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LUPAŞ-DURRMEYER OPERATORS BASED ON POLYA
DISTRIBUTION
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Communicated by S. S. Dragomir

Abstract. The generalization of the Bernstein polynomials based on Polya
distribution is considered in the present article. Here, we introduce a mixed
summation-integral type operators having Polya and Bernstein basis functions
in summation and integration respectively. We establish some direct results
which include an asymptotic formula, local and global approximation results
for these operators in terms of modulus of continuity.

1. Introduction and preliminaries

In the year 1968, Stancu [13] introduced a sequence of positive linear operators

P
(α)
n : C[0, 1] → C[0, 1], depending on a non-negative parameter α given by

P (α)
n (f, x) =

n∑
k=0

f

(
k

n

)
p

(α)
n,k (x) , (1.1)

where p
(α)
n,k (x) is the Polya distribution with density function given by

p
(α)
n,k (x) =

(
n

k

)∏k−1
ν=0(x+ να)

∏n−k−1
µ=0 (1− x+ µα)∏n−1

λ=0(1 + λα)
, x ∈ [0, 1].

In case α = 0 these operators reduce to the classical Bernstein polynomials. For
α = 1/n a special case of the operators (1.1) was considered by Lupaş and Lupaş
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[4], which can be represented in an alternate form as

P (1/n)
n (f, x) =

2(n!)

(2n)!

n∑
k=0

(
n

k

)
f

(
k

n

)
(nx)k(n− nx)n−k, (1.2)

where the rising factorial is given as (x)n = x(x+1)(x+2)...(x+n−1). Recently
Miclaus [12] established some approximation results for the operators (1.1) and for
the case (1.2). In order to approximate Lebesgue integrable functions Durrmeyer
[7] proposed the integral modification of usual Bernstein polynomials, which was
later studied in different forms by Agrawal and Gupta [2], Abel et al. [1], Gupta–
Ispir [10] and Gupta–Maheshwari [11] etc. We now propose the Durrmeyer type
integral modification of the operators (1.2) as follows:

D(1/n)
n (f, x) = (n+ 1)

n∑
k=0

p
(1/n)
n,k (x)

∫ 1

0

pn,k (t) f (t) dt, (1.3)

where

p
(1/n)
n,k (x) =

2(n!)

(2n)!

(
n

k

)
(nx)k(n− nx)n−k

and

pn,k(t) =

(
n

k

)
tk(1− t)n−k.

Some approximation properties related the present paper can be found in [8],
[14] and in the recent books [3], [9]. In this paper, we consider the operator (1.3)
and obtain a Voronovskaja type asymptotic formula and local and global direct
estimates.

2. Auxiliary Results

We start this section with the following useful lemmas, which will be used in
the sequel.

Lemma 2.1. (Miclaus [12]) For ei = ti, i = 0, 1, 2 we have

P (1/n)
n (e0, x) = 1, P (1/n)

n (e1, x) = x

and

P (1/n)
n (e2, x) =

nx2 + 2x− x2

n+ 1
= x2 +

2x(1− x)

n+ 1
.

Lemma 2.2. For ei = ti, i = 0, 1, 2 we have

D(1/n)
n (e0, x) = 1, D(1/n)

n (e1, x) =
nx+ 1

n+ 2

D(1/n)
n (e2, x) =

n3x2 + 5n2x− n2x2 + 3nx+ 2n+ 2

(n+ 1)(n+ 2)(n+ 3)
.

Proof. By simple computation, we have∫ 1

0

pn,k(t)t
rdt =

n!(k + r)!

k!(n+ r + 1)!
. (2.1)
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Obviously D
(1/n)
n (e0, x) = 1 as

∫ 1

0
pn,k(t)dt = 1

n+1
. Next using (2.1) and applying

Lemma 2.1, we have

D(1/n)
n (e1, x) =

n∑
k=0

p
(1/n)
n,k (x)

k + 1

n+ 2

=
1

n+ 2

[
nP (1/n)

n (e1, x) + P (1/n)
n (e0, x)

]
=
nx+ 1

n+ 2
.

