65 the WW.KM, MOM, POT, POT.L and ERM estimators
have good CP values and relatively moderate interval lengths. However, POT.L
always has the largest interval length of at least twice the estimator with the
shortest interval length. Therefore, ERM, MOM and POT can be considered as
more robust for the estimation of γ1 = 0.9, as ℘ increases.

3.2.3. Fréchet Distribution

– For γ1 = 0.1 :
In the estimation of γ1 = 0.1, for a small percentage of censoring, ℘ ≤ 10%,
several confidence interval estimators with the exception of POT.L provide
good coverage probabilities and reasonable interval lengths. Among these
estimators, Hill, MVRB, WW.L, WW.KM and ERM have CP values close to 0.95.
In addition, for ℘ ≥ 0.35, similar performance is observed as with ℘ ≤ 10. Here,
we noticed a better performance in CP values of WW.L compared with WW.KM.
This is in conformity to the simulation results reported in Worms and Worms,
(2014). Generally, the Hill, MVRB and ERM are the most appropriate for

estimating γ1 = 0.1 for various levels of censoring in the right tail.

– For γ1 = 0.5 :
At 10% censoring in the right tail, the ERM, POT.L and POT estimators provide
good coverage probabilities. In terms of interval length, Zipf provide approxi-
mately half of the average interval lengths of the other estimators. Thus, these
two estimators are the most appropriate estimators of γ1 = 0.5. However, as
the percentage of censoring in the right tail increases, the ERM, POT.L and

Journal home page: www.jafristatap.net



R. Minkah, T. de Wet, K. Doku-Amponsah, African Journal of Applied Statistics, Vol. 12
(3), 2018, pages 419 – 445.
On Extreme Value Index Estimation under Random Censoring. 436

MOM estimators provide the best CP values. Moreover, the POT.L estimator has
larger interval lengths, and hence, the ERM estimator is regarded as the most
appropriate for estimating γ1 = 0.5.

– For γ1 = 0.9 :
In the case of ℘ = 10%, most of the estimators of γ1 performed well with CP
values close to the the nominal level of 0.95 except Hill, MVRB and WW.KM.
The ERM, POT.L and POT estimators consistently have CP values close to 0.95
and relatively good interval lengths. In addition, as with the case ℘ = 10%, the
estimators of γ1 = 0.9 exhibited similar performance when ℘ was increased to
35% or 65%. Overall, ERM and POT can be used as estimators of γ1 = 0.9 that
are more robust to censoring.

3.2.4. General Comments

As may be expected, no single estimator is universally the best for estimating
the EVI across distributions, size of the EVI and percentage of censoring in the
right tail. However, some common underlying behaviours exist. In what follows,
we present some general comments on the estimators in all the distributions
considered.

In the first place, we found that the estimators’ performance diminish with
increasing levels of the percentage of censoring. In this regard, we noticed either
a decline in the values of the coverage probability or a wider confidence interval
lengths as the percentage of censoring in the right tail increases.

Secondly, most estimators exhibit large bias when estimating small values of
γ1, especially in the Burr and Pareto distributions. However, the proposed ERM
estimator is an exception to this as it exhibits high coverage even for the Burr
distribution.

Thirdly, in the case of specific distributions, the following observations were made.
In the Burr distribution, ERM and MOM are generally the best estimators of the
EVI. For samples from the Fréchet distribution, ERM and MOM are universally
good for estimating various sizes of the EVI and most robust to censoring whereas
in the case of samples from the Pareto distribution, ERM and POT estimators of
the EVI appear to be the best.

Lastly, we found the two estimators, ERM and MOM as the most appropriate for
the estimation of the EVI across all the distributions. In addition, these estimators
are the most robust to censoring and the size of the EVI. More importantly, the
proposed ERM estimator was observed to be consistently robust for the estimation
of the EVI regardless of latter’s size and the percentage of censoring. Moreover,
the estimation of from the exponential regression, the basis of the ERM estimator,
leads to estimators of the second order parameters. These second-order parame-
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ters can be used to obtain reduced-bias estimators of quantiles and exceedance
probabilities.

4. Practical Application

In this section, we present an application of the estimators of the EVI discussed
in the previous section to study the tails of the distribution of the survival time of
AIDS patients. Data was obtained from Venables and Ripley, (2002) based on a
study by Dr. P. J. Solomon and the Australian National Centre in HIV Epidemiology
and Clinical Research.

