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Abstract. We investigate the class Bloc(Rn) of exponents p(·) for which the
local Hardy–Littlewood maximal operator is bounded in variable exponent
Lebesgue spaces Lp(·)(Rn). Littlewood–Paley square function characterization
of Lp(·)(Rn) spaces with the above class of exponent are also obtained.

1. Introduction

The variable exponent Lebesgue spaces Lp(·)(Rn) and the corresponding vari-
able exponent Sobolev spaces W k,p(·) are of the interest for their applications
to the problems in fluid dynamics [26, 27], partial differential equations with
non-standard growth conditions and calculus of variations [1, 2, 11, 12], image
processing [3, 14, 22].

The boundedness of Hardy–Littlewood maximal operator is very important
tool to get boundedness of more complicated operators such as singular integral
operators, commutators of singular integrals, Riesz potential and many other
operators. Conditions for the boundedness of the Hardy–Littlewood maximal
operator on variable exponent Lebesgue spaces Lp(·)(Rn) have been studied in
[8, 9, 6, 25, 17, 15, 21]. For an overview we refer to the monographs [10] and [4].
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Let p : Rn −→ [1,∞) be a measurable function. Denote by Lp(·)(Rn) the space
of all measurable functions f on Rn such that for some λ > 0∫

Rn

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx <∞,

with the norm

‖f‖p(·) = inf

{
λ > 0 :

∫
Rn

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Given a locally integrable function f on Rn, the Hardy–Littlewood maximal
operator M is defined as follows

Mf(x) = sup
1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q containing x. Throughout the
paper, all cubes are assumed to have their sides parallel to the coordinate axes.

Let f be locally integrable function f on Rn. We consider the local variant of
the Hardy–Littlewood maximal operator given by

M locf(x) = sup
Q3x,|Q|≤1

1

|Q|

∫
Q

|f(y)|dy.

Denote by B(Rn) (Bloc(Rn)) the class of all measurable functions p : Rn −→
[1,∞) for which the operator M (operator M loc) is bounded on Lp(·) (Rn) . Given
any measurable function p : Rn −→ [1,∞), let p− = ess inf

x∈Rn
p(x) and p+ =

ess sup
x∈Rn

p(x). Below we assume that 1 < p− ≤ p+ <∞.

It has been proved by Diening [8] that if p(·) satisfies the following uniform
continuity condition

|p(x)− p(y)| ≤ c

log(1/|x− y|)
, |x− y| < 1/2, (1.1)

and if p(·) is a constant outside some large ball, then p(·) ∈ B(Rn). After that
the second condition on p(·) has been improved independently by Cruz–Uribe,
Fiorenza, and Neugebauer [6] and Nekvinda [25]. It is shown in [6] that if p(·)
satisfies (1.1) and

|p(x)− p∞| ≤
c

log(e+ |x|)
(1.2)

for some p∞ > 1, then p(·) ∈ B(Rn). In [25], the boundedness of M is deduced
from (1.1) and the integral condition more general than (1.2) condition: there
exist constants c, p∞, such that 0 < c < 1, p∞ > 1, and∫

Rn

c
1

|p(x)−p∞|dx <∞.

The condition (1.1) is named the local log-Hölder continuity condition and
the condition (1.2) the log-Hölder decay condition (at infinity). The conditions
(1.1) and (1.2) together are named global log-Hölder continuity condition. These
conditions are connected to the geometry of the space Lp(·)(Rn).
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By X n we denote the set of all open cubes in Rn and by Yn (Yn
loc) we denote

the set of all families Q = {Qi} of disjoint, open cubes in Rn (with measure less
than 1) such that

⋃
Qi = Rn (we ignore the difference in notation caused by a

null set).
Everywhere below by lQ we denote a Banach sequential space (BSS) (see for

the definition in [23]). Let {eQ} be standard unit vectors in lQ.

Definition 1.1. Let l = {lQ}Q∈Yn (l = {lQ}Q∈Yn
loc

) be a family of BSS. A space

Lp(·)(Rn) is said to satisfy a uniformly upper (lower) l−estimate (lloc−estimate )
if there exists a constant C > 0 such that for every f ∈ Lp(·)(Rn) and Q ∈ Yn

(Q ∈ Yn
loc) we have

‖f‖p(·) ≤ C‖
∑
Qi∈Q

‖fχQi
‖p(·) · eQi

‖lQ

(
‖
∑
Qi∈Q

‖fχQi
‖p(·) · eQi

‖lQ ≤ C‖f‖p(·)

)
.

Definition 1.1 was introduced by Kopaliani in [16]. The idea of Definition 1.1
is simply to generalize the following property of the Lebesgue-norm:

‖f‖p
Lp =

∑
i

‖fχΩi
‖p

Lp

for a partition of Rn into measurable sets Ωi.
Let p(·) ∈ B(Rn). For any Q ∈ Yn we define the space lQ,p(·) by

lQ,p(·) :=

{
t = {tQ}Q∈Q :

∑
Q∈Q

|tQ|pQ <∞

}
,

equipped with the Luxemburg’s norm, where the numbers pQ are defined as 1
pQ

=
1
|Q|

∫
Q

1
p(x)

dx. Analogously we define the space lQ,p′(·) where 1
p(t)

+ 1
p′(t)

= 1, t ∈ Rn.

