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ABSTRACT. We investigate the class B'°°(R™) of exponents p(-) for which the
local Hardy-Littlewood maximal operator is bounded in variable exponent
Lebesgue spaces L”(')(R”). Littlewood—Paley square function characterization
of LP()(R™) spaces with the above class of exponent are also obtained.

1. INTRODUCTION

The variable exponent Lebesgue spaces LP()(R™) and the corresponding vari-
able exponent Sobolev spaces W#P() are of the interest for their applications

to the problems in fluid dynamics [26, 27], partial differential equations with
non-standard growth conditions and calculus of variations [I, 2, 11, 12], image
processing [3, 14, 22].

The boundedness of Hardy—Littlewood maximal operator is very important
tool to get boundedness of more complicated operators such as singular integral
operators, commutators of singular integrals, Riesz potential and many other
operators. Conditions for the boundedness of the Hardy-Littlewood maximal
operator on variable exponent Lebesgue spaces LP()(R") have been studied in
8,9, 6, 25, 17, 15, 21]. For an overview we refer to the monographs [10] and [1].
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Let p : R* — [1, 00) be a measurable function. Denote by LP()(R™) the space
of all measurable functions f on R” such that for some A > 0

/ f(z) dz < oo,

A
p(z)

Given a locally integrable function f on R", the Hardy-Littlewood maximal
operator M is defined as follows

Mf(x) = supﬁ /Q F)ldy,

where the supremum is taken over all cubes () containing x. Throughout the
paper, all cubes are assumed to have their sides parallel to the coordinate axes.

Let f be locally integrable function f on R™. We consider the local variant of
the Hardy—Littlewood maximal operator given by

1
M f(x) = — dy.
fle)= sw o /Q F(y)ldy

Denote by B(R™) (B¢(R")) the class of all measurable functions p : R" —
[1, 00) for which the operator M (operator M'¢) is bounded on LP() (R™). Given
any measurable function p : R" — [1,00), let p_ = ess H%nf p(z) and p, =

TER™

p(z)

with the norm

/()

ess sup p(x). Below we assume that 1 < p_ < p, < oc.
T€R"”
It has been proved by Diening [8] that if p(-) satisfies the following uniform

continuity condition
c
() —pW)| < s
log(1/]x — yl)

and if p(-) is a constant outside some large ball, then p(-) € B(R"). After that
the second condition on p(-) has been improved independently by Cruz—Uribe,
Fiorenza, and Neugebauer [6] and Nekvinda [25]. Tt is shown in [6] that if p(-)
satisfies (1.1) and

lx —y| < 1/2, (1.1)

c
log(e + |2[)
for some py > 1, then p(-) € B(R™). In [25], the boundedness of M is deduced
from (1.1) and the integral condition more general than (1.2) condition: there
exist constants ¢, py, such that 0 < ¢ < 1,ps > 1, and

1
/ clr@—rol dx < 00.

The condition (1.1) is named the local log-Hélder continuity condition and
the condition (1.2) the log-Holder decay condition (at infinity). The conditions
(1.1) and (1.2) together are named global log-Hélder continuity condition. These
conditions are connected to the geometry of the space LPU)(R™).

p(2) = Poo| < (1.2)
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By X" we denote the set of all open cubes in R" and by Y™ (Y}:,) we denote
the set of all families @ = {Q;} of disjoint, open cubes in R" (with measure less
than 1) such that |J@; = R™ (we ignore the difference in notation caused by a
null set).

Everywhere below by lg we denote a Banach sequential space (BSS) (see for
the definition in [23]). Let {eq} be standard unit vectors in [g.