The data consists of 2,843 patients of which 1,761 patients died while the
remaining were right censored. Out of the total number of patients, 2,754 were
males, of which 1,708 died and the remaining 1,046 were right censored. In this
study, we consider the male patients only.

This data has been studied in the extreme value theory literature in Einmahl
et al., (2008) and Ndao et al., (2014). In the former, the EVI is used to assess
the tail heaviness of the right tail of the survival function, 1 − F, and extreme
quantiles are estimated to obtain an indication of how long a healthy man can
survive AIDS. The latter uses survival time as a response variable with the age of
the patient at diagnosis as covariate to obtain conditional EVI (or tail index) and
extreme quantiles. Thus, the tails of the distribution of the survival time of male
AIDS patients is studied conditional on the age at diagnosis.

Figure 1 shows the scatter plot and histogram of the Australian AIDS survival
data. The scatter plot indicates that most of the males who survive longer are
censored and the histogram indicates that there is a lower chance of survival after
7 years of diagnosis with AIDS.

The estimation of the EVI has been shown in the simulation to be sensitive to
the value of ℘. The values of ℘ must be reasonably moderate in the top order
statistics to enable the application of the estimators of the EVI. Therefore, it is
necessary in applications to assess the percentage (or proportion) of censoring
in the right tail. The left panel of Figure 2 shows a plot of the proportion of
censoring as a function of k. Einmahl et al., (2008) chose the proportion of
censoring as ℘ = 0.28 and justified the selection as corresponding to the most
stable part of the graph i.e. 60 ≤ k ≤ 200. However, owing to the sensitivity of the es-
timators of γ1 to ℘, we compute our estimates using the actual ℘ values in the data.

From the conclusions drawn from the simulation study and in order to make it
less cumbersome, we selected five estimators for illustration. These estimators are
ERM, POT, MOM, WW.KM and Hill. The estimators of the EVI, γ1, are presented
in the right panel of Figure 2. As with the UH estimator used in Einmahl et al.,
(2008), the estimators of γ1 are relatively constant for k ≥ 200.
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Fig. 1. (a) Survival time of AIDS patients. (b) Estimates of the ℘.

Also, in practice, when a set of EVI estimators are to be taken into account,
Henriques-Rodrigues et al., (2011) provide a simple heuristic approach to aid in
selecting an appropriate threshold.

We follow a modification of the heuristic approach of selecting an optimal k instead
of a percentage of the sample size as used in Section 3. Let γ(i)

1 , i ∈ Ω be the list of
estimators under consideration where Ω = {Hill, WW.KM, ERM, MOM, POT}. The
optimum value of k, is chosen as

kopt = argmin
k

√√√√ ∑
(i,j)∈Ω, i 6=j

(
γ̂

(i)
1 − γ̂

(j)
1

)2

. (25)

We apply (25) to the EVI estimators for the AIDS survival data and the results are
presented in the right panel of 2. A closer look at the graph shows a stable region
between 200 and 600: we choose kopt = 339 (which is equal to 12% of the sample
size and close to the 10% used in the simulation study) for the estimation of γ1.

The EVI estimates at kopt = 339 are shown in Table 2. In Einmahl et al., (2008),

only the generalised Hill estimator, γ̂(c,UH)
1 was used for the estimation of the EVI.

The estimate of γ̂(c,UH)
1 was found to be 0.14. In addition, Ndao et al., (2014)

estimates γ1 as 0.304, 0.340 and 0.323 for males diagnosed with AIDS at ages 27,
37 and 47 years respectively.
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Fig. 2. Estimates of γ1, left panel; Heuristic choice of the threshold k, right panel

Therefore, with the exception of the Zipf estimator, all the other estimators con-
sidered give estimates within the range of the values provided by Einmahl et al.,
(2008) and Ndao et al., (2014). In particular, our ERM estimator of γ1 and the

WW.KM give estimates close to that of Ndao et al., (2014), although age was not
considered as a factor. Moreover, the ERM estimator is quite stable for most part
of the values of k.

Table 2. Estimates of the EVI and the corresponding extreme quantile at kopt

EVI

Estimator WW.KM Zipf MOM POT ERM
Estimate 0.334 0.587 0.244 0.193 0.334

5. Conclusions

This paper reviews various estimators of extreme value index when observations
are subject to right random censoring. In addition, an estimator based on ex-
ponential regression model was proposed. Since the asymptotic distributions
are not known for all the estimators, theoretical comparison was not possible.
Therefore, a simulation study was conducted to compare the performance of the
various estimators under different distributions, size of the EVI and percentage of
censoring in the right tail.