Note that if p(·) ∈ B(Rn) then for simple functions we have uniformly lower
and upper l = {lQ,p(·)}Q∈Yn estimates.

Theorem 1.2. Let p(·) ∈ B(Rn) then uniformly

‖
∑
Q∈Q

tQχQ‖p(·) � ‖
∑
Q∈Q

tQ‖χQ‖p(·)eQ‖lQ,p(·) (1.3)

and

‖
∑
Q∈Q

tQχQ‖p′(·) � ‖
∑
Q∈Q

tQ‖χQ‖p′(·)eQ‖lQ,p′(·) . (1.4)

Above theorem is another version of necessary part of Diening’s Theorem 4.2 in
[9] (proof may be found in [18]). Note that conditions (1.3) and (1.4) in general do
not imply p(·) ∈ B(Rn). The proof (see in [20]) relies on the example constructed
by Lerner in [21]. We give the proof of this fact also here.

Let E = ∪k≥1(e
k3
, ek3e1/k2

) and

p0(x) =

∫ ∞

|x|

1

t log t
χE(t)dt. (1.5)
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There exist α > 1 and β0 (1/α < β0 < 1) such that p0(·) + α ∈ B(R) and
β0(p0(·)+α) /∈ B(R) (see [21, Theorem 1.7]). Note that for a space Lp(·)(R), with
p(·) = p0(·) + α there exists a family l = {lQ}Q∈Yn of BSS for which Lp(·)(R)
satisfies uniformly lower and upper l−estimate (see [20, Proposition 3.2]). From
(1.3) we have lQ ∼= lQ,p(·) and consequently we have

‖f‖p(·) � ‖
∑
Q∈Q

‖fχQ‖p(·)eQ‖lQ,p(·) . (1.6)

Note that for all 1 > β > 1
p−

‖f
1
β ‖β

βp(·) = ‖f‖p(·) (1.7)

and

‖{tQ}‖lQ,p(·) =
∥∥∥{|tQ| 1β}∥∥∥β

lQ,p(·)
. (1.8)

From (1.6), (1.7) and (1.8) we have

‖g‖βp(·) � ‖
∑
Q∈Q

‖gχQ‖βp(·)eQ‖lQ,βp(·) .

for g ∈ Lβp(·)(R) and the space Lβp(·)(R) satisfies uniformly lower and upper

lβ-estimates, where lβQ = lQ,βp(·).

Note that 1
(βp(·))Q

+ 1
((βp(·))′)Q

= 1 and
(
lQ,βp(·))′ = lQ,(βp(·))′ . Thus the space(

Lβp(·)(R)
)′

satisfies uniformly lower and upper (lβ)′-estimates, where (lβ)′Q =

lQ,(βp(·))′ and (1.3) and (1.4) are valid for any βp(·), (βp(·))′, where 1 > β > 1
p−

.

Consequently for exponent β0p(·) (1.3) and (1.4) are valid but β0p(·) /∈ B(R).

Remark 1.3. Let p(·) be global log-Hölder continuous function. Then there exists
family l = {lQ}Q∈Yn of BSSs for which Lp(·)(Rn) satisfies uniformly lower and
upper l−estimates (see [20, Proposition 3.4]). As we already mentioned it was
show in [6] that p(·) ∈ B(Rn) and by Theorem 1.2 (1.3) holds and therefore we
have lQ ∼= lQ,p(·) and consequently

‖f‖p(·) � ‖
∑
Q∈Q

‖fχQ‖p(·)eQ‖lQ,p(·) . (1.9)

Remark 1.4. Let Q = {Qi} be a partition of Rn into equal sizes cubes, ordered
so that i > j if dist(0, Qi) > dist(0, Qj). Let p(·) be global log-Hölder continuous.
Then

‖f‖p(·) ≈

(∑
i

‖fχQi
‖p∞

p(·)

)1/p∞

. (1.10)

This was shown in [13, Theorem 2.4]. This statement also follows from Re-
mark 1.3. Indeed, if we have a partition Q = {Qi} with equal sizes cubes and it
is ordered as above by using [24, Theorem 4.3] we can show that lp∞ ∼= lQ,p(·) and
consequently from (1.9) we get(1.10).
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By AC we denote the set of exponents p : R → [1,+∞) of the form p(x) =

p+
∫ x

−∞ l(u)du, where
∫ +∞
−∞ |l(u)|du < +∞.

Note that example of exponent constructed by Lerner and mentioned above
belongs to class AC. In general we have the following

Proposition 1.5. [20, Proposition 3.2] Let p(·) ∈ AC. Then exists family l =
{lQ}Q∈Yn of BSSs for which Lp(·)(Rn) satisfies uniformly lower and upper l−esti-
mate.