Definition 1.1. Let | = {lg}ocy» (I = {lo}geyr ) be a family of BSS. A space
LPO)(R™) is said to satisfy a uniformly upper (lower) [—estimate (I;,.—estimate )
if there exists a constant C' > 0 such that for every f € LPO)(R") and Q € V"
(Q € )Y}.) we have

1£1pe) < CI Y I xeilloe - eaullio (II > xadlo - eqillie < Cllfllp(4)> :

Qi€Q Q:€Q

Definition 1.1 was introduced by Kopaliani in [16]. The idea of Definition 1.1
is simply to generalize the following property of the Lebesgue-norm:

1712 = D1 xe

p
Lp

for a partition of R™ into measurable sets (2;.
Let p(-) € B(R"). For any Q € Y™ we define the space [2P() by

(97 = {f = {to}gea: Y _ Itol™ < OO} :

Qe

equipped with the Luxemburg’s norm, where the numbers pg are defined as p—; =
IT%\ fQ ﬁdm. Analogously we define the space [2*' () where ﬁ—l—ﬁ =1,teR".
Note that if p(-) € B(R") then for simple functions we have uniformly lower

and upper [ = {1970} 5cyn estimates.
Theorem 1.2. Let p(-) € B(R"™) then uniformly

1> toxellso =< 11D tollxellxoealliest (1.3)
QeQ QReQ
and
1D toxellyo = 11D tallxellyoeliero: (1.4)
QeQ QeQ

Above theorem is another version of necessary part of Diening’s Theorem 4.2 in
[9] (proof may be found in [18]). Note that conditions (1.3) and (1.4) in general do
not imply p(-) € B(R™). The proof (see in [20]) relies on the example constructed
by Lerner in [21]. We give the proof of this fact also here.

2
Let B = Ugsi(e®, e¥e’* ) and
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There exist « > 1 and () (1/a < [y < 1) such that po(:) + @ € B(R) and
Bo(po(-) +a) ¢ B(R) (see [21, Theorem 1.7]). Note that for a space LP¢)(R), with
p(-) = po(+) + a there exists a family | = {lg}gey» of BSS for which LP()(R)

satisfies uniformly lower and upper [—estimate (see [20, Proposition 3.2]). From
(1.3) we have lg = 1970) and consequently we have
1oy = 11D I xellsor ellieno - (1.6)
QeQ

Note that for all 1 > 3 > p%

1£5 15500 = 1 1lo) (1.7)
and
B

12.p(+) ’

I{teHheso = |[{Ital* } (1.8)

From (1.6), (1.7) and (1.8) we have

lgllapey =< 1) lgxellssereqlliesso-
QeQ

for g € LPPO)(R) and the space LAP0)(R) satisfies uniformly lower and upper
[P-estimates, where lg = [@Pp(),

1 1 _ Q.6p()) — 12Bp())
Note that Be T Gone = 1 and (l P ) = [=WPL) - Thus the space

(Lﬁp('>(R))/ satisfies uniformly lower and upper (I”)-estimates, where (I°),, =
19:6P()" and (1.3) and (1.4) are valid for any 8p(-), (8p(-))’, where 1 > > p%.
Consequently for exponent Gyp(-) (1.3) and (1.4) are valid but Sop(-) ¢ B(R).

Remark 1.3. Let p(-) be global log-Hélder continuous function. Then there exists
family | = {lg}oecyn of BSSs for which LPC)(R") satisfies uniformly lower and
upper [—estimates (see [20, Proposition 3.4]). As we already mentioned it was
show in [0] that p(-) € B(R™) and by Theorem 1.2 (1.3) holds and therefore we
have 1o =2 [270) and consequently

1£lpe =< 1 1 xellbeeellion (1.9)

QeQ

Remark 1.4. Let Q@ = {Q;} be a partition of R" into equal sizes cubes, ordered
so that ¢ > j if dist(0, Q;) > dist(0, );). Let p(-) be global log-Hélder continuous.

Then
1/poo
1f1lpe) = (Z 1/ X ﬁ‘(‘}) : (1.10)

This was shown in [13, Theorem 2.4]. This statement also follows from Re-
mark 1.3. Indeed, if we have a partition Q = {Q;} with equal sizes cubes and it
is ordered as above by using [24, Theorem 4.3] we can show that [P~ = [<2P() and
consequently from (1.9) we get(1.10).
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By AC we denote the set of exponents p : R — [1,4+00) of the form p(x) =
p+ 7 l(u)du, where [ |1(u)|du < +o0.