The performance criterion used were bias, MAD, confidence interval length
and coverage probability. The simulation results show that the performance of
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the estimators differ, depending on: the underlying distribution; EVI size; and
percentage of censoring in the right tail. Therefore, no estimator was shown to be
universally the best across all these scenarios.

However, certain estimators perform reasonably well across most distributions.
These are the estimators that we recommend as appropriate for the estimation of
the EVI. In this regard, if a practitioner is interested in estimators that perform
well across distributions in the sense of having good coverage and small interval
size, then we recommend the proposed ERM and MOM estimators. The estimators
that performed well in the simulation study were illustrated using real data on
the survival of AIDS patients.

Generally, we recommend that practitioners should assess the distribution of
a dataset, size of γ1 and proportion of censoring using other external informa-
tion. This includes graphical plots to assist in knowing the tail behaviour of
the underlying distribution and plot of the proportion of censoring at different
values of k. In addition, several estimators can be used to compute estimates of
γ1 to assess the possible size of γ1, and hence, the selection of an appropriate
estimator. We believe that the findings from this simulation will help practitioners
in the selection of estimators of EVI when data is subject to right random censoring.
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Appendix A: Burr Distribution

Table A1. Estimation of γ1 = 0.1

Estimator MAD MedBias CP L̄

Hill 0.13 0.13 0.00 0.13
MVRB 0.13 0.13 0.00 0.13
WW.KM 0.13 0.13 0.00 0.12
WW.L 0.13 0.13 0.00 0.13
MOM 0.14 -0.13 0.86 0.75
POT 0.18 -0.18 0.79 0.87
POT.L 0.95 -0.95 0.52 3.17
ERM 0.06 0.04 0.97 0.28

(a) ℘ = 0.10

MAD MedBias CP L̄

0.20 0.20 0.00 0.20
0.20 0.20 0.00 0.20
0.15 0.15 0.07 0.17
0.18 0.18 0.00 0.16
0.21 -0.19 0.85 1.09
0.27 -0.26 0.76 1.20
0.40 -0.38 0.72 3.11
0.08 0.06 0.98 0.36

(b) ℘ = 0.35

MAD MedBias CP L̄

0.42 0.42 0.00 0.54
0.41 0.41 0.00 0.54
0.13 0.13 0.69 0.26
0.28 0.28 0.00 0.25
0.41 -0.41 0.84 2.31
0.53 -0.52 0.74 2.42
0.94 -0.67 0.90 8.94
0.15 0.15 0.98 0.61

(c) ℘ = 0.65

Table A2. Estimation of γ1 = 0.5

Estimator MAD MedBias CP L̄

Hill 0.06 0.04 0.97 0.31
MVRB 0.06 0.04 0.97 0.31
WW.KM 0.06 0.03 0.96 0.30
WW.L 0.06 0.04 0.94 0.31
MOM 0.12 -0.06 0.83 0.66
POT 0.16 -0.08 0.91 1.01
POT.L 0.23 -0.12 0.89 1.80
ERM 0.13 -0.02 0.94 0.81

(a) ℘ = 0.10

MAD MedBias CP L̄

0.08 0.06 0.91 0.39
0.07 0.06 0.92 0.39
0.07 -0.01 0.89 0.34
0.07 0.05 0.91 0.36
0.17 -0.10 0.84 0.96
0.24 -0.14 0.91 1.35
0.31 -0.14 0.92 3.00
0.14 -0.02 0.95 0.90

(b) ℘ = 0.35

MedBias CP L̄

0.26 0.26 0.59 0.79
0.26 0.26 0.57 0.79
0.18 -0.15 0.62 0.43
0.11 0.11 0.85 0.46
0.30 -0.19 0.86 2.08
0.38 -0.26 0.88 2.45
0.67 -0.20 0.96 6.76
0.18 0.06 0.94 1.17

(c) ℘ = 0.65

Table A3. Estimation of γ1 = 0.9

Estimator MAD MedBias CP L̄

Hill 0.10 0.01 0.95 0.54
MVRB 0.10 0.01 0.95 0.54
WW.KM 0.10 -0.01 0.93 0.52
WW.L 0.10 0.01 0.95 0.54
MOM 0.14 -0.05 0.82 0.74
POT 0.20 -0.06 0.92 1.20
POT.L 0.20 -0.06 0.93 1.60
ERM 0.24 -0.03 0.94 1.24