In many applications it is enough to study only boundedness of local Hardy–
Littlewood maximal operator rather the Hardy–Littlewood maximal operator.
For example in the Littlewood–Paley theory we need local Hardy–Littlewood
maximal operator. In the weighted Lebesgue spaces behavior of local Hardy–
Littlewood maximal operator was studied by Rychkov in [28].

In this paper we investigate the class Bloc(Rn) of exponents p(·) for which
the local Hardy–Littlewood maximal operator is bounded in variable exponent
Lebesgue space Lp(·)(Rn). Using the obtained results we give Littlewood–Paley
square-function characterization of the variable exponent Lebesgue spaces Lp(·)(Rn)
with the above class of exponent.

The paper is organized as follows. In Section 2 we give main results. In Section
3 we give application in the Littlewood–Paley theory and in last section we give
outlines of the proof of the Theorem 2.2 which is local version of the Diening’s
theorem from [9].

2. Main results

For any family of pairwise disjoint cubes Q and f ∈ L1
loc we define an averaging

operator

TQf =
∑
Q∈Q

χQMQf

where MQf = |Q|−1
∫

Q
f(x)dx.

We say that exponent p(·) is of the class A ( class Aloc) if and only if there
exists C > 0 such that for all Q ∈ Yn (Q ∈ Yn

loc) and all f ∈ Lp(·)(Rn)

‖TQ‖p(·) ≤ C‖f‖p(·),

i.e. the averaging operators TQ are uniformly continuous on Lp(·)(Rn).
A necessary and sufficient condition on p(·) for which the operatorM is bounded

in Lp(·)(Rn) is given by Diening in [9]. It states that p(·) ∈ B(Rn) if the averaging
operators TQ are uniformly continuous on Lp(·)(Rn) with respect to all families Q
of disjoint cubes. This concept provides the following characterization of when
the maximal operator is bounded.

Theorem 2.1. ( [9, Theorem 8.1]). Let 1 < p− ≤ p+ < ∞. The following are
equivalent:

1) p(·) is of class A;
2) M is bounded on Lp(·)(Rn);
3) (M(|f |q))1/q is bounded on Lp(·)(Rn) for some q > 1, (”left-openness”);
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4)M is bounded on Lp(·)/q(Rn) for some q > 1, (”left-openness”);
5) M is bounded on Lp′(·)(Rn).

Main important results is the corresponding theorem to the Dienings theorem’s
Theorem 2.1 for local maximal function M loc. The proof is presented in the Sec-
tion 4. In the proof we are following to the idea of the proof of the Theorem 2.1
with some technical modifications.

Theorem 2.2. Let 1 < p− ≤ p+ <∞. The following are equivalent:
1) p(·) is of class Aloc;
2) M loc is bounded on Lp(·)(Rn);
3) (M loc(|f |q))1/q is bounded on Lp(·)(Rn) for some q > 1, (”left-openness”);
4)M loc is bounded on Lp(·)/q(Rn) for some q > 1, (”left-openness”);
5) M loc is bounded on Lp′(·)(Rn).

We say that dx satisfies the condition Ap(·) (condition Aloc
p(·) ) if there exists

C > 0 such that for any cube Q (for any cube Q with |Q| ≤ 1)

1

|Q|
‖χQ‖p(·)‖χQ‖p′(·) ≤ C.

Using Theorem 2.1-2.2 we obtain some subclass of B(Rn) and Bloc(Rn).

Theorem 2.3. Let 1 < p− ≤ p+ < ∞ and there exists family l = {lQ}Q∈Yn

(family l = {lQ}Q∈Yn
loc

) of BSSs for which Lp(·)(Rn) satisfies uniformly lower and

upper l−estimate (lloc− estimate). Then operator M (operator M loc) is bounded
in Lp(·)(Rn) if and only if dx ∈ Ap(·) (dx ∈ Aloc

p(·)).

Proof. The proof for the operator M loc is the same as for the operator M. Let
dx ∈ Aloc

p(·). Using Hölders inequality we get

1

|Q|

∫
Q

|f(x)|dx ≤ C
‖fχQ‖p(·)

‖χQ‖p(·)
.

For Q ∈ Yn
loc and f ∈ Lp(·)(Rn) we have∥∥∥∥∥∑

Q∈Q

χQ
1

|Q|

∫
Q

f(x)dx

∥∥∥∥∥
p(·)

≤ ‖
∑
Q∈Q

‖fχQ‖p(·)eQ‖lQ ≤ C‖f‖p(·).