Note that example of exponent constructed by Lerner and mentioned above
belongs to class AC. In general we have the following

Proposition 1.5. [20, Proposition 3.2] Let p(-) € AC. Then exists family | =
{lo}oeyn of BSSs for which LPY)(R™) satisfies uniformly lower and upper |— esti-
mate.

In many applications it is enough to study only boundedness of local Hardy—
Littlewood maximal operator rather the Hardy—Littlewood maximal operator.
For example in the Littlewood—Paley theory we need local Hardy-Littlewood
maximal operator. In the weighted Lebesgue spaces behavior of local Hardy—
Littlewood maximal operator was studied by Rychkov in [25].

In this paper we investigate the class B'¢(R") of exponents p(-) for which
the local Hardy—Littlewood maximal operator is bounded in variable exponent
Lebesgue space LPO)(R™). Using the obtained results we give LittlewoodPaley
square-function characterization of the variable exponent Lebesgue spaces LP() (R™)
with the above class of exponent.

The paper is organized as follows. In Section 2 we give main results. In Section
3 we give application in the Littlewood—Paley theory and in last section we give
outlines of the proof of the Theorem 2.2 which is local version of the Diening’s
theorem from [9].

2. MAIN RESULTS

For any family of pairwise disjoint cubes Q and f € L]  we define an averaging
operator
Tof =) xoMof
QeQ
where Mo f = [Q[™" [, f(z)dz.
We say that exponent p(-) is of the class A ( class A"°) if and only if there
exists C' > 0 such that for all @ € Y (Q € Y1) and all f € LPV(R")

Tallpty < CllFlne)s

i.e. the averaging operators Tg are uniformly continuous on LP¢)(R™).

A necessary and sufficient condition on p(-) for which the operator M is bounded
in LPO)(R™) is given by Diening in [0]. It states that p(-) € B(R") if the averaging
operators Tg are uniformly continuous on LP()(R™) with respect to all families Q
of disjoint cubes. This concept provides the following characterization of when
the maximal operator is bounded.

Theorem 2.1. ([9, Theorem 8.1]). Let 1 < p_ < p; < oo. The following are
equivalent:

1) p(+) is of class A;

2) M is bounded on LPO)(R");

3) (M (| f|9))" is bounded on LPC)(R™) for some q > 1, ("left-openness”);
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4)M is bounded on LPO)/4(R™) for some q > 1, ("left-openness”);
5) M is bounded on LP')(R™).

Main important results is the corresponding theorem to the Dienings theorem’s
Theorem 2.1 for local maximal function M. The proof is presented in the Sec-
tion 4. In the proof we are following to the idea of the proof of the Theorem 2.1
with some technical modifications.

Theorem 2.2. Let 1 < p_ < py < oo. The following are equivalent:

1) p(+) is of class A'°;

2) M'* is bounded on LPU)(R™);

3) (MPe(|£19)) is bounded on LPO)(R™) for some q > 1, ("left-openness”);

4)M'¢ is bounded on LPO)/U(R™) for some q > 1, ("left-openness”);

5) M is bounded on LY O)(R™).

We say that da satisfies the condition Ap.) (condition A;O(?) ) if there exists
C' > 0 such that for any cube @ (for any cube @ with |Q] < 1)

1
@HXQHP(')HXQ”P'(') <C.

Using Theorem 2.1-2.2 we obtain some subclass of B(R") and B'*¢(R").

Theorem 2.3. Let 1 < p_ < p; < oo and there exists family | = {lg}oeyn
(family | = {lo}geyr ) of BSSs for which LPO(R™) satisfies uniformly lower and
upper |—estimate (lj,.— estimate). Then operator M (operator M'¢) is bounded
in LPO(R™) if and only if dz € Ay (dx € A;f(?)).