Finally

D(1/n)
n (e2, x) =

n∑
k=0

p
(1/n)
n,k (x)

(k + 1)(k + 2)

(n+ 2)(n+ 3)

=
1

(n+ 2)(n+ 3)

[
n2P (1/n)

n (e2, x) + 3nP (1/n)
n (e1, x) + 2P (1/n)

n (e0, x)
]

=
1

(n+ 2)(n+ 3)

[
n3x2 + 2n2x− n2x2

n+ 1
+ 3nx+ 2

]
=

1

(n+ 2)(n+ 3)

[
n3x2 + 2n2x− n2x2 + 3n2x+ 3nx+ 2n+ 2

n+ 1

]
=

n3x2 + 5n2x− n2x2 + 3nx+ 2n+ 2

(n+ 1)(n+ 2)(n+ 3)
.

�

Remark 2.3. By simple applications of Lemma 2.2, we have

D(1/n)
n (t− x, x) =

nx+ 1

n+ 2
− x =

1− 2x

n+ 2

and

D(1/n)
n ((t− x)2, x)

= D(1/n)
n (t2, x)− 2xD(1/n)

n (t, x) + x2

=
n3x2 + 5n2x− n2x2 + 3nx+ 2n+ 2

(n+ 1)(n+ 2)(n+ 3)
− 2x

nx+ 1

n+ 2
+ x2

=
(x− x2)(3n2 − 5n− 6) + 2(n+ 1)

(n+ 1)(n+ 2)(n+ 3)
.

Lemma 2.4. For f ∈ C [0, 1], we have
∥∥∥D(1/n)

n (f, x)
∥∥∥ ≤ ‖f‖ .

Proof. From the definition of operator and Lemma 2.2, we get∣∣D(1/n)
n (f, x)

∣∣ ≤ (n+ 1)
n∑
k=0

p
(1/n)
n,k (x)

∫ 1

0

pn,k (t) |f (t)| dt

≤ ‖f‖D(1/n)
n (1, x) = ‖f‖ .

�
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Lemma 2.5. For n ∈ N, we have

D(1/n)
n

(
(t− x)2 , x

)
≤ 3

n+ 1
δ2
n (x) ,

where δ2
n (x) = ϕ2 (x) + 1

n+2
, where ϕ2 (x) = x(1− x).

Proof. By Lemma 2.2, we have

D(1/n)
n

(
(t− x)2 , x

)
=

(x− x2)(3n2 − 5n− 6) + 2(n+ 1)

(n+ 1)(n+ 2)(n+ 3)

≤ 3

n+ 1

[
ϕ2 (x) +

1

n+ 2

]
which is desired. �

3. Direct Estimates

In this section, we first present the following asymptotic formula for the oper-

ators D
(1/n)
n (f, x).

Theorem 3.1. Let f ∈ C[0, 1] and If f
′′

exists at a point x ∈ [0, 1], then

lim
n→∞

n
[
D(1/n)
n (f, x)− f(x)

]
= (1− 2x) f ′(x) +

3x (1− x)

2
f ′′(x).

Proof. By Taylor’s expansion of f, we have

f(t) = f(x) + (t− x)f ′(x) + (t− x)2f
′′(x)

2
+ ε(t, x)(t− x)2,

where ε(t, x) → 0 as t → x. Applying D
(1/n)
n on above Taylor’s expansion and

using Remark 2.3, we have

D(1/n)
n (f, x)− f(x) = f ′(x)D(1/n)

n ((t− x), x) +
1

2
f ′′(x)D(1/n)

n ((t− x)2, x)

+D(1/n)
n (ε(t, x)(t− x)2, x),

lim
n→∞

n
[
D(1/n)
n (f ;x)− f (x)

]
= lim

n→∞
nf ′ (x)D(1/n)

n ((t− x), x) + lim
n→∞

n
1

2
f ′′ (x)D(1/n)

n ((t− x)2, x)

+ lim
n→∞

nD(1/n)
n (ε(t, x)(t− x)2, x)

lim
n→∞

n
[
D(1/n)
n (f ;x)− f (x)

]
= (1− 2x) f ′ (x) +

3x (1− x)

2
f ′′ (x) + lim

n→∞
nD(1/n)

n

(
ε (t, x) (t− x)2 , x

)
=: (1− 2x) f ′ (x) +

3x (1− x)