The necessary part of theorem is obvious. �

Theorem 2.4. B(Rn) 6= Bloc(Rn)

Proof. Let us consider the exponent p(·) = β0(p0(·) + α) where p0(·) is defined
by (1.5). Fix α > 1 and β0 (1/α < β0 < 1) such that the exponent p(·) does
not belong to the class B(R). Since p(·) ∈ AC we can conclude that for Lp(·)(R)
there exists family l = {lQ}Q∈Yn of BSSs for which Lp(·)(R) satisfies uniformly
lower and upper l−estimates. For p(·) the condition (1.1) is fulfilled, so it is
easy to show that for this exponent p(·) condition Aloc

p(·) is satisfied. Therefore by

Theorem 2.2 p(·) ∈ Bloc(R).
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In the class Bloc(R) there exist exponents that have arbitrary slow decreas-
ing order in infinity. To show this fact we rely on the simple observation. In-
deed, let for Lp(·)(R) there exists family l = {lQ}Q∈Yn of BSS for which Lp(·)(Rn)
satisfies uniformly lower and upper l− estimates and ω : R → R; ω(−∞) =
−∞, ω(+∞) = +∞ is strictly increasing absolutely continuous mapping. Then
there exists family lω of BSS for which Lp(ω(·))(R) satisfies uniformly lower and
upper lω− estimates (see [20]).

Consider the exponent from Theorem 2.4. Let tk = ek3
, mk = ek3

e1/k2
, k ≥ 1.

Let us construct new points t′k, m
′
k, k ≥ 1 so that m′

k − t′k = mk − tk and
t′k+1 > m′

k. Let us now construct the pairwise linear continuous function ω in the
following way: ω(x) = x if x ≤ 0, ω(tk) = t′k, ω(mk) = m′

k; k ≥ 1. We can choose
the points t′k, m

′
k so that (m′

k+1− t′k)/(mk+1− tk) was arbitrary large. Note that
exponents p(w−1(·)) and p(·) has the same local behavior but the decreasing order
in infinity of p(w−1(·)) is very slow.

Let now consider the case n ≥ 2. Let D = ∪∞k=1[2k− 1, 2k]× [0, 1]n−1. Consider
non-trivial exponent p(·) that satisfies global log-Hölder condition and is constant
on the set Rn\D.

Let {mk} be the strictly increasing sequence of integers. Consider the bijection
ω : Rn → Rn that for each k ∈ N has the form ω(x) = x−(mk, 0, · · · , 0) on the set
[2k − 1, 2k]× [0, 1]n−1. We can choose the sequence {mk} so that p(ω(·))/∈B(Rn)
but p(ω(·)) ∈ Bloc(Rn). �

Note that only the condition dx ∈ Aloc
p(·) (even dx ∈ Ap(·) ) does not guarantee

in general p(·) ∈ Bloc(Rn). For the corresponding example see [19].

3. Some applications

In this section, we give Littlewood–Paley square-function characterization of
Lp(·)(Rn) when p(·) ∈ Bloc(Rn). Let us recall the definition of local Muckenhoupt
weights. The weight class Aloc

p (1 < p < ∞) consists of all nonnegative locally
integrable functions w on Rn for which

Aloc
p (w) = sup

|Q|≤1

1

|Q|p

∫
Q

w(x)dx
(
w(x)−p′/pdx

)p/p′

<∞.

Extending the suprema from |Q| ≤ 1 to all Q gives the definition of the usual
classes Ap. It follows directly from definition that Ap ⊂ Aloc

p . The Littlwood–
Paley theory for weight Lebesgue space Lp

w with local Muckenhoupt weights was
investigated by Rychkov in [28]. For more details for Aloc

p weights we refer paper
[28].

Below we formulate analog of Rubio de Francia theorem for variable expo-
nent case. Hereafter, F will denote a family of ordered pairs of non-negative,
measurable functions (f, g). If we say that for some p, 1 < p <∞, and w ∈ Aloc

p∫
Rn

f(x)pw(x)dx ≤ C

∫
Rn

g(x)pw(x)dx, (f, g) ∈ F , (3.1)

we mean that this inequality holds for any (f, g) ∈ F such that the left-hand side
is finite, and that the constant C depends only on p and the constant Aloc

p (w).
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Theorem 3.1. Given a family F , assume that (3.1) holds for some 1 < p0 <∞,
for every weight ω ∈ Aloc

p0
and for all (f, g) ∈ F . Let p(·) be such that there exists

1 < p1 < p−, with (p(·)/p1)
′ ∈ Bloc(Rn). Then

‖f‖p(t) ≤ C‖g‖p(t)

for all (f, g) ∈ F such that f ∈ Lp(t)(Rn). Furthermore, for every 0 < q <∞ and
sequence {(fj, gj)}j ⊂ F ,∥∥∥∥∥∥

(∑
j

(fj)
q

)1/q
∥∥∥∥∥∥

p(t)

≤ C

∥∥∥∥∥∥
(∑

j

(gj)
q

)1/q
∥∥∥∥∥∥

p(t)

.

In the case when w ∈ Ap0 and (p(·)/p1)
′ ∈ B(Rn) Theorem 3.1 was proved in [5,

Theorem 1.3], (see also proof Theorem 3.25 in [7]). Note that the collection of all
cubes Q with |Q| ≤ 1 form the Muckenhoupt basis , that is for each p, 1 < p <∞,
and for every w ∈ Aloc

p , the maximal operator Mloc is bounded on Lp
w(Rn) ([28,

Lemma 2.11]. Theorem 3.1 follows from Theorem 2.2 and extrapolation theorem
for general Banach function spaces ([7, Theorem 3.5]).