Proof. The proof for the operator M is the same as for the operator M. Let
dr € Ag’(‘?). Using Holders inequality we get

||f>(@||p<
al / F@ldr < O

For Q € Y and f € LPO)(R") we have

1
> xerg /Q f(2)da

QeQ

QeQ

<) Ifxelloeala < Cllflloe-
p(°)

The necessary part of theorem is obvious. O
Theorem 2.4. B(R") # B'¢(R")

Proof. Let us consider the exponent p(-) = [Go(po(-) + ) where po(-) is defined
by (1.5). Fix @ > 1 and fy(1/a < By < 1) such that the exponent p(-) does
not belong to the class B(R). Since p(-) € AC we can conclude that for LPU)(R)
there exists family | = {lg}gey» of BSSs for which LP()(R) satisfies uniformly
lower and upper [—estimates. For p(:) the condition (1.1) is fulfilled, so it is
easy to show that for this exponent p(-) condition A;O(‘f) is satisfied. Therefore by

Theorem 2.2 p(-) € B'“(R).
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In the class B¢(R) there exist exponents that have arbitrary slow decreas-
ing order in infinity. To show this fact we rely on the simple observation. In-
deed, let for LP()(R) there exists family [ = {lg}oecyn of BSS for which LP()(R™)
satisfies uniformly lower and upper [— estimates and w : R — R; w(—o00) =
—00, w(+00) = +0o0 is strictly increasing absolutely continuous mapping. Then
there exists family [, of BSS for which LP(“()(R) satisfies uniformly lower and
upper [,— estimates (see [20]).

Consider the exponent from Theorem 2.4. Let tj, = e¥°, my, = e /% k> 1.
Let us construct new points ¢, m), k > 1 so that mj — ¢, = my — ¢, and
t, .1 > mj,. Let us now construct the pairwise linear continuous function w in the
following way: w(z) =z if x <0, w(ty) = t,, w(mg) =mj; k > 1. We can choose
the points ¢}, mj, so that (mj_, —})/(mi41 — ti) was arbitrary large. Note that
exponents p(w~(+)) and p(-) has the same local behavior but the decreasing order
in infinity of p(w='(+)) is very slow.

Let now consider the case n > 2. Let D = U [2k — 1, 2k] x [0, 1]"!. Consider
non-trivial exponent p(-) that satisfies global log-Holder condition and is constant
on the set R™\D.

Let {my} be the strictly increasing sequence of integers. Consider the bijection
w : R" — R" that for each k € N has the form w(z) = 2 —(my,0,--- ,0) on the set
2k —1,2k] x [0,1]""!. We can choose the sequence {my} so that p(w(-))¢B(R")
but p(w(-)) € Bl¢(R™). O

Note that only the condition dz € Aé‘f) (even dx € A,y ) does not guarantee
in general p(-) € B(R™). For the corresponding example see [19)].

3. SOME APPLICATIONS

In this section, we give Littlewood—Paley square-function characterization of
LPO)(R™) when p(-) € B(R™). Let us recall the definition of local Muckenhoupt
weights. The weight class A (1 < p < oo) consists of all nonnegative locally
integrable functions w on R" for which

Aloe(w) = sup ! / w(x)dx (w(x)_p//pdx>p/p, < 00.
g Q<1 QI Jo

Extending the suprema from |@Q| < 1 to all @ gives the definition of the usual
classes A,. It follows directly from definition that A, C Ag’c. The Littlwood—
Paley theory for weight Lebesgue space LP with local Muckenhoupt weights was
investigated by Rychkov in [28]. For more details for Aé"c weights we refer paper
28]

Below we formulate analog of Rubio de Francia theorem for variable expo-
nent case. Hereafter, F will denote a family of ordered pairs of non-negative,
measurable functions (f, g). If we say that for some p, 1 < p < oo, and w € Aéoc

. f(@)Pw(z)de < C’/ g(x)Pw(x)dzx, (f,g9) € F, (3.1)

we mean that this inequality holds for any (f,g) € F such that the left-hand side
is finite, and that the constant C' depends only on p and the constant Aéoc(w).