(a) ℘ = 0.10

MAD MedBias CP L̄

0.10 0.03 0.96 0.67
0.10 0.03 0.97 0.67
0.14 -0.09 0.81 0.57
0.11 0.02 0.94 0.61
0.18 -0.06 0.84 1.01
0.25 -0.07 0.93 1.58
0.32 -0.11 0.93 2.77
0.23 0.00 0.94 1.45

(b) ℘ = 0.35

MAD MedBias CP L̄

0.19 0.17 0.93 1.08
0.19 0.16 0.93 1.10
0.41 -0.41 0.35 0.59
0.15 -0.02 0.91 0.70
0.34 -0.12 0.86 2.06
0.42 -0.20 0.91 2.79
0.64 -0.21 0.96 6.80
0.29 0.01 0.96 1.89

(c) ℘ = 0.65
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Appendix B: Pareto Distribution

Table B1. Estimation of γ1 = 0.1

Estimator MAD MedBias CP L̄

Hill 0.31 0.31 0.00 0.16
MVRB 0.31 0.31 0.00 0.16
WW.KM 0.30 0.30 0.00 0.15
WW.L 0.31 0.31 0.00 0.15
MOM 0.08 0.04 0.96 0.49
POT 0.08 -0.03 0.93 0.54
POT.L 0.76 -0.76 0.67 3.31
ERM 0.12 0.12 0.87 0.34

(a) ℘ = 0.10

MAD MedBias CP L̄

0.45 0.45 0.00 0.26
0.45 0.45 0.00 0.26
0.38 0.38 0.00 0.22
0.41 0.41 0.00 0.21
0.12 0.06 0.97 0.70
0.12 -0.04 0.92 0.74
0.31 -0.28 0.78 2.30
0.18 0.18 0.80 0.46

(b) ℘ = 0.35

MAD MedBias CP L̄

0.88 0.88 0.00 0.65
0.88 0.88 0.00 0.66
0.40 0.40 0.01 0.46
0.63 0.63 0.00 0.34
0.23 0.07 0.97 1.43
0.23 -0.09 0.92 1.40
1.43 -1.35 0.83 4.76
0.34 0.34 0.83 0.79

(c) ℘ = 0.65

Table B2. Estimation of γ1 = 0.5

Esimator MAD MedBias CP L̄

Hill 0.16 0.16 0.26 0.26
MVRB 0.16 0.16 0.27 0.27
WW.KM 0.15 0.15 0.32 0.26
WW.L 0.16 0.16 0.24 0.26
MOM 0.08 0.02 0.94 0.47
POT 0.11 -0.03 0.93 0.66
POT.L 0.17 -0.07 0.92 1.37
ERM 0.10 -0.00 0.94 0.66

(a) ℘ = 0.10

MAD MedBias CP L̄

0.29 0.29 0.03 0.38
0.29 0.29 0.03 0.38
0.20 0.20 0.55 0.33
0.25 0.25 0.05 0.33
0.12 0.03 0.95 0.68
0.15 -0.05 0.92 0.89
0.20 -0.05 0.92 1.76
0.11 0.02 0.94 0.79

(b) ℘ = 0.35

MAD MedBias CP L̄

0.70 0.70 0.00 0.82
0.70 0.70 0.00 0.83
0.16 0.11 0.91 0.57
0.43 0.43 0.00 0.49
0.25 0.08 0.94 1.45
0.26 -0.09 0.91 1.55
0.41 -0.09 0.96 3.94
0.25 0.21 0.95 1.13

(c) ℘ = 0.65

Table B3. Estimation of γ1 = 0.9

Estimator MAD MedBias CP L̄

Hill 0.09 0.08 0.90 0.40
MVRB 0.09 0.08 0.90 0.40
WW.KM 0.08 0.07 0.90 0.39
WW.L 0.09 0.08 0.88 0.40
MOM 0.10 0.00 0.89 0.53
POT 0.14 -0.03 0.93 0.82
POT.L 0.15 -0.03 0.93 1.04
ERM 0.17 -0.04 0.92 0.97

(a) ℘ = 0.10

MAD MedBias CP L̄

0.19 0.19 0.70 0.52
0.19 0.19 0.71 0.52
0.11 0.08 0.93 0.51
0.16 0.16 0.77 0.49
0.14 0.04 0.92 0.73
0.19 -0.02 0.93 1.05
0.21 0.00 0.94 1.67
0.19 0.01 0.93 1.13