We give a number of applications of Theorem 3.1. It is well known (see [28])
that for 1 < p <∞ and for w ∈ Aloc

p ,∫
Rn

M locf(x)pw(x)dx ≤ C

∫
Rn

f(x)pw(x)dx.

From Theorem 3.1 with the pairs (M locf, |f |), we get vector-valued inequalities
forM loc on Lp(·)(Rn), provided there exists 1 < p1 < p− with (p(·)/p1)

′ ∈ Bloc(Rn);
by Theorem 2.2, this is equivalent to p(·) ∈ Bloc(Rn). We obtain following local
version of the Fefferman–Stein vector-valued maximal theorem:

Corollary 3.2. Let p(·) ∈ Bloc(Rn). Then for all 1 < q <∞,∥∥∥∥∥∥
(∑

j

(M locfj)
q

)1/q
∥∥∥∥∥∥

p(t)

≤ C

∥∥∥∥∥∥
(∑

j

(gj)
q

)1/q
∥∥∥∥∥∥

p(t)

.

Let 1 < p < ∞ and w ∈ Aloc
p . Let ϕ0 ∈ C∞

0 have nonzero integral, and
ϕ(x) = ϕ0(x)− 2−nϕ0(

x
2
), x ∈ Rn. Consider the square operator S = Sϕ0,ϕ given

by

S(f) =

(
+∞∑
j=0

|ϕj ∗ f |2
)1/2

(f ∈ Lp
w(Rn)), (3.2)

where ϕj(x) = 2jnϕ(2jx), j ∈ N. Then

‖S(f)‖Lp
w
≈ ‖f‖Lp

w
, all f ∈ Lp

w(Rn).

(For details, see [28]). Therefore by Theorem 3.1 we have following Littlewood–
Paley square-function characterization of Lp(·)(Rn).
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Corollary 3.3. Let p(·) ∈ Bloc(Rn). Let ϕ0 ∈ C∞
0 have nonzero integral, and

ϕ(x) = ϕ0(x)− 2−nϕ0(
x
2
). Consider the square operator S = Sϕ0,ϕ given by equa-

tion (3.2). Then

‖S(f)‖p(·) ≈ ‖f‖p(·), all f ∈ Lp(·)(Rn).

4. The proof of the Theorem 2.2

Let ϕ(x, t) = tp(x) t ≥ 0, x ∈ Rn, 1 < p− ≤ p+ <∞. We need some notations.
For t ≥ 0, s ≥ 1, we define

ϕ(f)(x) : Rn → [0,+∞) = R≥0, (ϕ(f))(x) = ϕ(x, |f(x)|),

Ms,Qϕ : Rn → R≥0, Ms,Qϕ(t) =

(
1

|Q|

∫
Q

(ϕ(x, t))sdx

)1/s

MQϕ : R → R≥0, MQϕ(t) = (M1,Qϕ) (t).

Analogously we will use notation for the complementary function of ϕ given by
ϕ∗(x, t) = (p(x)− 1)p(x)−p′(x)tp

′(x).
Note that for all cubes Q functions (Ms,Qϕ)(t), (Ms,Qϕ∗)(t) are N -functions

and satisfy uniformly 42-condition with respect to Q (see [9, Lemma 3.4]). In
addition we mention following properties of functions defined above ([9, Lemma
3.7]): let s ≥ 1 and Q ∈ X n, then for all f ∈ Lp(·)(Rn) there holds

(Ms,Qϕ∗)
∗
(

1

2
Ms,Qf

)
≤Ms,Q(ϕ(f)).

Especially, for all u > 0

(Ms,Qϕ∗)
∗
(

1

2
u

)
≤Ms,Qϕ(u).

On the other hand for all t > 0 the function ft = χQϕ
∗(t)/t satisfies

(Ms,Qϕ∗)
∗(2Ms,Qft) ≥Ms,Q(ϕ(ft)).

For Q ∈ Yn we define the space l|Q|MQϕ(Q)

l|Q|MQϕ(Q) =

{
t = {tQ}Q∈Q :

∑
Q∈Q

|Q|(MQϕ)(tQ) <∞

}
,

equipped with the norm∥∥t∥∥
l
|Q|MQϕ (Q)

= inf

{
λ > 0 :

∑
Q∈Q

|Q|(MQϕ)(tQ/λ) < 1

}
.