236 A. GOGATISHVILI, A. DANELIA, T. KOPALTANI

Theorem 3.1. Given a family F, assume that (3.1) holds for some 1 < py < oo,
for every weight w € Aé‘gz and for all (f,g) € F. Let p(-) be such that there exists

1 <p <p_, with (p(-)/p1) € B(R™). Then
1 lloy < Cllgllae

for all (f,g) € F such that f € LPD(R™). Furthermore, for every 0 < q < oo and
sequence {(fj,9;)}; C F,

(59)'] <]z

p(t) I p(t)

In the case when w € A, and (p(-)/p1)" € B(R"™) Theorem 3.1 was proved in [5,
Theorem 1.3], (see also proof Theorem 3.25 in [7]). Note that the collection of all
cubes @ with |@Q| < 1 form the Muckenhoupt basis , that is for each p, 1 < p < o0,
and for every w € Al°, the maximal operator My, is bounded on L% (R™) ([25,
Lemma 2.11]. Theorem 3.1 follows from Theorem 2.2 and extrapolation theorem
for general Banach function spaces ([7, Theorem 3.5]).

We give a number of applications of Theorem 3.1. It is well known (see [28])
that for 1 < p < oo and for w € AY*,

M f(z)Pw(x)de < C - f(z)Pw(z)dz.

R

From Theorem 3.1 with the pairs (M f, | f]), we get vector-valued inequalities
for M on LPO)(R™), provided there exists 1 < p; < p_ with (p(-)/p1) € B¢(R™);
by Theorem 2.2, this is equivalent to p(-) € B¢(R"™). We obtain following local
version of the Fefferman—Stein vector-valued maximal theorem:

Corollary 3.2. Let p(-) € B(R™). Then for all 1 < q < oo,

1/q 1/q
(Z(Mlocfj)q> <C (Z(!Jj)q>

J

p(t) p(t)

Let 1 < p < o0 and w € Aéoc. Let ¢y € C§° have nonzero integral, and
o(x) = wo(x) —27"po(3), = € R". Consider the square operator S = S, ., given
by

+oo 1/2
S(f) = (Z |05 % f|2> (f € Ly, (R™)), (3.2)

where p;(z) = 2/"¢(2z), j € N. Then
IS lze, = [ fllzg,, all f e LE,(R™).

(For details, see [28]). Therefore by Theorem 3.1 we have following Littlewood-
Paley square-function characterization of LP()(R™).



LOCAL HARDY-LITTLEWOOD MAXIMAL OPERATOR 237

Corollary 3.3. Let p(-) € B'¢(R"). Let ¢y € C$° have nonzero integral, and
() = po(r) — 27 "po(5). Consider the square operator S = Sy, , given by equa-
tion (3.2). Then

1SN lpey = 1 fllney, all f € LPOR™).

4. THE PROOF OF THE THEOREM 2.2

Let p(z,t) = tP@ ¢t >0, 2 € R", 1 < p_ < p; < co. We need some notations.
For t > 0, s > 1, we define

p(f)(x) : R" = [0,+00) =R=", (o(f))(z) = ¢(z, |f(2)]),

. 1 . 1/s
Mg, : R — R, M, qu(t) = (|Q—| /Q ) daz)

Mgy : R — R2% Mg, (t) = (Migy) ().