(b) ℘ = 0.35

MAD MedBias CP L̄

0.52 0.52 0.19 0.98
0.52 0.52 0.15 0.98
0.23 -0.13 0.76 0.71
0.25 0.25 0.59 0.64
0.23 0.07 0.94 1.45
0.27 -0.08 0.94 1.72
0.47 -0.07 0.95 4.21
0.24 0.10 0.95 1.49

(c) ℘ = 0.65
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Appendix C: Fréchet Distribution

Table C1. Estimation of γ1 = 0.1

Estimator MAD MedBias CP L̄

Hill 0.01 0.01 0.96 0.06
MVRB 0.01 -0.00 0.94 0.06
WW.KM 0.01 0.00 0.96 0.06
WW.L 0.01 0.01 0.95 0.06
MOM 0.11 -0.08 0.89 0.62
POT 0.11 -0.05 0.97 0.84
POT.L 0.44 -0.97 0.57 3.32
ERM 0.03 0.00 0.95 0.16

(a) ℘ = 0.10

MAD MedBias CP L̄

0.01 0.01 0.95 0.08
0.01 0.01 0.95 0.08
0.01 -0.00 0.88 0.07
0.01 0.01 0.94 0.07
0.14 -0.12 0.91 0.89
0.13 -0.05 0.98 1.28
0.39 -0.34 0.79 3.11
0.03 -0.00 0.97 0.17

(b) ℘ = 0.35

MAD MedBias CP L̄

0.02 0.02 0.91 0.13
0.02 0.02 0.90 0.13
0.05 -0.05 0.37 0.07
0.07 0.00 0.94 0.08
0.31 -0.20 0.86 2.12
0.23 0.07 0.97 4.04
1.06 -0.67 0.94 8.48
0.03 0.01 0.97 0.21

(c) ℘ = 0.65

Table C2. Estimation of γ1 = 0.5

Estimator MAD MedBias CP L̄

Hill 0.03 0.02 0.83 0.10
MVRB 0.02 0.02 0.86 0.10
WW.KM 0.02 0.02 0.84 0.10
WW.L 0.02 0.02 0.83 0.10
MOM 0.05 -0.02 0.91 0.27
POT 0.05 -0.02 0.93 0.28
POT.L 0.05 -0.02 0.94 0.30
ERM 0.04 -0.01 0.94 0.24

(a) ℘ = 0.10

MAD MedBias CP L̄

0.04 0.04 0.70 0.12
0.04 0.04 0.70 0.12
0.03 0.02 0.93 0.13
0.04 0.04 0.79 0.12
0.05 -0.03 0.90 0.27
0.07 -0.05 0.70 0.36
0.08 -0.04 0.93 0.83
0.04 -0.01 0.95 0.25

(b) ℘ = 0.35

MAD MedBias CP L̄

0.10 0.10 0.31 0.18
0.10 0.10 0.31 0.18
0.11 -0.10 0.57 0.27
0.05 0.04 0.90 0.21
0.10 -0.04 0.90 0.56
0.12 -0.07 0.89 0.66
0.21 -0.10 0.92 1.59
0.06 0.05 0.95 0.31

(c) ℘ = 0.65

Table C3. Estimation of γ1 = 0.9

Estimator MAD MedBias CP L̄

Hill 0.05 0.05 0.85 0.17
MVRB 0.05 0.04 0.87 0.17
WW.KM 0.04 0.04 0.86 0.17
WW.L 0.05 0.05 0.85 0.17
MOM 0.04 0.01 0.95 0.25
POT 0.06 -0.01 0.97 0.36
POT.L 0.06 -0.01 0.96 0.37
ERM 0.07 -0.01 0.96 0.44

(a) ℘ = 0.10

MAD MedBias CP L̄

0.08 0.08 0.66 0.21
0.07 0.07 0.77 0.21
0.05 0.04 0.94 0.23
0.07 0.07 0.79 0.22
0.06 0.01 0.93 0.32
0.08 -0.03 0.93 0.44
0.10 -0.02 0.94 0.54
0.08 -0.03 0.93 0.46

(b) ℘ = 0.35

MAD MedBias CP L̄

0.06 0.19 0.28 0.34
0.06 0.19 0.23 0.34
0.14 -0.19 0.60 0.48
0.07 0.06 0.92 0.34
0.10 0.03 0.94 0.60
0.12 -0.01 0.95 0.75
0.20 -0.08 0.96 1.31
0.09 0.07 0.93 0.56

(c) ℘ = 0.65
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