Analogously we define the spaces l|Q|MQϕ∗ (Q), l|Q|Ms,Qϕ(Q), l|Q|Ms,Qϕ∗ (Q).
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Definition 4.1. Let

l|Q|(MQϕ∗ )∗(Q) ↪→ l|Q|MQϕ(Q)

be uniformly continuous with respect to Q ∈ Yn
loc (Q ∈ Yn) i.e. for all A1 > 0

there exists A2 > 0 such that for all Q ∈ Yn
loc (all Q ∈ Yn) and all sequences

{tQ}Q∈Q there holds∑
Q∈Q

|Q|(MQϕ∗)
∗(tQ) ≤ A1 ⇒

∑
Q∈Q

|Q|(MQϕ)(tQ) ≤ A2.

Then we say that MQϕ is locally dominated (dominated) by (MQϕ∗)
∗ and write

MQϕ � (MQϕ∗)
∗(loc) (MQϕ � (MQϕ∗)

∗).

Analogously we may define uniformly continuous embedding discrete function
spaces defined above with respect to Q ∈ Yn

loc (Q ∈ Yn). The basic property of
domination (�) in a ”pointwise” sense is described in original paper [9]. Analo-
gous properties of local domination is essentially based on the following general
lemma (note that if X = X n(loc) and Y = Yn(loc), then X, Y are admissible for
Lemma 4.2 )

Lemma 4.2. ([9, Lemma 7.1].) Let X be an arbitrary set. Let Y be a subset of the
power set of X such that M1 ⊂ M2 ∈ Y implies M1 ∈ Y. Let ψ1, ψ2 : X → R≥.
If there exists A1 > 0 and A2, A3 ≥ 0 such that for all M ∈ Y

ωψ1(ω) ≤ A1 ⇒
∑
ω∈M

ψ2(ω) ≤ A2

∑
ω∈M

ψ1(ω) + A3

then there exists b : X → R≥ such that for all ω ∈ X holds

ψ1(ω) ≤ A1

4
⇒ ψ2 ≤ max

{
4A3

A1

, 2A2

}
ψ1 + b(ω) (4.1)

and

sup
M∈Y

∑
ω∈M

b(ω) ≤ A3. (4.2)

If on the other hand there exist b : X → R≥, A1 > 0, and A2, A3 ≥ 0 such that
(4.1) and (4.2) hold, then for all M ∈ Y

ψ1(ω) ≤ A1

4
⇒

∑
ω∈M

ψ2(ω) ≤ max

{
4A3

A1

, 2A2

}
ωψ1(ω) + A3.

We can now state characterization of classes Aloc and A.

Theorem 4.3. Exponent p(·) is of class Aloc (of class A) if and only if MQϕ �
(MQϕ∗)

∗(loc) (MQϕ � (MQϕ∗))

The proof of above theorem in the case p(·) is of class A is based on proper-
ties (4.1)-(4.3) of MQϕ and (MQϕ∗) and may use analogously arguments in local
variant.

Inspired by the classical Muckenhoupt class A∞ in [9] was defined a condition
A∞. The importance of our considerations is analogous of the definition in local
case.
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Definition 4.4. We say that exponent p(·) is of class Aloc
∞ (class A∞) if for any

ε > 0 there exists δ > 0 such that the following holds: if N ⊂ Rn is measurable
and Q ∈ Yn

loc (Q ∈ Yn) such that

|Q ∩N | ≥ ε|Q| for all Q ∈ Q,

then for any sequence {tQ}Q∈Q

δ

∥∥∥∥∥∑
Q∈Q

tQχQ

∥∥∥∥∥
p(·)

≤

∥∥∥∥∥∑
Q∈Q

tQχQ∩N

∥∥∥∥∥
p(·)

.

It is not hard to prove that if exponent p(·) is of class Aloc then exponent p(·)
is in Aloc

∞ .
The important property of exponents from classA∞ is thatA∞ impliesMs,Qϕ �

MQϕ for some s > 1. The proof of this result is based on the following lemma.

Lemma 4.5. ([9, Lemma 5.5]). Let exponent p(·) is of class A∞. Then there
exists δ > 0 and A ≥ 1 such that for all Q ∈ Yn, all {tQ}Q∈Q, tQ ≥ 0, and all
f ∈ L1

loc with MQf 6= 0, Q ∈ Q, holds∥∥∥∥∥∑
Q∈Q

tQ

∣∣∣∣ f

MQf

∣∣∣∣δ χQ

∥∥∥∥∥
p(·)

≤ A

∥∥∥∥∥∑
Q∈Q

tQχQ

∥∥∥∥∥
p(·)

.

Note that a very similar argument can be used to obtain a local version of
Lemma 4.5. In the original proof of the Lemma 4.5 is used Q-dyadic (Q ∈ X n)
maximal function M4,Q ( as defined in [9, Definition 5.4]). Note that in fact
in proof of Lemma 4.5 it is used local Q-dyadic maximal function, where the
supremum is taken over all Q-dyadic cube Q′ containing x and |Q′| ≤ |Q|. As
a consequence of local variant of Lemma 4.5 we obtain a kind reverse Hölder
estimate for exponents from class Aloc.

Theorem 4.6. Let p(·) ∈ Aloc. Then there exists s > 1, such that Ms,Qϕ �
MQϕ(loc).