Analogously we will use notation for the complementary function of ¢ given by
¢*(x,t) = (p(a) — Dp(z) 7O,

Note that for all cubes @ functions (M g,)(t), (Msqe+)(t) are N-functions
and satisfy uniformly As-condition with respect to @ (see [9, Lemma 3.4]). In
addition we mention following properties of functions defined above ([9, Lemma
3.7)): let s > 1 and Q € X™, then for all f € LP0)(R™) there holds

() (5Meaf ) < Meglo(1)

Especially, for all u > 0

(M.00)" (1) < Mol

On the other hand for all ¢ > 0 the function f; = xo@*(t)/t satisfies

(M p+ )" (2Ms o f1) = My o(@(ft))-
For Q € Y™ we define the space [/?Me¢(Q)

[19Mae (Q) = {Z ={tolgea: D> |QI(Mg,)(tg) < OO} :

QeQ
equipped with the norm

||¥Hl\Q\MQ¢(Q) = inf {/\ >0: Z |Q|(MQ<p)(tQ/)\) < 1} .

QeQ
Analogously we define the spaces [/¢Mae~(Q), [19Mse (Q), [I91Ms0e (Q).
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Definition 4.1. Let
ZKQKﬂiQw*)*(gz)<_ﬁ ZKNA%gv(gg)

be uniformly continuous with respect to Q € YV, (Q € V") i.e. forall A; >0
there exists A > 0 such that for all @ € Y. (all @ € Y™) and all sequences
{to}oeo there holds

S IQIMg ) (tg) < A = Y |QI(Mqgy)(tg) < As.

Qe QeQ

Then we say that Mg, is locally dominated (dominated) by (Mg,-)* and write
Mgy = (Mgg+)*(loc) (Mg, = (Mgye+)").

Analogously we may define uniformly continuous embedding discrete function
spaces defined above with respect to @ € Y. (Q € Y"). The basic property of
domination (=) in a ”pointwise” sense is described in original paper [9]. Analo-
gous properties of local domination is essentially based on the following general
lemma (note that if X = X"(loc) and Y = Y™(loc), then X, Y are admissible for
Lemma 4.2 )

Lemma 4.2. ([9, Lemma 7.1].) Let X be an arbitrary set. LetY be a subset of the
power set of X such that My C My € Y implies M, € Y. Let 1y, ¥y : X — R=,
If there exists Ay > 0 and As, A3 > 0 such that for all M € Y

wh(w) <A = Z%( <A22w1 )+ As

weM weM
then there exists b: X — RZ such that for all w € X holds
A 4A
P (w) < Zl = 1y <maX{A—3, 2A2}¢1+b(u}) (4.1)
1

and

sup Z b(w) < As. (4.2)

If on the other hand there exist b: X — RZ, A; > 0, and Ay, Az > 0 such that
(4.1) and (4.2) hold, then for all M €Y

Uy (w) <— = ng <maX{4A—A:’,2A2}w¢1(w)+A3.

weM
We can now state characterization of classes A and A.

Theorem 4.3. Ezponent p(-) is of class A"¢ (of class A) if and only if Mg, <
(Mgy+)*(loc) (Mg, = (Mge+))

The proof of above theorem in the case p(-) is of class A is based on proper-
ties (4.1)-(4.3) of Mg, and (Mg,+) and may use analogously arguments in local
variant.

Inspired by the classical Muckenhoupt class A, in [9] was defined a condition
As. The importance of our considerations is analogous of the definition in local
case.
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Definition 4.4. We say that exponent p(-) is of class A% (class A, if for any
g > 0 there exists d > 0 such that the following holds: if N C R" is measurable
and Q € V', (Q € Y") such that

QNN|>€lQ forall Qe Q,
then for any sequence {tg}geco

Z toXaQ

QeQ

Z toXonN

QeQ

p() ()

It is not hard to prove that if exponent p(-) is of class A“¢ then exponent p(-)
is in Al

The important property of exponents from class A is that A, implies M, g, <
Mg, for some s > 1. The proof of this result is based on the following lemma.