2
f ′′ (x) + F.
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In order to complete the proof, it is sufficient to show that F = 0. By Cauchy–
Schwarz inequality, we have

F = lim
n→∞

nD(1/n)
n

(
ε2 (t, x) , x

)1/2
D(1/n)
n

(
(t− x)4 , x

)1/2
. (3.1)

Furthermore, since ε2 (x, x) = 0 and ε2 (., x) ∈ C[0, 1], it follows that

lim
n→∞

nD(1/n)
n

(
ε2 (t, x) , x

)
= 0, (3.2)

uniformly with respect to x ∈ [0, 1]. So from (3.1) and (3.2) we get

lim
n→∞

nD(1/n)
n

(
ε2 (t, x) , x

)1/2
D(1/n)
n

(
(t− x)4 , x

)1/2
= 0.

Thus, we have

lim
n→∞

n
[
D(1/n)
n (f ;x)− f (x)

]
= (1− 2x) f ′ (x) +

3x (1− x)

2
f ′′ (x) ,

which completes the proof. �

We begin by recalling the following K−functional:

K2 (f, δ) = inf
{
‖f − g‖+ δ

∥∥∥g′′∥∥∥ : g ∈ W 2
}

(δ > 0) ,

where W 2 =
{
g ∈ C [0, 1] : g

′
, g

′′ ∈ C [0, 1]
}

and ‖.‖ is the uniform norm on
C [0, 1]. By [5], there exists a positive constant C > 0 such that

K2 (f, δ) ≤ Cω2

(
f,
√
δ
)
, (3.3)

where the second order modulus of smoothness for f ∈ C [0, 1] is defined as

ω2

(
f,
√
δ
)

= sup
0<h≤

√
δ

sup
x,x+2h∈[0,1]

|f (x+ 2h)− 2f (x+ h) + f (x)| .

We define the usual modulus of continuity for f ∈ C [0, 1] as

ω (f, δ) = sup
0<h≤δ

sup
x,x+h∈[0,1]

|f (x+ h)− f (x)| .

Now we present direct local approximation theorem for the operator D
(1/n)
n (f, x).

Theorem 3.2. For the operators D
(1/n)
n , there exists a constant C > 0 such that∣∣D(1/n)

n (f ;x)− f (x)
∣∣ ≤ Cω2

(
f, (n+ 1)−1 δn (x)

)
+ ω

(
f, (n+ 2)−1) ,

where f ∈ C [0, 1], δn (x) =
[
ϕ2 (x) + 1

n+1

]1/2
and x ∈ [0, 1].

Proof. We are introducing the auxiliary operators as follows

D(1/n)
n (f, x) = D(1/n)

n (f, x) + f (x)− f

(
nx+ 1

n+ 2

)
.

Obviously by Lemma 2.2, we have

D(1/n)
n (1, x) = D(1/n)

n (1, x) = 1
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and

D(1/n)
n (t, x) = D(1/n)

n (t, x) + x− nx+ 1

n+ 2
= x.

Let g ∈ W 2 and t ∈ [0, 1]. By Taylor’s expansion we have

g (t) = g (x) + (t− x) g′ (x) +

∫ t

x

(t− u) g′′ (u) du.

Applying the operator D(1/n)
n to both sides of above equation, we get

D(1/n)
n (g, x) (g, x) = g (x) +D(1/n)

n

(∫ t

x

(t− u) g′′ (u) du

)
= g (x) +D(1/n)

n

(∫ t

x

(t− u) g′′ (u) du, x

)
−

∫ nx+1
n+2

x

(
nx+ 1

n+ 2
− u

)
g′′ (u) du.