From Theorem 4.3 and Theorem 4.6 for local variant we obtain

Theorem 4.7. The following conditions are equivalent
(a) p(·) is of class Aloc.
(b) MQϕ � (MQϕ∗)

∗(loc)
(c) There exists s > 1, such that Ms,Qϕ �MQϕ � (MQϕ∗)

∗ � (Ms,Qϕ∗)
∗(loc).

The key lemma from which was derived original Theorem 3.1 is Lemma 8.7
from [9]. We formulate analogous statement for local variant.

Lemma 4.8. Let p(·) ∈ Aloc. Then there exists s > 1 such that for all A1 > 0
there exist A2 > 0 such that the following holds:

For all families Qλ ∈ Yn
loc, λ > 0, with∑

Q∈Qλ

|Q|(Ms,Qϕ∗)
∗(λ) ≤ A1
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and ∫ ∞

0

λ−1
∑

Q∈Qλ

|Q|(Ms,Qϕ∗)
∗(λ) ≤ A1,

there holds ∫ ∞

0

λ−1
∑

Q∈Qλ

|Q|(Ms,Qϕ)(λ) ≤ A2.

Note that the relation described in Lemma 8.7 from [9] is denoted as MQϕ �
(Ms,Qϕ∗)

∗ (strong domination).
The proof of Lemma 4.8 is based on some pointwise estimate of functions

(MQϕ∗)
∗ and (Ms,Qϕ∗)

∗. These properties we will describe bellow in Lemma 4.9,
4.10.

If p(·) ∈ Aloc, then Ms,Qϕ � (Ms,Qϕ∗)
∗(loc) for some s > 1. It is not hard to

prove that (analogously as the proof of Lemma 8.3 from [9]) uniformly in Q ∈ X n
loc

|Q|(Ms,Qϕ)

(
1

‖χQ‖p(·)

)
∼ 1, |Q|(M∗

s,Qϕ)∗
(

1

‖χQ‖p(·)

)
∼ 1. (4.3)

It is important to investigate for any Q ∈ X n
loc the function

αs(Q, t) =
(Ms,Qϕ)(t)

(Ms,Qϕ∗)∗(t)
.

Lemma 4.9. Let p(·) ∈ Aloc. Then

αs(Q, 1/‖χQ‖p(·)) ∼ 1, αs(Q, 1) ∼ 1

uniformly in Q ∈ X n
loc and t > 0. Moreover, there exists C ≥ 1 such that for all

Q ∈ X n
loc

αs(Q, t2) ≤ C(αs(Q, t1) + 1) for 0 < t1 ≤ t2 ≤ 1,

αs(Q, t3) ≤ C(αs(Q, t4) + 1) for 1 < t3 ≤ t4 ≤ 1.

Furthermore, for all C1, C2 > 0 there exists C3 ≥ 1 such that for all Q ∈ X n
loc

t ∈
[
C1 min

{
1,

1

‖χQ‖p(·)

}
, C1 max

{
1,

1

‖χQ‖p(·)

}]
⇒ αs(Q, t) ≤ C3. (4.4)

The proof of analogous statement for nonlocal case ([9, Lemma 8.4])is based on
the estimates (4.3) and some properties (not depend on Q) of convex functions
Ms,Qϕ, (Ms,Qϕ∗)∗ . We can use these arguments in the local variant.

Lemma 4.10. Let p(·) ∈ A(loc). Then there exists b : X n(loc) → R≥ and K > 0
such that

sup
Q∈Yn(loc)

∑
Q∈Q

|Q|b(Q) + sup
Q∈Xn(loc)

|Q|b(Q) <∞

and for all Q ∈ X n(loc) and all t ≥ 0 holds

|Q|(Ms,Qϕ∗)
∗(t) ≤ 1 ⇒ (Ms,Qϕ)(t) ≤ K(Ms,Qϕ∗)

∗(t) + b(Q).

Moreover, for all Q ∈ X n(loc) and all t ≥ 1 there holds

|Q|(Ms,Qϕ∗)
∗(t) ≤ 1 ⇒ (Ms,Qϕ)(t) ≤ K(Ms,Qϕ∗)

∗(t).
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The proof may be obtained from the general Lemma 4.2 and by using the
estimate (4.4) (see [9], proof Lemma 8.5).

Lemma 4.11. Assume Ms2,Qϕ � M∗
s2,Qϕ∗(loc) for some s2 > 1 and 1 ≤ s1 ≤ s2.

Then (
αs2(Q, t

s1
s2 )
) s2

s1 ∼ αs1(Q, t)

uniformly in Q ∈ X n(loc) and t > 0.

The proof of Lemma 4.11 is basically based on the Lemma 4.10 and may be
proved as an analogous lemma from [9, Lemma 8.6].

Let f be a locally integrable function. For q ≥ 1 we consider the local maximal
operator given by

M loc
q f(x) = sup

Q3x,|Q|≤1

(
1

|Q|

∫
Q

|f(y)|qdy
)1/q

.