Lemma 4.5. ([9, Lemma 5.5]). Let exponent p(-) is of class As. Then there
exists 6 > 0 and A > 1 such that for all Q € Y™, all {to}oea.tq > 0, and all
f € L. with Mof #0, Q € Q, holds

> to|

QeQ

loc

Z toXaq

QeQ

() ()

Note that a very similar argument can be used to obtain a local version of
Lemma 4.5. In the original proof of the Lemma 4.5 is used @-dyadic (@) € X™)
maximal function M@ ( as defined in [9, Definition 5.4]). Note that in fact
in proof of Lemma 4.5 it is used local ()-dyadic maximal function, where the
supremum is taken over all Q-dyadic cube @’ containing x and |Q'| < |@Q]. As
a consequence of local variant of Lemma 4.5 we obtain a kind reverse Holder
estimate for exponents from class A",

Theorem 4.6. Let p(-) € A"°. Then there exists s > 1, such that Mg, =
Mgy (loc).

From Theorem 4.3 and Theorem 4.6 for local variant we obtain

Theorem 4.7. The following conditions are equivalent
(a) p(-) is of class Al°.

(b) Moy = (Mgg-)*(loc)
(c) There exists s > 1, such that Mg, = Mo, = (Mgy+)* = (M g,+)*(loc).

The key lemma from which was derived original Theorem 3.1 is Lemma 8.7
from [9]. We formulate analogous statement for local variant.

Lemma 4.8. Let p(-) € A"°. Then there exists s > 1 such that for all Ay > 0
there exist Ay > 0 such that the following holds:
For all families Qy € V}}., A > 0, with

D QIMgp) (V) < Ay

Qe



240 A. GOGATISHVILI, A. DANELIA, T. KOPALTANI

and

| Q080 < 4

QeQ)
there holds
[ S Qa0 < A
0 Qe

Note that the relation described in Lemma 8.7 from [9] is denoted as Mg, <
(Ms,gp+)* (strong domination).

The proof of Lemma 4.8 is based on some pointwise estimate of functions
(Mgy+)* and (M;,ge+)*. These properties we will describe bellow in Lemma 4.9,
4.10.

If p(-) € A, then My, < (M g,)*(loc) for some s > 1. It is not hard to
prove that (analogously as the proof of Lemma 8.3 from [9]) uniformly in @ € &}%.

Ql0n00) (o= ) ~ 1 @l (o) ~ 1 6

Ixelln) Ixelle
It is important to investigate for any () € A}, the function
M, t
a,(Q, 1) = (Jw ,Qso)( ) .
(Ms,p)- (1)

Lemma 4.9. Let p(-) € A"¢. Then
as(@, 1/lIxqllpe) ~ 1, as(@,1) ~ 1

um’formly in Q € X, and t > 0. Moreover, there exists C > 1 such that for all

Q € X loc
OéS(Q,tQ) S C(&S(Q,tl) + 1) fO?”O <t S to S 1,

as(Q,t3) < Clas(Q,ts) +1) forl <ty <ty <I.
Furthermore, for all Cy, Cy > 0 there exists C3 > 1 such that for all Q) € X,

loc

€ {Cl min{l,;} ,C4 max{l,;}] = as(Q,t) <Cs.  (4.4)
Ixelln) Ixellne)

The proof of analogous statement for nonlocal case ([9, Lemma 8.4])is based on
the estimates (4.3) and some properties (not depend on @) of convex functions
M; gy, (M gpy-. We can use these arguments in the local variant.

Lemma 4.10. Let p(-) € A(loc). Then there exists b: X"(loc) — R= and K >0
such that

sup Y [QB(Q) + sup  [Q[b(Q) < oo

Qeyn(loc) Qco Qexn(loc)
and for all Q € X"(loc) and all t > 0 holds
Q[(Msgp)*(t) <1 = (Msqy)(t) < K(Mqp)"(t) +b(Q).
Moreover, for all Q € X"(loc) and all t > 1 there holds

QI(Mqp )" (1) <1 = (Msqp)(t) < K (M gpr)"(1).
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The proof may be obtained from the general Lemma 4.2 and by using the
estimate (4.4) (see [9], proof Lemma 8.5).