Hence ∣∣D(1/n)
n (g, x)− g (x)

∣∣
≤ D(1/n)

n

(∫ t

x

|t− u| |g′′ (u)| du, x
)

+

∫ nx+1
n+2

x

∣∣∣∣nx+ 1

n+ 2
− u

∣∣∣∣ |g′′ (u)| du
≤ D(1/n)

n

(
(t− x)2 , x

)
‖g′′‖+

(
nx+ 1

n+ 2
− x

)2

‖g′′‖ . (3.4)

On the other hand, from Lemma 2.5, we have

D(1/n)
n

(
(t− x)2 , x

)
+

(
1− 2x

n+ 2

)2

≤ 3

n+ 1
δ2
n (x) +

(
1− 2x

n+ 2

)2

≤ 3

n+ 1
δ2
n (x) +

1

(n+ 1)2 ≤
4

n+ 1
δ2
n (x) . (3.5)

Thus, by (3.4) and (3.5), we have∣∣D(1/n)
n (g, x)− g (x)

∣∣ ≤ 4

n+ 1
δ2
n (x) ‖g′′‖ , (3.6)

where x ∈ [0, 1]. Furthermore, by Lemma 2.4, we get∣∣D(1/n)
n (f, x)

∣∣ ≤
∣∣D(1/n)

n (f, x)
∣∣ + |f (x)|+

∣∣∣∣f (
nx+ 1

n+ 2

)∣∣∣∣
≤ 3 ‖f‖ , (3.7)

for all f ∈ C [0, 1] .
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For f ∈ C [0, 1] and g ∈ W 2, using (3.6) and (3.7) we obtain∣∣D(1/n)
n (f, x)− f (x)

∣∣ =

∣∣∣∣D(1/n)
n (f, x)− f (x) + f

(
nx+ 1

n+ 2

)
− f (x)

∣∣∣∣
≤

∣∣D(1/n)
n (f − g, x)

∣∣ +
∣∣D(1/n)

n (g, x)− g (x)
∣∣

+ |g (x)− f (x)|+
∣∣∣∣f (

nx+ 1

n+ 2

)
− f (x)

∣∣∣∣
≤ 4 ‖f − g‖+

4

n+ 1
δ2
n (x) ‖g′′‖+ ω

(
f,

∣∣∣∣ 1− 2x

(n+ 2)

∣∣∣∣) .

Taking infimum over all g ∈ W 2, we obtain∣∣D(1/n)
n (f, x)− f (x)

∣∣ ≤ 4K2

(
f,

1

n+ 1
δ2
n (x)

)
+ ω

(
f,

∣∣∣∣1− 2x

n+ 2

∣∣∣∣)
and by inequality (3.3), we get∣∣D(1/n)

n (f ;x)− f (x)
∣∣ ≤ Cω2

(
f, (n+ 1)−1 δn (x)

)
+ ω

(
f, (n+ 2)−1)

so proof is completed. �

Let f ∈ C [0, 1] and ϕ (x) =
√
x(1− x), x ∈ [0, 1]. The second order Ditzian–

Totik modulus of smoothness and corresponding K−functional are given by, re-
spectively,

ωϕ2

(
f,
√
δ
)

= sup
0<h≤

√
δ

sup
x±hϕ(x)∈[0,1]

|f (x+ hϕ (x))− 2f (x) + f (x− hϕ (x))| ,

K̄2,ϕ (f, δ) = inf
{
‖f − g‖+ δ

∥∥∥ϕ2g
′′
∥∥∥ + δ2

∥∥∥g′′∥∥∥ : g ∈ W 2 (ϕ)
}

(δ > 0) ,

whereW 2 (ϕ) =
{
g ∈ C [0, 1] : g

′ ∈ ACloc [0, 1] , ϕ2g′′ ∈ C [0, 1]
}

and g
′ ∈ ACloc [0, 1]

means that g is differentiable and g′ is absolutely continuous on every closed inter-
val [a, b] ⊂ [0, 1] . We know from Theorem 1.3.1 of [6] that there exists a positive
constant C > 0, such that

K̄2,ϕ (f, δ) ≤ Cωϕ2

(
f,
√
δ
)
. (3.8)

Also, the Ditzian–Totik modulus of first order is given by

−→ω ψ (f, δ) = sup
0<h≤δ

sup
x±hϕ(x)∈[0,1]

|f (x+ hψ (x))− f (x)| ,

where ψ is an admissible step-weight function on [0, 1] .
Our last direct estimate is following global theorem in terms of weighted mod-

ulus of continuity.