We define a local dyadic maximal operator M loc
q,d witch restricted supremmum

in definition of M loc
q to dyadic cubes (cubes of the form Q = 2−z((0, 1)n +k), k =

(k1, · · · , kn) ∈ Zn, z ∈ N0).

For fixed t ∈ Rn we define also a maximal operator M loc,t
q,d with restricted

supremum in definition of M loc
q,d on the cubes Q− t, where Q dyadic cubes.

Note that there is a constant C > 0 such that (see [29])

M loc
q f(x) ≤ C

∫
[−4,4]n

M loc,t
q,d f(x)dt. (4.5)

The main step to proof Theorem 2.2 (as in proof of original Theorem 2.1) is
the following Theorem.

Theorem 4.12. Let p(·) ∈ Aloc. Then there exists q > 1 such that M loc
q is

continuous on Lp(·)(Rn).

Note that using 4.5 estimate it is sufficient to prove Theorem 4.12 for operator
M loc

q,d .

It is suffices to show that there exists A > 0 such that for all f ∈ Lp(·)(Rn)∫
Rn

|f(x)|p(x)dx ≤ 1 ⇒
∫

Rn

|M loc
q,df(x)|p(x)dx ≤ A.

For λ > 0 define functions

f0,λ = fχ{|f |≤λ}, f1,λ = fχ{|f |>λ}.

Then
{M loc

q,df > λ} ⊂ {M loc
q,df0,λ > λ/2} ∪ {M loc

q,df1,λ > λ/2}.
This implies∫

Rn

|M loc
q,df(x)|p(x)dx =

∫ ∞

0

∫
Rn

p(x)λp(x)−1χ{M loc
q,df>λ}dxdλ

≤ C
2∑

j=1

∫ ∞

0

λ−1

∫
Rn

λp(x)χ{M loc
q,dfj,λ>λ/2}dxdλ.
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For λ > 0 let Q0,λ be the decomposition of {M loc
q,df0,λ > λ/2} into maximal dyadic

cubes. Then for all Q ∈ Q0,λ there holds (uniformly in Q)

Mq,Qf0,λ ∼ λ

and we have∫ ∞

0

λ−1

∫
Rn

λp(x)χ{M loc
q,df0,λ>λ/2}dxdλ ≤ C

∫ ∞

0

λ−1
∑

Q∈Q0,λ

|Q|(MQϕ)(λ)dλ.

Denote fk
1,λ = χ(0,1)n+kf1,λ, k ∈ Zn. Note that if x ∈ (0, 1)n + k then

M loc
q,df1,λ(x) = M loc

q,df
k
1,λ(x)

and
{M loc

q,df1,λ > λ/2} = ∪k∈Zn{M loc
q,df

k
1,λ > λ/2}.

We have ∫ ∞

0

λ−1

∫
Rn

λp(x)χ{M loc
q,df1,λ>λ/2}dxdλ

=

∫ ∞

0

λ−1
∑
k∈Zn

∫
(0,1)n+k

λp(x)χ{M loc
q,dfk

1,λ>λ/2}dxdλ.

Define mk = 2
∫

(0,1)n+k
|f(x)|dx, we have∫ ∞

0

λ−1

∫
(0,1)n+k

λp(x)χ{M loc
q,dfk

1,λ>λ/2}dxdλ

=

∫ mk

0

λ−1

∫
(0,1)n+k

λp(x)χ{M loc
q,dfk

1,λ>λ/2}dxdλ

+

∫ ∞

mk

λ−1

∫
(0,1)n+k

λp(x)χ{M loc
q,dfk

1,λ>λ/2}dxdλ.

Note that∫ mk

0

λ−1

∫
(0,1)n+k

λp(x)χ{M loc
q,dfk

1,λ>λ/2}dxdλ ≤ C

∫
(0,1)n+k

(∫
(0,1)n+k

|f(t)|dt
)p(x)

dx.

Let Qk
1,λ be the decomposition of {M loc

q,df
k
1,λ > λ/2} into maximal dyadic cubes.

Then
Mq,Qf

k
1,λ = Mq,Qf1,λ ∼ λ.

holds for all Q ∈ Qk
1,λ. Define Q1,λ = ∪k∈ZnQk

1,λ. Then we have∫ ∞

0

λ−1

∫
Rn

λp(x)χ{M loc
q,df1,λ>λ/2}dxdλ

≤ C
∑
k∈Zn

∫
(0,1)n+k

(∫
(0,1)n+k

|f(t)|dt
)p(x)

dx+

∫ ∞

0

λ−1
∑

Q∈Q1,λ

|Q|(MQϕ)(λ)dλ.

For the first term we have∑
k∈Zn

∫
(0,1)n+k

(∫
(0,1)n+k

|f(t)|dt
)p(x)

dx ≤ C.
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The second term
∫∞

0
λ−1

∑
Q∈Q1,λ

|Q|(MQϕ)(λ)dλ can be estimated in the same

way as in the Theorem 6.2 from [9]. �
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