Lemma 4.11. Assume M, g, = M:27Qw(loc) for some s > 1 and 1 < 51 < so.
Then

52

(Oé52 (Q? t@)) R Qs (Qv t)
uniformly in @ € X™(loc) and t > 0.
The proof of Lemma 4.11 is basically based on the Lemma 4.10 and may be
proved as an analogous lemma from [9, Lemma 8.6].

Let f be a locally integrable function. For ¢ > 1 we consider the local maximal
operator given by

1 l/q
Mloe = (— 4q ) .
o f(@) O ,Q‘/Q\f(y)! y

We define a local dyadic maximal operator M, éfj witch restricted supremmum
in definition of M* to dyadic cubes (cubes of the form @ = 27*((0,1)" +k), k =
(k1, - k) €Z", z € Np).

For fixed t € R" we define also a maximal operator Méfj’t with restricted

supremum in definition of M é?j on the cubes ) — t, where () dyadic cubes.
Note that there is a constant C' > 0 such that (see [29])

Ml fz) < C e Mt f()dt. (4.5)

The main step to proof Theorem 2.2 (as in proof of original Theorem 2.1) is
the following Theorem.

Theorem 4.12. Let p(-) € Ape. Then there exists ¢ > 1 such that Mé"c is
continuous on LPC)(R™),

Note that using 4.5 estimate it is sufficient to prove Theorem 4.12 for operator
M.
It is suffices to show that there exists A > 0 such that for all f € LPO)(R")

F@P@dr <1 = [ [MEF@)Pde < A
R7 R™

For A > 0 define functions

fox = fxunands fix = fxgssa-
Then
{MUSF > A} © {M% for > A2} U{MS%S fin > M2}
This implies

| ags@rds = [ [ @ g doda
n 0 n ’

2 o0
-1 T
<C> /O A /R N atog g 523 AN
j=1
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For A > 0 let Q) be the decomposition of { M, éf’j for > A/2} into maximal dyadic
cubes. Then for all ) € Qg there holds (uniformly in Q)

M,ofor~ A
and we have
p(x 1
/ / )\ X{Mloc}co>\>)\/2}dxd)\ < C/ )\ Z ’Q‘ MQQD
" Qe 2
Denote ff)\ = X©,1)"+kf1,n, kK € Z". Note that if z € (0,1)" + k then
M5 fra(z) = MY fE ()

and
(M5 Fix > A2} = Upean {MI%5 £\ > \/2}.

/ / )\p )({]\4locf1 /\>)\/2}dxd)\

Z / )\ (@ )X{Mlocfl /\>)\/2}dl'd>\
(0,1)"+k

/0 kezm

Define my = 2 [ 1yn, [f()|dz, we have

/ / X{Mlocfk >)\/2}d$d>\
0 (0,1 n+k

:/ / X{Mlocfk >)\/2}dl'd)\
0 01)"+k

[e.9]

+ )\ 1/ 1)n+k X{Mlocfk >)\/2}dl’d>\

mp

We have

Note that

mp p(z)
/ 1 / N (s o jnydad < C / ( / | f(t)]dt) da.
0 (0,1)"+k AL ©,1)7+k \J(0,1)"+k

Let QF , be the decomposition of {M[% fF, > A\/2} into maximal dyadic cubes.
Then

quQfﬁ)\ = Mq,Qfl,A ~ A
holds for all @ € Qlf,A' Define Q) = Ugezn Q’f’ - Then we have

/0 )\71 / )\p(x)X{Mé?,jfl,A>>\/2}dxd)\

p(z)
<C / ( / dt> dv + / Al QI(M,
Z (0,1)"+k (0,1)"+k | ( | Z | ‘ Qso

kezn QEQx
For the first term we have

p(x)
Z/ (/ |f(t)|dt> dr < C.
rczn J 0. 4k \J(0,1)7+k
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The second term [;° A~ >-0co, , |QI(Mgy)(A)dA can be estimated in the same
way as in the Theorem 6.2 from [9]. O
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