Theorem 3.3. Let f ∈ C [0, 1]. Then for x ∈ [0, 1], we have∥∥D(1/n)
n f − f

∥∥ ≤ Cωϕ2

(
f, (n+ 1)−1/2

)
+−→ω ψ

(
f, (n+ 2)−1) ,

where C > 0 is an absolute constant, ψ(x) = 1− 2x and ϕ (x) =
√
x(1− x).
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Proof. Again we consider the auxiliary operators

D(1/n)
n (f, x) = D(1/n)

n (f, x) + f (x)− f

(
nx+ 1

n+ 2

)
.

Using the definition of the operator D
(1/n)
n and Lemma 2.2, we obtained the

inequality (3.5) in the proof of Theorem 3.2 as∣∣D(1/n)
n (g;x)− g (x)

∣∣
≤ D(1/n)

n

 t∫
x

|t− u| |g′′ (u)| du;x


+

∫ nx+1
n+2

x

∣∣∣∣nx+ 1

n+ 2
− u

∣∣∣∣ |g′′ (u)| du. (3.9)

Moreover, δ2
n is a concave function on x ∈ [0, 1], for u = λx+(1− λ) t, λ ∈ [0, 1] ,

we get

|t− u|
δ2
n (u)

=
λ |t− x|

δ2
n (λx+ (1− λ) t)

≤ λ |t− x|
λδ2

n (x) + (1− λ) δ2
n (t)

≤ |t− x|
δ2
n (x)

.

Thus, if we use this inequality in (3.9), we have∣∣D(1/n)
n (g, x)− g (x)

∣∣ ≤ D(1/n)
n

(∫ t

x

|t− u|
δ2
n (u)

du, x

) ∥∥δ2
ng
′′∥∥

+

∫ nx+1
n+2

x

∣∣nx+1
n+2

− u
∣∣

δ2
n (u)

du
∥∥δ2

ng
′′∥∥

≤ 1

δ2
n (x)

∥∥∥δ2
ng

′′
∥∥∥[

D(1/n)
n

(
(t− x)2 , x

)
+

(
1− 2x

n+ 2

)2
]
.

(3.10)

By the inequality (3.5), we have∣∣D(1/n)
n (g, x)− g (x)

∣∣ ≤ 3

n+ 1

∥∥δ2
ng
′′∥∥

≤ 3

n+ 1

(∥∥∥ϕ2g
′′
∥∥∥ +

1

n+ 2
‖g′′‖

)
.

Using (3.7) and (3.10), we have for f ∈ C [0, 1],∣∣D(1/n)
n (f, x)− f (x)

∣∣ ≤
∣∣D(1/n)

n (f − g, x)
∣∣ +

∣∣D(1/n)
n (g, x)− g (x)

∣∣
+ |g (x)− f (x)|+

∣∣∣∣f (
nx+ 1

n+ 2

)
− f (x)

∣∣∣∣
≤ 4 ‖f − g‖+

4

n+ 1

∥∥ϕ2g′′
∥∥ +

4

(n+ 1)2 ‖g
′′‖

+

∣∣∣∣f (
nx+ 1

n+ 2

)
− f (x)

∣∣∣∣ .
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Taking infimum over all g ∈ W 2, we obtain∣∣D(1/n)
n (f, x)− f (x)

∣∣ ≤ 4K̄2,ϕ

(
f,

1

n+ 1

)
+

∣∣∣∣f (
nx+ 1

n+ 2

)
− f (x)

∣∣∣∣ . (3.11)

On the other hand∣∣∣∣f (
nx+ 1

n+ 2

)
− f (x)

∣∣∣∣
=

∣∣∣∣f (
x+ ψ(x).

1− 2x

(n+ 2)ψ(x)

)
− f (x)

∣∣∣∣
≤ sup

t,t+ψ(t) 1−2x
(n+2)ψ(x)

∈[0,1]

∣∣∣∣f (
t+ ψ (t)

1− 2x

(n+ 2)ψ(x)

)
− f (t)

∣∣∣∣
≤ −→ω ψ

(
f,

|1− 2x|
(n+ 2)ψ (x)

)
= −→ω ψ

(
f,

1

(n+ 2)

)
.

Therefore, from (3.8) and (3.11) we obtain∥∥D(1/n)
n f − f

∥∥ ≤ Cωϕ2

(
f, (n+ 1)−1/2

)
+−→ω ψ

(
f, (n+ 2)−1) ,

which is the desired result. �
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